首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The primary effect of dicyclohexylcarbodiimide (DCCD) at the cytochrome b-c1 region of the respiratory chain of rat liver mitochondria is an inhibition of proton translocation. No significant decrease was observed in the rate of electron flow from succinate to cytochrome c when measured as cytochrome c reductase, K3Fe(CN)6 reductase, or the rate of H+ release in the presence of the uncoupler carbonyl cyanide m-chlorophenylhydrazone after treatment with sufficient DCCD to abolish completely electrogenic proton ejection. The inhibitory effects of DCCD were time and concentration dependent and affected by the pH of the medium. Lowering the pH from 7.3 to 6.7 resulted in a progressively faster rate and extent of inhibition of proton ejection by DCCD. At pH 6.9, the H+/2e- decreased by 50% within 30 s after DCCD addition; however, at pH 7.3, a 50% decrease was not observed until 2 min after DCCD addition. DCCD did not act as an uncoupler as both the rate of proton ejection and back decay were decreased after incubation with DCCD. Treatment of rat liver mitochondria with DCCD under these same conditions also resulted in a broadening of the sharp spectral shift of cytochrome b observed after antimycin addition to mitochondria previously reduced with succinate suggesting that DCCD may modify cytochrome b in such a way that the binding of antimycin is altered.  相似文献   

2.
B Gasnier  D Scherman  J P Henry 《Biochemistry》1985,24(5):1239-1244
The monoamine carrier of bovine chromaffin granule membrane catalyzes a H+/neutral amine antiport. Dicyclohexylcarbodiimide (DCCD) inhibits this carrier in a time- and concentration -dependent manner as shown by the following evidence: it inhibits the carrier-mediated pH gradient driven monoamine uptake without collapsing the pH gradient; it affects the binding of the specific inhibitors [2-3H]dihydrotetrabenazine and [3H]reserpine. The DCCD inhibition of the carrier occurs in the same concentration range as that of the ATP-dependent H+ translocase. Saturation isotherms of [2-3H]dihydrotetrabenazine binding indicate that DCCD decreases the number of binding sites without any change of the equilibrium dissociation constant. Kinetic studies of DCCD inactivation indicate that the modification of only one amino acid residue is responsible for the inhibition. Preincubation of the membranes with tetrabenazine protects the carrier against inactivation by DCCD: in this case, [2-3H] dihydrotetrabenazine binding and pH gradient driven monoamine uptake are restored after washing out of DCCD and tetrabenazine. We suggest the existence in the monoamine carrier of a carboxylic acid involved in H+ translocation, similar to those demonstrated not only in F0-F1 ATPases but also in cytochrome c oxidase, mitochondrial cytochrome b-c1 complex, and nucleotide transhydrogenase. Protonation-deprotonation of this group would affect the binding of [2-3H]dihydrotetrabenazine by the carrier.  相似文献   

3.
Inhibition kinetics of photophosporylation in chloroplast preparations preincubated by N,N'-dicyclohexylcarbodiimide (DCCD) in darkness has been studied. It was found that the higher membrane concentration the lower DCCD/chlorophyll relation sufficient for blocking of ATP synthesis and light-activated hydrolysis. Comparative studies of DCCD-inhibition of the ATP synthesis and light-activated hydrolysis showed that the latter process was more sensitive to DCCD. In the thylakoid suspensions with concentration Chlorophyll 4 mg/ml 50% inhibition of ATP hydrolysis was observed at the DCCD/Chlorophyll ratio of 0.012, and 50% inhibition of ATP--at 0.02. Inhibition kinetics of light-activated hydrolysis and synthesis corresponded to Hill equation with Hill coefficients 9.1 and 5.8 correspondingly. Different mechanisms of participation of DCCD-binding subunits in ATP-synthesis and ATP-hydrolysis processes have been discussed.  相似文献   

