首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A mononuclear (1:1) copper complex of curcumin, a phytochemical from turmeric, was synthesized and examined for its superoxide dismutase (SOD) activity. The complex was characterized by elemental analysis, IR, NMR, UV-VIS, EPR, mass spectroscopic methods and TG-DTA, from which it was found that a copper atom is coordinated through the keto-enol group of curcumin along with one acetate group and one water molecule. Cyclic voltammetric studies of the complex showed a reversible Cu(2+)/Cu(+) couple with a potential of 0.402 V vs NHE. The Cu(II)-curcumin complex is soluble in lipids and DMSO, and insoluble in water. It scavenges superoxide radicals with a rate constant of 1.97 x 10(5) M(-1) s(-1) in DMSO determined by stopped-flow spectrometer. Subsequent to the reaction with superoxide radicals, the complex was found to be regenerated completely, indicating catalytic activity in neutralizing superoxide radicals. Complete regeneration of the complex was observed, even when the stoichiometry of superoxide radicals was 10 times more than that of the complex. This was further confirmed by EPR monitoring of superoxide radicals. The SOD mimicking activity of the complex was determined by xanthine/xanthine oxidase assay, from which it has been found that 5 microg of the complex is equivalent to 1 unit of SOD. The complex inhibits radiation-induced lipid peroxidation and shows radical-scavenging ability. It reacts with DPPH radicals with rate constant 10 times less than that of curcumin. Pulse radiolysis-induced one-electron oxidation of the complex by azide radicals in TX-100 micellar solutions produced strongly absorbing ( approximately 500 nm) phenoxyl radicals, indicating that the phenolic moiety of curcumin remained intact on complexation with copper. The results confirm that the new Cu(II)-curcumin complex possesses SOD activity, free radical neutralizing ability, and antioxidant potential. Quantum chemical calculations with density functional theory have been performed to support the experimental observations.  相似文献   

2.
The photochemical reactivity of beta-lapachone (1), nor-beta-lapachone (2) and beta-lapachone 3-sulfonic acid (3) has been examined by laser flash photolysis. Excitation (lambda = 266 nm) of degassed solutions of , in acetonitrile or dichloromethane, resulted in the formation of detectable transients with absorption maxima at 300, 380 and 650 nm. These transients, with lifetimes of 5.0 micros, were quenched by beta-carotene at a diffusion-controlled rate constant and assigned to the triplet excited states of 1-3. Addition of hydrogen donors, such as 2-propanol, 1,4-cyclohexadiene, 4-methoxyphenol or indole led to the formation of new transients, which were assigned to the corresponding ketyl radicals obtained from the hydrogen abstraction reaction by the triplets 1-3 . In the presence of triethylamine it was observed the formation of the long-lived anion radical derived from , which shows absorption maxima at 300 and 380 nm. The low values observed for the hydrogen abstraction rate constants for the beta-lapachones 1-3 using 2-propanol and 1,4-cyclohexadiene as quenchers led us to conclude that their triplet excited states show pi pi* character.  相似文献   

3.
Electron paramagnetic resonance (EPR) and absorption spectroscopy have been used to study the low temperature photochemical behavior of the Photosystem II D-1/D-2/ cytochrome b559 reaction center complex. The reaction center displays large triplet state EPR signals which are attenuated after actinic illumination at low temperatures in the presence of sodium dithionite. Concomitant with the triplet attenuation is the buildup of a structured radical signal with an effective g value of 2.0046 and a peak-to-peak width of 11.9 G. The structure in the signal is suggestive of it being comprised in part of the anion radical of pheophytin a. This assignment is corroborated by low temperature optical absorbance measurements carried out after actinic illumination at the low temperatures which show absorption bleachings at 681 nm, 544 nm and 422 nm and an absorbance buildup at 446 nm indicating the formation of reduced pheophytin.Abbreviations EPR electron paramagnetic resonance  相似文献   

