首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
B : LS ribozyme, a trans-variant of naturally occurring HDV ribozyme, has been constructed. The ribozyme consists of a substrate-containing LS chain and an enzyme B chain and differs from previously constructed trans-ribozymes in the length and nucleotide sequence of its oligonucleotide chains (34 and 33 bp, respectively). The chains readily associate with each other at a room temperature while the LS cleavage reaction at this temperature is negligible slow, which allowed us to investigate the association of the intact chains. At the same time the self-cleavage rate constant for the trans-ribozyme B : LS at 50 degrees C is close to those for the previously studied permuted cis-ribozymes, especially LSB variant. In addition, the dependence on the reaction conditions (Mg2+ concentration, pH, temperature) of the trans-ribozyme was similar to that of cis-ribozyme. Similar to other trans-ribozymes, B : LS ribozyme demonstrates the ability for multiple use of the enzyme B-chain with an excess of the substrate LS chain. The kinetics model of self-cleavage reaction for B : LS is presented in http://www.cardio.ru/labgen/RZ_r.html. Taken together, our results show that the original trans-variant of HDV ribozyme can be used as a model for the investigation of self-cleavage process of HDV ribozymes.  相似文献   

2.
A study was made of the association of the RNA components forming a B:LS two-component rans analog of the antigenomic HDV ribozyme. The B:LS ribozyme differed from known trans ribozymes in the sizes and nucleotide sequences of its components (33 and 34 nt, respectively), the topology of its functional parts, and the lack of a very short cleavage product. Compared to the cis ribozyme, B:LS showed similar dependences on the reaction conditions (Mg2+ concentration, pH, temperature) and a similar biphasic kinetic curve of self-cleavage. The kinetic model of B:LS self-cleavage (available at www.cardio.ru/labgen/RZ_e.html) describes a possible cause of the biphasic kinetic curve as a change in the rate-limiting step of consecutive conformational transitions accompanying self-cleavage. Another possible cause is an interaction between the molecules involved in cleavage, i.e., multimerization of whole ribozyme molecules with their components or the reaction products. B:LS provides a convenient model for studying such interactions, since the mode of component binding allows generation of 1B:2LS and 2B:1LS complexes as well as complexes with the cleavage products. Nondenaturing PAGE was used to study the factors affecting association and dissociation of the ribozyme components. The possibility of interactions between the RNA components of the cis and trans ribozymes was demonstrated experimentally. It was shown that the ribozyme is capable of multimerization when LS is in excess over B and that the cleavage products are not significantly involved in this process. The results suggest intermolecular interactions for the cleavage of the natural cis ribozyme.  相似文献   

3.
Association of RNA molecules forming a two-component B:LS trans-analog of antigenomic HDV ribozyme was studied. From previously synthesized trans-ribozymes the B:LS ribozyme differs by length and sequence of its RNA molecules (33 and 34 bp, respectively), topology of functional parts and the absence of very short reaction product. The ribozyme displays a biphasic kinetics of self-cleavage similar to that of cis-ribozyme. Our original kinetic scheme for the B:LS trans-ribozyme self-cleavage (www.cardio.ru\labgen\RZ_e.html)describes a possible cause of biphasic nature of the reaction curve, namely, variation of the rate-limiting stage in the series of successive conformational transformations which coincide with the ribozyme self-cleavage. Interactions between the molecules involved in the reaction, i.e., "multimerization" of entire ribozyme and its components can be regarded as another cause of the biphasic kinetics. B:LS trans-ribozyme is a convenient model for the investigation of this process, since the binding of LS and B allows the formation of complexes with 1B:2LS or 2B:1LS stoichiometry and complexes with the cleavage products. We examined the factors determining dissociation-association of the ribozyme components using a series of electrophoreses under nondenaturing conditions. The possibility of interaction between cis- and transribozyme components was confirmed experimentally. In the presence of LS excess over B the ribozyme can form multimeres. These findings suggest the involvement of intermolecular interactions in native cis-ribozyme self-cleavage.  相似文献   

