首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Some historical aspects of development of the concepts of functional coupling, metabolic channelling, compartmentation and energy transfer networks are reviewed. Different quantitative approaches, including kinetic and mathematical modeling of energy metabolism, intracellular energy transfer and metabolic regulation of energy production and fluxes in the cells in vivo are analyzed. As an example of the system with metabolic channelling, thermodynamic aspects of the functioning the mitochondrial creatine kinase functionally coupled to the oxidative phosphorylation are considered. The internal thermodynamics of the mitochondrial creatine kinase reaction is similar to that for other isoenzymes of creatine kinase, and the oxidative phosphorylation process specifically influences steps of association and dissociation of MgATP with the enzyme due to channelling of ATP from adenine nucleotide translocase. A new paradigm of muscle bioenergetics - the paradigm of energy transfer and feedback signaling networks based on analysis of compartmentation phenomena and structural and functional interactions in the cell is described. Analysis of the results of mathematical modeling of the compartmentalized energy transfer leads to conclusion that both calcium and ADP, which concentration changes synchronously in contraction cycle, may simultaneously activate oxidative phosphorylation in the muscle cells in vivo. The importance of the phosphocreatine circuit among other pathways of intracellular energy transfer network is discussed on the basis of the recent data published in the literature, with some experimental demonstration. The results of studies of perfused rat hearts with completely inhibited creatine kinase show significantly decreased work capacity and respectively, energy fluxes, in these hearts in spite of significant activation of adenylate kinase system (Dzeja et al. this volume). These results, combined with those of mathematical analysis of the energy metabolism of hearts of transgenic mice with switched off creatine kinase isoenzymes confirm the importance of phosphocreatine pathway for energy transfer for cell function and energetics in mature heart and many other types of cells, as one of major parts of intracellular energy transfer network and metabolic regulation.  相似文献   

2.
Although usually steady-state fluxes and metabolite levels are assessed for the study of metabolic regulation, much can be learned from studying the transient response during quick changes of an input to the system. To this end we study the transient response of O2 consumption in the heart during steps in heart rate. The time course is characterized by the mean response time of O2 consumption which is the first statistical moment of the impulse response function of the system (for mono-exponential responses equal to the time constant). The time course of O2 uptake during quick changes is measured with O2 electrodes in the arterial perfusate and venous effluent of the heart, but the venous signal is delayed with respect to O2 consumption in the mitochondria due to O2 diffusion and vascular transport. We correct for this transport delay by using the mass balance of O2, with all terms (e.g. O2 consumption and vascular O2 transport) taken as function of time. Integration of this mass balance over the duration of the response yields a relation between the mean transit time for O2 and changes in cardiac O2 content. Experimental data on the response times of venous [O2] during step changes in arterial [O2] or in perfusion flow are used to calculate the transport time between mitochondria and the venous O2 electrode. By subtracting the transport time from the response time measured in the venous outflow the mean response time of mitochondrial O2 consumption (tmito) to the step in heart rate is obtained.In isolated rabbit heart we found that tmito to heart rate steps is 4-12 s at 37°C. This means that oxidative phosphorylation responds to changing ATP hydrolysis with some delay, so that the phosphocreatine levels in the heart must be decreased, at least in the early stages after an increase in cardiac ATP hydrolysis. Changes in ADP and inorganic phosphate (Pi) thus play a role in regulating the dynamic adaptation of oxidative phosphorylation, although most steady state NMR measurements in the heart had suggested that ADP and Pi do not change. Indeed, we found with 31P-NMR spectroscopy that phosphocreatine (PCr) and Pi change in the first seconds after a quick change in ATP hydrolysis, but remarkably they do this significantly faster (time constant ~2.5 s) than mitochondrial O2 consumption (time constant 12 s). Although it is quite likely that other factors besides ADP and Pi regulate cardiac oxidative phosphorylation, a fascinating alternative explanation is that the first changes in PCr measured with NMR spectroscopy took exclusively place in or near the myofibrils, and that a metabolic wave must then travel with some delay to the mitochondria to stimulate oxidative phosphorylation. The tmito slows with falling temperature, intracellular acidosis, and sometimes also during reperfusion following ischemia and with decreased mitochondrial aerobic capacity. In conclusion, the study of the dynamic adaptation of cardiac oxidative phosphorylation to demand using the mean response time of cardiac mitochondrial O2 consumption is a very valuable tool to investigate the regulation of cardiac mitochondrial energy metabolism in health and disease.  相似文献   