4.
To understand the relative importance of phenolic O-H and the CH-H hydrogen on the antioxidant activity and the free radical reactions of Curcumin, (1,7-bis[4-hydroxy-3-methoxyphenyl]-1,6-heptadiene-3,5-dione), biochemical, physicochemical, and density functional theory (DFT) studies were carried out with curcumin and dimethoxy curcumin (1,7-bis[3, 4-dimethoxy phenyl]-1,6-heptadiene-3,5-dione). The antioxidant activity of these compounds was tested by following radiation-induced lipid peroxidation in rat liver microsomes, and the results suggested that at equal concentration, the efficiency to inhibit lipid peroxidation is changed from 82% with curcumin to 24% with dimethoxy curcumin. Kinetics of reaction of (2,2'-diphenyl-1-picrylhydrazyl) DPPH, a stable hydrogen abstracting free radical was tested with these two compounds using stopped-flow spectrometer and steady state spectrophotometer. The bimolecular rate constant for curcumin was found to be approximately 1800 times greater than that for the dimethoxy derivative. Cyclic voltammetry studies of these two systems indicated two closely lying oxidation peaks at 0.84 and 1.0 V vs. SCE for curcumin, while only one peak at 1.0 V vs. SCE was observed for dimethoxy curcumin. Pulse radiolysis induced one-electron oxidation of curcumin and dimethoxy curcumin was studied at neutral pH using (*)N(3) radicals. This reaction with curcumin produced phenoxyl radicals absorbing at 500 nm, while in the case of dimethoxy curcumin a very weak signal in the UV region was observed. These results suggest that, although the energetics to remove hydrogen from both phenolic OH and the CH(2) group of the beta-diketo structure are very close, the phenolic OH is essential for both antioxidant activity and free radical kinetics. This is further confirmed by DFT calculations where it is shown that the -OH hydrogen is more labile for abstraction compared to the -CH(2) hydrogen in curcumin. Based on various experimental and theoretical results it is definitely concluded that the phenolic OH plays a major role in the activity of curcumin.  相似文献   

5.
The low temperature (77 K) irradiation of oxidized ceruloplasmin and Rhus vernicifera laccase at the 330 nm absorption which arises from type 3 copper leads to the reduction of type 1 copper as demonstrated by bleaching of the 610 nm chromophore and the decrease of the EPR signal associated with this species. Type 2 copper remains unaffected. Concomitant with the type 1 copper reduction, a new EPR signal which is possibly that of a biradical appears. Upon thawing, type 1 copper is reversibly oxidized and the radical signal disappears. Irradiation of oxidized protein at the absorption band of type 1 copper produces no spectral change. An EPR study at room temperature confirms the wave-length specificity and reversibility of the photoreduction of type 1 copper and radical formation. Radical appearance and disappearance at room temperature are extremely slow (tau1/2 approximately 30 min). Optical studies at room temperature show that upon anaerobic irradiation of laccase in the 330 nm absorption band, both type 3 and type 1 chromophores are slowly reduced. Upon return to the dark and in the presence of O2, both type 3 and type 1 centers are reoxidized. Oxidizing equivalents either from O2 or K3Fe(CN)6 are required for the reoxidation reaction. These studies demonstrate that there is a direct energy transfer between type 3 and type 1 copper sites in blue copper oxidases.  相似文献   

6.
In the presence of micromolar concentrations of H2O2, ferric cytochrome c oxidase forms a stable complex characterized by an increased absorption intensity at 606-607 nm with a weaker absorption band in the 560-580 nm region. Higher (millimolar) concentrations of H2O2 result in an enzyme exhibiting a Soret band at 427 nm and an alpha-band of increased intensity in the 589-610 nm region. Addition of H2O2 to ferric cytochrome c oxidase in the presence of cyanide results in absorbance increases at 444nm and 605nm. These changes are not seen if H2O2 is added to the cyanide complex of the ferric enzyme. The results support the idea that direct reaction of H2O2 with ferric cytochrome a 3 produces a 'peroxy' intermediate that is susceptible to further reduction by H2O2 at higher peroxide concentrations. Electron flow through cytochrome a is not involved, and the final product of the reaction is the so-called 'pulsed' or 'oxygenated' ferric form of the enzyme.  相似文献   