4.
To identify the divalent metal ions that can support the self-cleavage activity of the genomic ribozyme of human hepatitis delta virus (HDV), we tested the activity of various divalent metal ions in the ribozyme reactions catalyzed by HDV88 (683-770 nt) and 88DI3 (HDV88 with the sequence from 740-752 nt deleted). Among various metal ions tested, Mg2+, Mn2+, Ca2+ and Sr2+ efficiently supported the self-cleavage reactions of the HDV88 and 88DI3 ribozymes. In the case of the 88DI3 ribozyme, other divalent metal ions, such as Cd2+, Ba2+, Co2+, Pb2+ and Zn2+, were also able to support the self-cleavage reaction to some extent (< 10%). In the presence of spermidine (0.5 mM), the cleavage reaction was promoted at lower concentrations of effective divalent metal ions. The HDV ribozyme represents the only example of ribozyme to date of a ribozyme that catalyzes the self-cleavage reaction in the presence of Ca2+ ions as efficiently as it does in the presence of Mg2+ ions.  相似文献   

5.
The hepatitis delta virus (HDV) ribozyme is an RNA enzyme that catalyzes the site-specific trans-esterification reaction. Using high hydrostatic pressure (HHP) technique we showed that HDV ribozyme catalyzes the reaction of RNA cleavage in the absence of magnesium ions according to mechanism of acidic hydrolysis of esters. HHP induces changes of water structure, lowering pH and effect ribozyme catalytic site structure formation without magnesium. HHP, similarly to magnesium ion at ambient pressure stabilizes the higher order RNA structure of HDV, but Mg2+ is not involved in the catalysis. Our results clearly support the new mechanism of HDV hydrolysis and show advantages of using HHP in analysis of macromolecules interaction.  相似文献   

6.
The hepatitis delta virus (HDV) ribozyme is a member of the class of small, self-cleaving catalytic RNAs found in a wide range of genomes from HDV to human. Both pre- and post-catalysis (precursor and product) crystal structures of the cis-acting genomic HDV ribozyme have been determined. These structures, together with extensive solution probing, have suggested that a significant conformational change accompanies catalysis. A recent crystal structure of a trans-acting precursor, obtained at low pH and by molecular replacement from the previous product conformation, conforms to the product, raising the possibility that it represents an activated conformer past the conformational change. Here, using fluorescence resonance energy transfer (FRET), we discovered that cleavage of this ribozyme at physiological pH is accompanied by a structural lengthening in magnitude comparable to previous trans-acting HDV ribozymes. Conformational heterogeneity observed by FRET in solution appears to have been removed upon crystallization. Analysis of a total of 1.8 µsec of molecular dynamics (MD) simulations showed that the crystallographically unresolved cleavage site conformation is likely correctly modeled after the hammerhead ribozyme, but that crystal contacts and the removal of several 2′-oxygens near the scissile phosphate compromise catalytic in-line fitness. A cis-acting version of the ribozyme exhibits a more dynamic active site, while a G-1 residue upstream of the scissile phosphate favors poor fitness, allowing us to rationalize corresponding changes in catalytic activity. Based on these data, we propose that the available crystal structures of the HDV ribozyme represent intermediates on an overall rugged RNA folding free-energy landscape.  相似文献   

7.
A series of permuted variants of antigenomic HDV ribozyme and trans-acting variants were constructed. The catalytic activity study of the ribozymes has shown that all the variants were capable of self-cleaving with equally biphasic kinetics. Ribonuclease and Fe(II)-EDTA cleavage have provided evidence that all designed ribozymes fold according to the pseudoknot model and the conformations of the initial and cleaved ribozyme are different. A scheme of HDV ribozyme self-cleavage reaction was suggested. The role of hydrogen bonds in the reaction was evaluated by substitution of ribose in the ribozyme for deoxyribose. It was found that the 2'-OH group of U23 and C27 is critical for the reaction to occur; the 2'-OH group of U32 and U39 is important, while 2'-OH groups of other nucleotides of loop 3, stem 4 and stem 1 are unimportant for the cleavage activity.  相似文献   

8.
In elucidating function of two important single-stranded regions [SSrA (726-731 nt) and SSrB (762-766 nt)] derived mainly from three secondary structure models in genomic hepatitis delta virus (HDV) ribozyme possessing self-cleavage activity, we have constructed several random mutants at those two regions on the HDV88 molecule (683-770 nt) by oligonucleotide-directed mutagenesis. When self-cleavage activities were compared among mutants, at the region SSrA, G726 was found to play an important role during cleavage reaction since substitutions of the base to A (mutant A20) or C (mutant A16) or U (mutant A23), reduced the ribozyme activity to very low levels suggesting the importance of G726 position. C763 at SSrB region was found to play a more significant role during catalysis than G726 (at region SSrA) since any substitutions at C763 completely inactivated the ribozyme. Other bases located in these two regions could be substituted to other bases at the expense of some self-cleavage activity. The results presented here together with our previous deletion analysis indicate that these two regions may play an important role during cleavage process.  相似文献   