3.
The development of ideas concerning the buffer and transport functions of the creatine kinase system is described. The concept of ATP compartmentation at sites of its production and utilization is critically analyzed. Kinetic, thermodynamic, and structural data used as a basis for a hypothesis on the structural and functional coupling of mitochondrial creatine kinase and adenine nucleotide translocase are comprehensively analyzed, and experimental evidence inconsistent with this hypothesis is presented. It seems that the mitochondrial creatine kinase may serve to equilibrate ADP concentration in the intermembrane space with fluctuating ADP concentrations in the cytoplasm. It is suggested that creatine kinase molecules bound to other intracellular structures (e.g., to myofibrils) may equilibrate local ADP concentrations with those present in the cytoplasm.  相似文献   

4.
Summary Cytosolic proteins as components of the physiological mitochondrial environment were substituted by dextrans added to media normally used for incubation of isolated mitochondria. Under these conditions the volume of the intermembrane space decreases and the contact sites between the both mitochondrial membranes increase drastically. These morphological changes are accompanied by a reduced permeability of the mitochondrial outer compartment for adenine nucleotides as it was shown by extensive kinetic studies of mitochondrial enzymes (oxidative phosphorylation, mi-creatine kinase, mi-adenylate kinase). The decreased permeability of the mitochondrial outer membrane causes increased rate dependent concentration gradients in the micromolar range for adenine nucleotides between the intermembrane space and the extramitochondrial space. Although all metabolites crossing the outer membrane exhibit the same concentration gradients, considerable compartmentations are detectable for ADP only due to its low extramitochondrial concentration. The consequences of ADP-compartmentation in the mitochondrial intermembrane space for ADP-channelling into the mitochondria are discussed.  相似文献   

5.
Microspectrofluorometry of cell coenzymes (NAD(P)H, flavins) in conjunction with sequential microinjections into the same cell of metabolites and modifiers, reveals aspects of the regulatory mechanisms of transient redox changes of mitochondrial and extramitochondrial nicotinamide adenine dinucleotides. The injection of ADP in the course of an NAD(P)H transient produced by glycolytic (e.g. glucose 6-phosphate, G6P) or mitochondrial (e.g. malate) substrate leads to sharp reoxidation (state III, Chance and Williams, 1955), followed by a spontaneous state III to IV transition, and an ultimate return to original redox steady state. The response to ADP alone is biphasic, i.e. a small oxidation-reduction transient followed by a larger reverse transient. Similarities between responses to injected ATP and ADP suggest possible intracellular interconversions. Sequential injections of glycolytic and Krebs cycle substrates into the same cell, produce a two-step NAD(P) response, possibly revealing the intracellular compartmentation of this coenzyme. A two-step NAD(P)H response to sequentially injected fructose 1,6-diphosphate and G6P indicates the dynamic or even structural compartmentation of glycolytic phosphate esters in separate intracellular pools. The intracellular regulation and compartmentation of bioenergetic pathways and cell-to-cell metabolic inhomogeneities provide the basis on which the quantitative biochemistry of the intact living cell may be reconciled with these in situ findings.  相似文献   