7.
The reaction of xanthine oxidase with 2-hydroxy-6-methylpurine (also called 2-oxo-6-methylpurine) has been studied under both anaerobic and aerobic conditions. Reaction of enzyme with substoichiometric concentrations of hydroxymethylpurine in aerobic 0.1 M 3-(cyclohexylamino)propanesulfonic acid, 0.1 N KCl, 0.3 mM EDTA, pH 10.0, exhibits two reaction intermediates detectable by UV-visible spectrophotometry. The rate constants for formation of the first intermediate, conversion of the first to the second, and the decay of the second to give oxidized enzyme are 18, 1.2, and 0.13 s-1, respectively. The difference spectra of these two intermediates relative to oxidized enzyme are characterized by absorbance maxima at 470 and 540 nm, respectively, with extinction changes (relative to oxidized enzyme) of approximately 410 M-1 cm-1. The 0.13 s-1 decay of the second intermediate agrees well with kcat of 0.11 s-1 determined under the same conditions. Based on a comparison of the kinetics of the reaction as monitored by UV-visible absorption and electron paramagnetic resonance spectrometry, it is concluded that these spectral intermediates arise from the molybdenum center of the enzyme in the MoIV and MoV valence states, respectively, the latter corresponding to the species exhibiting the "very rapid" MoV EPR signal known to be formed in the course of the reaction. This conclusion is supported by the results of experiments using cytochrome c reduction to follow the formation of superoxide production in the course of the aerobic reaction of xanthine oxidase with substoichiometric hydroxymethylpurine, which demonstrate unequivocally that the species exhibiting the very rapid EPR signal is formed by one-electron oxidation of a MoIV species rather than direct one-electron reduction of MoVI by substrate. No evidence is found for the formation of any of the MoV EPR signals designated "rapid" in the present studies, and it is concluded that this species is not a bona fide catalytic intermediate in the reductive half-reaction of xanthine oxidase.  相似文献   

8.
A sensitive colorimetric method for naringin estimation using 2,2'-azino-bis-(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS) as peroxidase substrate is described. The method is based on the coupling reaction of an ABTS radical cation with an oxidation product of naringin formed by peroxidase. This coupling reaction leads to the formation of a purple-colored compound with a maximum absorption at 560 nm. A molar absorption coefficient at this wavelength was calculated to be 13,286 +/- 200 M-1 cm-1. The lowest amount of naringin that can be detected is 1 nmol. The application of this method to the quantification of naringin in grapefruit tissues is presented.  相似文献   

9.
The circular dichroism (CD) spectrum of isolated chlorosomes fromChloroflexus aurantiacus showed a conservative, S-shaped signal with a negative maximum at 723 nm, a positive maximum at 750 nm and a zero-crossing at 740 nm. Proteolytic treatment of chlorosomes with trypsin at 37°C did not change the CD signal or the absorption spectrum in contrast to treatment with proteinase K, where a twofold increase in rotational strength and a slight decrease of the absorption band at 740 nm were observed. Treatment with saturating 1-hexanol concentrations resulted in a blue shift of the absorption band at 740 nm as well as in changes of the CD spectrum. These changes reversed when the sample was diluted to half the saturating 1-hexanol concentration. In contrast to that, we observed an irreversible formation of a giant CD signal using the combination of 1-hexanol and proteinase K treatment. Electron micrographs of chlorosomes treated with both 1-hexanol and proteinase K showed large aggregates of multiple chlorosome size. By comparison of proteinase K induced effects with trypsin effects it appeared that the 5.7 kDa polypeptide has a structural role in the organisation of BChlc in the chlorosome.  相似文献   

10.
The superoxide-generating reaction of adrenaline autoxidation is widely used for determination of superoxide dismutase activity and pro/antioxidant properties of various materials. There are two variants of the spectrophotometric registration of the products of this reaction. The first one is based on registration of adrenochrome (a product of adrenaline autoxidation) at 347 nm; the second approach employs nitro blue tetrazolium (NBT) and registration of diformazan (a product of NBT reduction) at 560 nm. In the present work, recommendations for the standardization of the reaction rate in both variants have been given. The main approach consists in the use of a pharmaceutical form of 0.1% adrenaline hydrochloride solution. Although each of two adrenaline preparations available in the Russian market has some individual features in kinetic behavior of adrenaline autoxidation, they are applicable for the superoxide generating system. Performing measurements at 560 nm, the reaction rate can be regulated by lowering concentration of added adrenaline, whereas during spectrophotometric registration at 347 nm, this is not applicable. These features of the adrenaline autoxidation reaction may be attributed to the multistage process of adrenaline conversion to adrenochrome and also to coupled electron transfer from adrenaline and intermediate products of its oxidation to oxygen, carbon dioxide, and carbonate bicarbonate ions. This results in formation of corresponding radicals detectable by adding NBT.  相似文献   