9.
In elucidating functionally important single-stranded loop regions derived mainly from three models in genomic hepatitis delta virus (HDV) ribozyme possessing self-cleavage activity, we have constructed several internal deletion variants of the HDV133 molecule (654-786 nt on genomic RNA) by oligonucleotide-directed mutagenesis. When self-cleavage activities were compared among variants, the HDV133DI-1 (deletion of 701-718 nt) and HDV133DI-3 (deletion of 740-752 nt) ribozyme could maintain their self-cleavage activity, despite at reduced level. However, the activity could be regained in both mutants by some extent under partially denaturing conditions. These results suggest that the above two single-stranded RNA loop regions in HDV ribozyme are not part of the catalytic core but might be involved in the stability of the molecule. In contrast, deletion mutants such as HDV133DI-2 (deletion of 696-722 nt), HDV88DI-1 (deletion of 701-718 nt), HDV88DI-2 (deletion of 696-722 nt), and HDV88DI-4 (deletion of 733-760 nt) abolished catalytic activity. These results suggest that the remaining single-stranded regions of bases between 726-731 and 762-766 in the HDV88 ribozyme may be the potential regions to interact with Mg2+ ions.  相似文献   

10.
The hepatitis delta virus (HDV) ribozyme catalyzes viral RNA self-cleavage through general acid-base chemistry in which an active-site cytidine and at least one metal ion are involved. Monovalent metal ions support slow catalysis and were proposed to substitute for structural, but not catalytic, divalent metal ions in the RNA. To investigate the role of monovalent cations in ribozyme structure and function, we determined the crystal structure of the precursor HDV ribozyme in the presence of thallium ions (Tl(+)). Two Tl(+) ions can occupy a previously observed divalent metal ion hexahydrate-binding site located near the scissile phosphate, but are easily competed away by cobalt hexammine, a magnesium hexahydrate mimic and potent reaction inhibitor. Intriguingly, a third Tl(+) ion forms direct inner-sphere contacts with the ribose 2'-OH nucleophile and the pro-S(p) scissile phosphate oxygen. We discuss possible structural and catalytic implications of monovalent cation binding for the HDV ribozyme mechanism.  相似文献   

11.
12.
In order to determine important bases at two single-stranded regions [SSrA (726-731 nt) and SSrB (762-766)] derived mainly from secondary structure models in genomic hepatitis delta virus (HDV) ribozyme possessing self-cleavage activity, we have constructed several point mutants at these two regions on the HDV88 molecule (683-770). Among the bases at SSrA and SSrB regions C763 was found to play an essential role during self-cleavage process since substitutions to any other bases viz. A or G or U completely abolished the activity.  相似文献   

13.
Analysis of the self-cleavage of ribozymes derived from the genomic RNA of Hepatitis delta virus (HDV) has revealed that certain co-transcribed vector sequences significantly affect the activity of the ribozyme. Specifically, the t1/2 of self-cleavage for a 135 nucleotide HDV RNA varied, at 42 degrees C, from 5 min to 88 min, depending on the vector-derived sequences flanking the 5' end of the ribozyme. Further analysis suggested that this phenomenon was most likely due to the interaction of vector-derived sequences with a 16 nucleotide region found at the 3' end of the ribozyme. These findings have implications for studies of ribozymes transcribed from cDNA templates, and may provide information regarding the catalytic structure of the HDV ribozyme.  相似文献   

14.
A three-strand ribozyme, a derivative of antigenomic hepatitis delta virus (HDV) ribozyme, which consists of subfragments of 16 (L), 17 (S), and 33 nucleotides (B), has been constructed. The ternary B-L-S complex formed by the subfragments in stoichiometric ratio was able to catalyze a self-cleavage reaction. Kinetics of this reaction exhibited biphasic behavior and the same parameters as in the case of natural cis-ribozyme. Study of kinetics of reaction initiated by adding various reaction components and the study of binary complex formation between subfragments B and L, B and S, and also ternary B-L-S complex formation revealed that: 1) in the presence of Mg2+, B and S form a stoichiometric complex, L and S do not form complex at all, while B and L form 2 types of complexes, probably B-L and 2B-L; and addition of S subfragment prevented the formation of the latter complex; 2) the reaction initiated by S subfragment proceeds much slower than that initiated by other components pointing to the possibility that in the absence of S L may form a nonproductive complex with B, which is slowly displaced by S followed by productive ternary complex formation. Dissociation constants for binary B-L, B-S and ternary B-L-S complexes have been estimated.  相似文献   

15.