6.
In rat liver mitochondria all nucleoside diphosphate kinase of the outer compartment is associated with the outer surface of the outer membrane (Lipskaya, T. Yu., and Plakida, K. N. (2003) Biochemistry (Moscow), 68, 1136-1144). In the present study, three systems operating as ADP donors for oxidative phosphorylation have been investigated. The outer membrane bound nucleoside diphosphate kinase was the first system tested. Two others employed yeast hexokinase and yeast nucleoside diphosphate kinase. The two enzymes exhibited the same activity but could not bind to mitochondrial membranes. In all three systems, muscle creatine phosphokinase was the external agent competing with the oxidative phosphorylation system for ADP. Determination of mitochondrial respiration rate in the presence of increasing quantities of creatine phosphokinase revealed that at large excess of creatine phosphokinase activity over other kinase activities (of the three systems tested) and oxidative phosphorylation the creatine phosphokinase reaction reached a quasi-equilibrium state. Under these conditions equilibrium concentrations of all creatine phosphokinase substrates were determined and K(eq)app of this reaction was calculated for the system with yeast hexokinase. In samples containing active mitochondrial nucleoside diphosphate kinase the concentrations of ATP, creatine, and phosphocreatine were determined and the quasi-equilibrium concentration of ADP was calculated using the K(eq)app value. At balance of quasi-equilibrium concentrations of ADP and ATP/ADP ratio the mitochondrial respiration rate in the system containing nucleoside diphosphate kinase was 21% of the respiration rate assayed in the absence of creatine phosphokinase; in the system containing yeast hexokinase this parameter was only 7% of the respiration rate assayed in the absence of creatine phosphokinase. Substitution of mitochondrial nucleoside diphosphate kinase with yeast nucleoside diphosphate kinase abolished this difference. It is concluded that oxidative phosphorylation is accompanied by appearance of functional coupling between mitochondrial nucleoside diphosphate kinase and the oxidative phosphorylation system. Possible mechanisms of this coupling are discussed.  相似文献   

7.
The steady state content of adenine nucleotides, inorganic phosphate and glycolytic and tricarboxylic acid cycle intermediates were measured in freeze clamped plerocereoids of S. solidus taken from the body cavity of infected fish (non-activated plerocercoids) and the results compared with the metabolite levels in plerocercoids which had been cultured in vitro for 12 h (activated plerocercoids). Of the glycolytic intermediates, the levels of fructose-6-phosphate, fructose-1, 6-diphosphate, 3-phosphoglycerate, phosphoenolpyruvate and lactate all decreased on activation, the remainder of the glycolytic intermediates did not alter significantly. In contrast, the levels of the tricarboxylic acid cycle intermediates all increased 2–3 fold on activation, whilst the adenine nucleotides remained virtually unchanged. The differences in the steady state content in intermediary metabolites in activated and non-activated plerocereoids are discussed in relation to possible mechanisms of metabolic control.  相似文献   

8.
The phosphocreatine content of smooth muscle is of similar magnitude to ATP. Thus the function of the creatine kinase system in this tissue cannot simply be regarded as an energy buffer. Thus an understanding of its role in smooth muscle behavior can point to CK function in other systems. From our perspective CK function in smooth muscle is one example of a more general phenomenon, that of the co-localization of ATP synthesis and utilization. In an interesting and analogous fashion distinct glycolytic cascades are also localized in regions of the cell with specialized energy requirements. Similar to CK, glycolytic enzymes are known to be localized on thin filaments, sarcoplasmic reticulum and plasma membrane. In this chapter we will describe the relations between glycolysis and smooth muscle function and compare and contrast to that of the CK system. Our goal is to more fully understand the significance of the compartmentation of distinct pathways for ATP synthesis with specific functions in smooth muscle. This organization of metabolism and function seen most clearly in smooth muscle is likely representative of many other cell types.  相似文献   

9.
We describe a model of mitochondrial regulation in vivo which takes account of spatial diffusion of high-energy (ATP and phosphocreatine) and low-energy metabolites (ADP and creatine), their interconversion by creatine kinase (which is not assumed to be at equilibrium), and possible functional 'coupling' between the components of creatine kinase associated with the mitochondrial adenine nucleotide translocase and the myofibrillar ATPase. At high creatine kinase activity, the degree of functional coupling at either the mitochondrial or ATPase end has little effect on relationships between oxidative ATP synthesis rate and spatially-averaged metabolite concentrations. However, lowering the creatine kinase activity raises the mean steady state ADP and creatine concentrations, to a degree which depends on the degree of coupling. At high creatine kinase activity, the fraction of flow carried by ATP is small. Lowering the creatine kinase activity raises this fraction, especially when there is little functional coupling. All metabolites show small spatial gradients, more so at low cytosolic creatine kinase activity, and unless there is near-complete coupling, so does net creatine kinase flux. During workjump transitions, spatial-average responses exhibit near-exponential kinetics as expected, while concentration changes start at the ATPase end and propagate towards the mitochondrion, damped in time and space. (Mol Cell Biochem 174: 29–32, 1997)  相似文献   