11.
F F Litvin  S P Balashov 《Biofizika》1977,22(6):1111-1114
The conditions of preferential accumulation of intermediates of the photochemical reaction cycle of bacteriorhodopsin (BR) P550 and P419 at low temperature are found. Upon illumination P550 and P419 undergo photochemical conversions into the light-adapted form of BR (P570), forming during this conversions a number of new intermediates: P550 leads to P560-- -- -- leads to P570; P419 leads to P421-- -- -- leads to P565-- -- -- leads to P585-- -- -- leads to P570; P419 leads to P470-- -- -- leads to P570. All intermediates are photoactive. All light reactions are photoreversible and give formation to the products with absorption maximum shifted to the red as compared to the initial state. The absorption spectra of intermediates are complex and include several bands which are more pronounced in the spectrum of P419 (maxima at 442, 419, 398 nm, a shoulder at 375 nm) and P421, less in the spectrum of P570 (maximum at 578 nm, shoulders at 540 and 608 nm) and others.  相似文献   

12.
We have reported previously that the apparent rate of peroxynitrite (ONOO(-) ) decay, as followed from its absorbance at 302 nm, decreases in the presence of hydrogen peroxide, mannitol and ethanol (Alvarez et al., 1995, Chem. Res. Toxicol. 8:859-864; Alvarez et al., 1998, Free Radic. Biol. Med. 24:1331-1337). Recently, two papers confirmed the observation and proposed that this slowing effect was due to the formation of absorbing peroxynitrate (O(2) NOO(-) ) as intermediate (Goldstein and Czapski, 1998, J. Am. Chem. Soc. 120:3458-3463; Hodges and Ingold, 1999, J. Am. Chem. Soc. 121:10695-10701). Peroxynitrate would be formed from the reaction of peroxynitrite-derived nitrogen dioxide with superoxide. Superoxide, in turn, would arise from the one-electron oxidation of hydrogen peroxide, or from the reaction of reductive radicals derived from mannitol and ethanol with dioxygen. In agreement with this concept, we show herein that under the conditions of our previous work, the slowing effect is prevented by superoxide dismutase and, in the case of mannitol and ethanol, by reducing the dioxygen concentration of the reaction solutions. Thus, superoxide formation is necessary for the decrease in the rate of absorbance decay. In addition, by simulations using known rate constants and absorption coefficients, we show that the slowing effect can be quantitatively accounted for by the formation of peroxynitrate.  相似文献   

13.
A series of novel fluorescent pyrimidine nucleosides containing 2,1,3-benzoxadiazole or naphtho[1,2,3-cd]indole-6 (2h)-one fragments was designed and synthesized. Introduction of fluorescent fragments into the position 5 of the uridine or cytidine heterocycle was carried out in two ways: by Sonogashira Coupling Reaction and CuI-catalyzed cycloaddition (“click” reaction). The obtained nucleoside derivatives became fluorescent due to the inserted fragments. The excitation wavelength (440–450 nm) was outside the absorption band of many biomolecules and significantly differed from the emission wavelength (560–600 nm). In addition, the intended nucleoside analogs were shown to kill cultured human tumor cells at submicromolar concentrations.  相似文献   

14.
The kinetics for the quantitatively important reaction: (Formula: see text) that is, the photochemical interconversion between bilirubin and its geometric and structural photoisomers bound to human serum albumin in aqueous solution when various wavelengths of monochromatic light were used, were assayed by h.p.l.c. In order to clarify the wavelength-dependence of the relative rate constants in the individual steps, a light-source with a half-bandwidth of 10 nm was used at increments of 20 nm, in the range from 410 nm to 550 nm. We describe for the first time studies on the wavelength-dependence of rate constants in geometric and structural photoisomerization reactions in vitro of (ZZ)-bilirubin or (EZ)-bilirubin bound to human serum albumin, especially the relative rate constants of cyclization of (EZ)-bilirubin into (EZ)-cyclobilirubin. Because studies in vitro have demonstrated that the wavelengths from 350 to 450 nm are mutagenic, the results obtained indicated that the safest and ideal light-source for phototherapy is green light of 510 nm, which keeps (ZE)-bilirubin concentrations as low as possible, as shown by a maximal value of k2 at 510 nm and a relatively low value of k1 at 510 nm. This light-source still ensures the substantial absorption of (ZZ)-bilirubin, which is the precursor of (EZ)-bilirubin, the intermediate in (EZ)-cyclobilirubin formation and, furthermore, as shown by the maximal value of k5 and a considerable value of k4 at 510 nm, promotes the cyclization of (EZ)-bilirubin derived from (ZZ)-bilirubin even though k3 at 510 nm also shows a peak value.  相似文献   