Because the substrate binding site (P1) of HDV ribozyme consists of only seven nucleotides, cleavage of undesired RNA is likely to occur when applied for a specific long RNA target such as mRNA. To overcome this problem, we designed modified trans-acting HDV ribozymes with an extra substrate-binding site (P5) in addition to the original binding site (P1). By inserting an additional seven base-pair stem (P5 stem) into the J1/2 single-stranded region of the ribozyme core system and partial destabilization of the P2 or P4 stem, we succeeded in preparation of new HDV ribozymes that can cleave the target RNA depending on the formation of P5 stem. Moreover, the ribozyme with a six-nucleotide P1 site was able to distinguish the substrate RNA with a complete match from that with a single mismatch in the P1 region. These results suggest that the HDV ribozyme system is useful for the application in vivo.  相似文献   

16.
Subgenomic regions of hepatitis delta virus (HDV) RNA contains ribozyme whose activities are important to viral life cycles and depend on a unique pseudoknot structure. To explore the characters of HDV ribozyme, antibiotics of the aminoglycoside, which has been shown inhibiting self-splicing of group I intron and useful in elucidating its structure, were tested for their effect on HDV genomic ribozyme. Aminoglycosides, including tobramycin, netromycin, neomycin and gentamicin effectively inhibited HDV genomic ribozyme self-cleavage in vitro at a concentration comparable to that inhibiting group I intron self-splicing. The extent of inhibition depended upon the concentration of magnesium ion. Chemical modification mapping of HDV ribozyme RNA indicated that the susceptibility of nucleotide 703 to the modifying agent was enhanced in the presence of tobramycin, suggesting a conformational shift of HDV ribozyme, probably due to an interaction with the aminoglycoside. Finally, we examined the effect of aminoglycoside on HDV cleavage and replication in cell lines, however, none of the aminoglycoside effective in vitro exerted suppressive effects in vivo. Our results represented as an initial effort in utilizing aminoglycoside to probe the structure of HDV ribozyme and to compare its reaction mechanism with those of other related ribozymes.  相似文献   

17.
The HDV ribozyme is proposed to catalyze its self cleavage reaction by a proton transfer mechanism wherein the N3 of its C75 acts as a general acid. The C75 to U mutation, which raises the N3 pKa from about 4 to almost 10, abolishes all enzymatic activity. To test if a U analogue with a neutral pKa can restore ribozyme function we incorporated 6-azauridine (n6U), a uridine analogue with histidine-like N3 pKa, into the genomic HDV ribozyme active site by 2′-O-ACE oligoribonucleotide protection chemistry. The resulting ribozymes were analyzed for their ability to undergo the HDV ribozyme cis-cleavage reaction. Incorporation of n6U at nucleotide position 75 did not restore ribozyme function compared to the U75 mutant. This suggests that the HDV ribozyme reaction mechanism involves more than positioning of a neutral nucleobase at the active site and implies that the exocyclic amino group of C75 participates in establishing the proper active site fold.  相似文献   

18.
trans-Stilbene degradation was examined by the reaction using resting cells of microorganisms isolated through the enrichment culture using trans-stilbene. The strain SL3, showing the highest trans-stilbene-degrading activity, was identified as Arthrobacter sp. One of the reaction products was identified to be cis,cis-muconic acid. Arthrobacter sp. SL3 cells also transformed benzaldehyde, benzoic acid and catechol into cis,cis-muconic acid, suggesting that one benzene ring of trans-stilbene was converted into cis,cis-muconic acid via benzaldehyde formed by its Cα=Cβ bond cleavage.  相似文献   

19.
The substrate selectivity of several microbial lipases has been examined in the esterification of the conjugated linoleic acid (CLA) isomers cis-9,trans-11-, cis-9,cis-11-, trans-9,trans-11- and trans-10,cis-12-octadecadienoic acid with n-butanol in n-hexane. Lipases from Candida cylindracea and Mucor miehei had a preference for the cis-9,trans-11-octadecadienoic acid, while Chirazyme L-5, a Candida antarctica lipase A, accepted the trans-9,trans-11-fatty acid with a high selectivity. Moreover, lipase from Candida cylindracea and Chirazyme L-5 catalysed the esterification of the cis-9,trans-11-octadecadienoic acid with n-butanol faster than the corresponding reaction of the trans-10,cis-12-fatty acid.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号