10.
11.
In the present study, we found that ionic interactions are not essential for the binding of nucleoside diphosphate kinase of liver mitochondria outer compartment to outer mitochondrial membrane and that the proportion of the enzyme activity involved in functional coupling with oxidative phosphorylation (we demonstrated the existence of functional coupling earlier) is only 17%. Additional evidence was obtained that functionally coupled activity of nucleoside diphosphate kinase is associated with the outer surface of mitochondria. Dextran (10%) did not increase functional coupling. The physological importance of these effects is discussed. Published in Russian in Biokhimiya, 2008, Vol. 73, No. 3, pp. 395–407.  相似文献   

12.
The synthesis of creatine phosphate (CP) by mitochondrial creatine kinase during oxidative phosphorylation was terminated when the mass action ratio of the creatine kinase reaction = [ADP]·[CP][ATP]·[Cr] became equal to the apparent equilibrium constant (K eq app) of this reaction. Subsequent excess of over the K eq app was due to an increase in the ADP concentration in the medium. A comparable increase in the ADP concentration also occurred in the absence of creatine (Cr) in the incubation medium. Increase in the ADP concentration was shown to be associated with a decrease in the rate of oxidative phosphorylation and with a relative increase in the ATPase activity of mitochondria during the incubation. A low concentration of ADP (<30 M) and relatively high concentrations (1-6 mM) of other components of the creatine kinase reaction prevented the detection of the reverse reaction within 10 min after exceeded the K eq app, but the reverse reaction became evident on more prolonged incubation. The reverse reaction was accompanied by a further increase in . Low ADP concentration in the medium was also responsible for the lack of an immediate conversion of the excess creatine phosphate added although > K eq app. The findings are concluded to be in contradiction with the concept of microcompartment formation between mitochondrial creatine kinase and adenine nucleotide translocase.  相似文献   

13.
We have blocked creatine kinase (CK) mediated phosphocreatine (PCr) ATP transphosphorylation in mitochondria and cytosol of skeletal muscle by knocking out the genes for the mitochondrial (ScCKmit) and the cytosolic (M-CK) CK isoforms in mice. Animals which carry single or double mutations, if kept and tested under standard laboratory conditions, have surprisingly mild changes in muscle physiology. Strenuous ex vivo conditions were necessary to reveal that MM-CK absence in single and double mutants leads to a partial loss of tetanic force output. Single ScCKmit deficiency has no noticeable effects but in combination the mutations cause slowing of the relaxation rate. Importantly, our studies revealed that there is metabolic and cytoarchitectural adaptation to CK defects in energy metabolism. The effects involve mutation type-dependent alterations in the levels of AMP, IMP, glycogen and phosphomonoesters, changes in activity of metabolic enzymes like AMP-deaminase, alterations in mitochondrial volume and contractile protein (MHC isoform) profiles, and a hyperproliferation of the terminal cysternae of the SR (in tubular aggregates). This suggests that there is a compensatory resiliency of loss-of-function and redirection of flux distributions in the metabolic network for cellular energy in our mutants.  相似文献   

14.
Dextran M20 was added to isolated rat liver mitochondria to mimic cytosolic macromolecules. Under these conditions, the morphological changes in the mitochondrial periphery that occur upon isolation of the organelle are restored, i.e. the volume of the intermembrane space decreases and the contact site frequency increases. The ADP routing from mitochondrial kinases at various locations was investigated by using the activities of oxidative phosphorylation and externally added pyruvate kinase as sensors for ADP transport into the matrix and extramitochondrial compartment, respectively. The studies reveal that a significant fraction of the ADP generated by either adenylate kinase in the intermembrane space or by outer membrane bound hexokinase isozyme I, is not accessible to extramitochondrial pyruvate kinase. Quantitative information on the ADP compartmentation in rat liver mitochondria was obtained by comparing the ADP supply from mitochondrial kinases to oxidative phosphorylation with that of non-bound, extramitochondrially located kinases. This approach allowed us to estimate the ADP diffusion gradients which were present across the outer membrane and between the compartment formed by bound hexokinase and the extramitochondrial compartment. In the presence of 10% dextran M20 these ADP gradients amounted to approximately 12 µM. The possible role of mitochondrial kinases in ADP transport into mitochondria in vivo is discussed. (Mol Cell Biochem 174: 43–51, 1997)  相似文献   