15.
Free radical reactions of lysozyme (Lz), tryptophan and disulfides were studied with curcumin, a lipid-soluble antioxidant from turmeric, in aqueous solution using a pulse radiolysis technique. The binding of curcumin with lysozyme was confirmed using absorption, fluorescence and stopped-flow techniques. The free radicals of curcumin generated after repairing radicals of disulfides, lysozyme and tryptophan absorb at 500-510 nm. Implication of this in evaluating the antioxidant behavior of curcumin in protecting proteins is discussed.  相似文献   

16.
Formation of 1-electron oxidation products of aromatic amines in biological systems have been ascertained. The mechanisms of the toxic actions of the aminyl radicals and their corresponding detoxication reactions are much less established. During the studies of reactions of GSH with the N,N,N',N'-tetramethyl-p-phenylenediamine radical cation (TMPD) (Wurster's blue) two pathways were detected: (1) a slow second order reaction (k = 5 M-1.s-1) which gave the parent amine and (ultimately) GSSG, and (2) a fast, complex reaction which yielded 2-(glutathione-S-yl)-N,N,N',N'-tetramethyl-p-phenylenediamine (2-GS-TMPD). From kinetic reasons, this reaction was suggested to be composed of a rapid disproportionation reaction followed by a reductive 1,4-Michael-addition. This reaction pathway prevailed at GSH concentrations below 1 mM. At higher GSH concentrations formation of the thioether was suppressed. This hypothesis was confirmed when the reaction of the highly labile N,N,N',N'-tetramethyl-p-quinonediiminium dication (TMQDI++) with GSH was followed: In this case, thioether formation outweighed clearly reductive mechanisms, the latter yielding ultimately the amine and GSSG. Similar to N,N,N',N'-tetramethyl-p-phenylenediamine (TMPD), 2-GS-TMPD was also capable of producing ferrihemoglobin in a catalytic reaction. Its rate, however, was only 3% that observed with the parent amine. During this reaction the thioether was apparently oxidized to the corresponding quinonediiminium dication, which gave the corresponding quinonemonoimine on acidification.  相似文献   

17.
Curcumin is a compound derived from the spice, tumeric. It is a potent inhibitor of the SERCA Ca2+ pumps (all isoforms), inhibiting Ca2+-dependent ATPase activity with IC50 values of between 7 and 15 microm. It also inhibits ATP-dependent Ca2+-uptake in a variety of microsomal membranes, although for cerebellar and platelet microsomes, a stimulation in Ca2+ uptake is observed at low curcumin concentrations (<10 microm). For the skeletal muscle isoform of the Ca2+ pump (SERCA1), the inhibition of curcumin is noncompetitive with respect to Ca2+, and competitive with respect to ATP at high curcumin concentrations ( approximately 10-25 microm). This was confirmed by ATP binding studies that showed inhibition in the presence of curcumin: ATP-dependent phosphorylation was also reduced. Experiments with fluorescein 5'-isothiocyanate (FITC)-labelled ATPase also suggest that curcumin stabilizes the E1 conformational state. The fact that FITC labels the nucleotide binding site of the ATPase (precluding ATP from binding), and the fact that curcumin affects FITC fluorescence indicate that curcumin must be binding to another site within the ATPase that induces a conformational change to prevent ATP from binding. This observation is interpreted, with the aid of recent structural information, as curcumin stabilizing the interaction between the nucleotide-binding and phosphorylation domains, precluding ATP binding.  相似文献   

18.
The aerobic interaction between ascorbate oxidase and L-tyrosine, L-3,4-dihydroxyphenylalanine or 3,4-dihydroxycinnamic acid in 1:10 molar ratio was followed by optical absorption, CD and EPR spectroscopy in 0.1 M phosphate buffer at pH 5.0. While the spectra of the system ascorbate oxidase—L-tyrosine remain practically unaffected after several hours, indicating that no oxidation of the amino acid occurs in the conditions employed, rather drastic changes can be observed in the spectra of the ascorbate oxidase-catechol systems. In particular, while the optical absorption below 500 nm increases markedly due to the formation of the substrate oxidation products, an irreversible decrease in intensity of the absorption, CD and EPR spectral features associated with the blue copper(II) chromophores indicates that a partial loss of Type 1 copper by ascorbate oxidase has occurred during this secondary catechol oxidase activity. A copper species characterized by weak positive CD activity at 370 nm and EPR signal at intermediate field between those of the Type 2 and Type 1 coppers can be detected in the early stages of the reaction. The irreversible damage undergone by the protein during catechol oxidase activity may have biological significance and accounts for the low yield of purified enzyme obtained when the crude enzyme extract is left in prolonged contact with low molecular weight cell components, rich in σ-diphenolic compounds.  相似文献   