15.
Substitution of physiologically present macromolecules during isolation of mitochondria and investigation of their functions led to a significant change in regulation of oxidative phosphorylation. The differences compared to conventionally isolated mitochondria were that stimulation of oxidative phosphorylation appeared to rather depend on the activity of peripheral kinases than on the addition of free ADP. The localisation of peripheral kinases such as hexokinase and mitochondrial creatine kinase are described as well as the effects of macromolecules on the regulation of bound hexokinase and of oxidative phosphorylation via this enzyme.  相似文献   

16.
In saponin-skinned muscle fibers from adult rat heart and m. soleus the apparent affinity of the mitochondrial oxidative phosphorylation system for ADP (Km = 200-400 M) is much lower than in isolated mitochondria (Km = 10-20 M). This suggests a limited permeability of the outer mitochondrial membrane (OMM) to adenine nucleotides in slow-twitch muscle cells. We have studied the postnatal changes in the affinity of mitochondrial respiration for ADP, in relation to morphological alterations and expression of mitochondrial creatine kinase (mi-CK) in rat heart in vivo. Analysis of respiration of skinned fibers revealed a gradual decrease in the apparent affinity of mitochondria to ADP throughout 6 weeks post partum that indicates the development of mechanism which increasingly limits the access of ADP to mitochondria. The expression of mi-CK started between the 1st and 2nd weeks and reached the adult levels after 6 weeks. This process was associated with increases in creatine-activated respiration and affinity of oxidative phosphorylation to ADP thus reflecting the progressive coupling of mi-CK to adenine nucleotide translocase. Laser confocal microscopy revealed significant changes in rearrangement of mitochondria in cardiac cells: while the mitochondria of variable shape and size appeared to be random-clustered in the cardiomyocytes of 1 day old rat, they formed a fine network between the myofibrils by the age of 3 weeks. These results allow to conclude that in early period of development, i.e. within 2-3 weeks, the diffusion of ADP to mitochondria becomes progressively restricted, that appears to be related to significant structural rearrangements such as formation of the mitochondrial network. Later (after 3 weeks) the control shifts to mi-CK, which by coupling to adenine nucleotide translocase, allows to maximally activate the processes of oxidative phosphorylation despite limited access of ADP through the OMM.  相似文献   

17.
Tyrosine protein kinase activity has been detected in the mitochondrial fraction purified from sarcoma 180 tumor cells. Following hypotonic disruption of mitochondria, tyrosine kinase activity appeared to cosediment with monamine oxidase, marker enzyme of mitochondrial outer membrane; meanwhile, serine and threonine kinases were found to be associated with the inner membrane and matrix of mitochondria. Mitochondrial tyrosine kinase(s) showed thermosensitivity and Mn2+ dependence, useful properties for its characterization and separation from tyrosine kinases associated with other particulate fraction and from serine and threonine kinases associated with mitochondria. Following in vitro incubation of mitochondria with labelled ATP as substrate and analysis by PAGE, a complex pattern of phosphotyrosine containing proteins with a major band of 50-55 kilodaltons resulted.  相似文献   

18.
The paper reviews the current evidence on the role of thyroid hormones in regulating the creatine kinase energy transfer system at multiple structures in cardiac cells. 1) Thyroid hormones modulate the overall synthesis of phosphocreatine (PCr) by increasing the rate of mitochondrial oxidative phosphorylation. 2) Thyroid hormones regulate the total activity of creatine kinase and its isoenzyme distribution. In comparison with normal thyroid state (euthyroidism), hypothyroidism is characterized by decreased total creatine kinase activity owing to diminished fraction of creatine kinase. On the other hand, hyperthyroidism, while causing no change in total creatine kinase activity, leads to increased fractions of neonatal isoforms of creatine kinase, and, in case of prolonged hyperthyroidism, to decreased fraction of mitochondrial creatine kinase. The latter change is associated with partial uncoupling between mitochondrial creatine kinase and adenine nucleotide translocase reflected by decreased PCr/O ratio. 3) Hyperthyroidism leads to increased passive sarcolemmal permeability due to which the leakage of creatine along its concentration gradient occurs. As a result of (i) increased sarcolemmal permeability for creatine, (ii) uncoupling of mitochondrial PCr synthesis, and (iii) increased energy utilization rate the steady state intracellular PCr content decreases under hyperthyroidism which, in turn, increases the myocardial susceptibility to hypoxic damage. Thyroid state also modulates the protective effects of exogenous PCr on energetically depleted myocardium.  相似文献   

19.
Inter-individual variability in weight gain and loss under energy surfeit and deficit conditions, respectively, are well recognized but poorly understood phenomena. We documented weight loss variability in an intensively supervised clinical weight loss program and assessed skeletal muscle gene expression and phenotypic characteristics related to variable response to a 900 kcal regimen. Matched pairs of healthy, diet-compliant, obese diet-sensitive (ODS) and diet-resistant (ODR) subjects were defined as those in the highest and lowest quintiles for weight loss rate. Physical activity energy expenditure was minimal and comparable. Following program completion and weight stabilization, skeletal muscle biopsies were obtained. Gene expression analysis of rectus femoris and vastus lateralis indicated upregulation of genes and gene sets involved in oxidative phosphorylation and glucose and fatty acid metabolism in ODS compared with ODR. In vastus lateralis, there was a higher proportion of oxidative (type I) fibers in ODS compared with ODR women and lean controls, fiber hypertrophy in ODS compared with ODR women and lean controls, and lower succinate dehydrogenase in oxidative and oxidative-glycolytic fibers in all obese compared with lean subjects. Intramuscular lipid content was generally higher in obese versus lean, and specifically higher in ODS vs. lean women. Altogether, our findings demonstrate differences in muscle gene expression and fiber composition related to clinical weight loss success.  相似文献   

20.
We modified the isolation procedure of muscle and heart mitochondria. In human muscle, this resulted in a 3.4 fold higher yield of better coupled mitochondria in half the isolation time. In a preparation from rat muscle we studied factors that affected the stability of oxidative phosphorylation (oxphos) and found that it decreased by shaking the preparation on a Vortex machine, by exposure to light and by an increase in storage temperature. The decay was found to be different for each substrate tested. The oxidation of ascorbate was most stable and less sensitive to the treatments.When mitochondria were stored in the dark and the cold, the decrease in oxidative phosphorylation followed first order kinetics. In individual preparations of muscle and heart mitochondria, protection of oxidative phosphorylation was found by adding candidate stabilizers, such as desferrioxamine, lazaroids, taurine, carnitine, phosphocreatine, N-acetylcysteine, Trolox-C and ruthenium red, implying a role for reactive oxygen species and calcium-ions in the in vitro damage at low temperature to oxidative phosphorylation.In heart mitochondria oxphos with pyruvate and palmitoylcarnitine was most labile followed by glutamate, succinate and ascorbate.We studied the effect of taurine, hypotaurine, carnitine, and desferrioxamine on the decay of oxphos with these substrates. 1 mM taurine (n = 6) caused a significant protection of oxphos with pyruvate, glutamate and palmitoylcarnitine, but not with the other substrates. 5 mM L-carnitine (n = 6), 1 mM hypotaurine (n = 3) and 0.1 mM desferrioxamine (n = 3) did not protect oxphos with any of the substrates at a significant level.These experiments were undertaken in the hope that the in vitro stabilizers can be used in future treatment of patients with defects in oxidative phosphorylation. (Mol Cell Biochem 174: 61–66, 1997)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号