19.
Curcumin is a widely known natural phytochemical from plant Curcuma longa. In recent years, curcumin has received increasing attention because of its capability to induce apoptosis and inhibit cell proliferation as well as its anti-inflammatory properties in different cancer cells. However, the therapeutic benefits of curcumin are severely hampered due to its particularly low absorption via trans-dermal or oral bioavailability. Phototherapy with visible light is gaining more and more support in dermatological therapy. Red light is part of the visible light spectrum, which is able to deeply penetrate the skin to about 6 mm, and directly affect the fibroblast of the skin dermis. Blue light is UV-free irradiation which is fit for treating chronic inflammation diseases. In this study, we show that curcumin at low concentrations (1.25–3.12 μM) has a strong anti-proliferative effect on TNF-α-induced psoriasis-like inflammation when applied in combination with light-emitting-diode devices. The treatment was especially effective when LED blue light at 405 nm was combined with red light at 630 or 660 nm, which markedly amplified the anti-proliferative and apoptosis-inducing effects of curcumin. The experimental results demonstrated that this treatment reduced the viability of human skin keratinocytes, decreased cell proliferation, induced apoptosis, inhibited NF-κB activity and activated caspase-8 and caspase-9 while preserving the cell membrane integrity. Moreover, the combined treatment also down-regulated the phosphorylation level of Akt and ERK. Taken together, our results indicated that the combination of curcumin with LED blue light united red light irradiation can attain a higher efficiency of regulating proliferation and apoptosis in skin keratinocytes.  相似文献   

20.
1. Changes in the absorption spectrum induced by 10-mus flashes and continuous light of various intensities were studied in whole cells of Rhodospirillum rubrum in the presence and absence of 2-n-heptyl-4-hydroxyquinoline-N-oxide(HOQNO) and antimycin A. 2. Three cytochromes, c-420 (cytochrome c2), c-560 (cytochrome b) and c-428 were photoactive and gamma and alpha peaks at 420 and 550, 428 and 560, and 428 and 551 nm, respectively; they were photooxidized following the flash with half times of 0.3, 0.6 and 7 ms in the approximate ratios of 1/100, 1/300 and 1/1000 (cytochrome oxidized/antenna chlorophyll) and became reduced with half times of 12 ms, 60 ms and 0.7 s, respectively. c-428 and c-560 have not been distinguished before. 3. From a detailed analysis of the kinetics of P+ (oxidized reaction center chlorophyll) and the cytochromes, we conclude that 5% of the P+ (P2+) oxidizes c-428, whereas the remaining 95% of P+ (P1+) oxidizes c-420. At actinic light intensities low enough to keep c-420 fully reduced, approx. 4-5% of P becomes oxidized, accompanied by all c-428. The P2+ -P2 difference spectrum induced by this weak light is, when corrected for a shift to longer wavelengths of the bacteriochlorophyll absorption band at 878 nm, identical to the difference spectrum caused by the photooxidation of the remaining P1. At low flash intensity, c-428 becomes preferentially photooxidized, which suggests that the reaction centers where c-428 functions as a secondary donor contain much more antenna pigments compared to the centers where c-420 serves this purpose. 4. c+-420 is reduced in a competitive way by reduced c-560 (t 1/2=7 ms), and by an electron donor pool, (t 1/2=15 ms). HOQNO inhibits both pathways; antimycin A only the first. In the presence of HOQNO, c-560 is in the oxidized state in the dark, and is reduced in a light flash (t 1/2=100 ms), indicating that c-560 acts in a cyclic electron transport chain connected to P1. 5. The ratio of numbers of molecules P1 and antenna bacteriochlorophyll, transferring excitation energy to P1, is P1/bacteriochlorophyll1=1/30 P2: bacteriochlorophyll2=1/300; c-420/P1=1:2; c-560/P1=1/6; C-428/P2=1/1; bacteriochlorophyll2=7:3. If P2 is oxidized, excitation energy is transferred from bacteriochlorophyll2 to bacteriochlorophyll1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号