4.
The relationship between the magnitude of the transmembrane electrical potential and the uptake of [14C]gentamicin was examined in wild-type Staphylococcus aureus in the logarithmic phase of growth. The electrical potential (delta psi) and the pH gradient across the cell membrane were determined by measuring the equilibrium distribution of [3H]tetraphenyl-phosphonium and [14C]acetylsalicylic acid, respectively. Incubation in the presence of the H+-ATPase inhibitor N,N'-dicyclohexylcarbodiimide (DCCD) led to an increase in delta psi with no measurable effect on the pH gradient at external pHs ranging from 5.0 to 6.5, and the effect on delta psi was DCCD concentration dependent. In separate experiments, gentamicin uptake and killing were studied in the same cells under identical conditions. At pH 5.0 (delta psi = -140 mV), no gentamicin uptake occurred. In the presence of 40 and 100 microM DCCD, delta psi was increased to -162 and -184 mV, respectively, and gentamicin uptake was observed in a manner that was also dependent on the DCCD concentration. At pH 6.0 (delta psi = -164 mV), gentamicin uptake occurred in the absence of the carbodiimide but was enhanced in a concentration-dependent fashion by 40 and 100 microM DCCD (delta psi = -174 and -216 mV, respectively). In all cases increased gentamicin uptake was associated with an enhanced bactericidal effect. The results indicate that initiation of gentamicin uptake requires a threshold level of delta psi (-155 mV) and that above this level drug uptake is directly dependent on the magnitude of delta psi.  相似文献   

5.
Vesamicol is a highly potent inhibitor of active acetylcholine transport into isolated cholinergic vesicles from Torpedo. On the basis of transport kinetics and vesamicol sensitivity, we have shown that the acetylcholine transporter could be in an activated state even in the absence of a stimulated ATPase. In this preparation, N,N'-dicyclohexylcarbodiimide (DCCD), an hydrophobic carbodiimide, inactivates both ACh transport and vesamicol binding. Inhibition of vesamicol binding by DCCD is time dependent, saturable and prevented by vesamicol. DCCD first affected the affinity constant for vesamicol. Ki-value for DCCD lies in the micromolar range. These results imply that there is a DCCD reactive site within the ACh transporter and that it is located in an hydrophobic environment near the vesamicol binding site. SDS-gel electrophoresis after labelling of the vesicle membrane proteins with [14C]DCCD shows that radioactivity is mainly incorporated in a 15 kDa subunit. Time-course and concentration dependence of [14C]DCCD labelling and vesamicol inhibition do not coincide. Hence, the two processes are probably unrelated and the result rather points to another inactivation mechanism which can be an intramolecular cross link.  相似文献   

6.
J X Xu  L Yu  C A Yu 《Biochemistry》1987,26(24):7674-7679
The involvement of the carboxyl groups in the membrane-anchoring protein (QPs) in reconstitution of succinate dehydrogenase to form succinate-ubiquinone reductase is studied by using a carboxyl group modifying reagent, dicyclohexylcarbodiimide (DCCD). Inactivation of QPs by DCCD is found to be dependent on the temperature, pH, detergent, and DCCD concentration used. When QPs is treated with 300 molar excess DCCD at room temperature for 10 min, about 90% of the original reconstitutive activity is lost. When intact or reconstituted succinate-ubiquinone reductase formed from reconstitutively active succinate dehydrogenase and QPs is treated with DCCD under the same conditions, no loss of succinate-ubiquinone reductase activity is observed. However, when a mixture of reconstitutively inactive succinate dehydrogenase and QPs is treated with DCCD before being reconstituted with active succinate dehydrogenase, an inactivation behavior similar to that with QPs alone is observed. These results indicate that DCCD modifies the carboxyl groups of QPs which are essential for the interaction with succinate dehydrogenase to form succinate-ubiquinone reductase. Inactivation of QPs by DCCD parallels the incorporation of DCCD into QPs. About two carboxyl groups per molecule of QPs are essential for the interaction with succinate dehydrogenase. These essential carboxyl groups are located in the smaller subunit (Mr 13,000) of QPs. Modification of QPs by DCCD also alters the heme environment of cytochrome b560.  相似文献   

7.
T Yagi 《Biochemistry》1987,26(10):2822-2828
The NADH-ubiquinone reductase activity of the respiratory chains of several organisms was inhibited by the carboxyl-modifying reagent N,N'-dicyclohexylcarbodiimide (DCCD). This inhibition correlated with the presence of an energy-transducing site in this segment of the respiratory chain. Where the NADH-quinone reductase segment involved an energy-coupling site (e.g., in bovine heart and rat liver mitochondria, and in Paracoccus denitrificans, Escherichia coli, and Thermus thermophilus HB-8 membranes), DCCD acted as an inhibitor of ubiquinone reduction by NADH. By contrast, where energy-coupling site 1 was absent (e.g., in Saccharomyces cerevisiae mitochondria and Bacillus subtilis membranes), there was no inhibition of NADH-ubiquinone reductase activity by DCCD. In the bovine and P. denitrificans systems, DCCD inhibition was pseudo first order with respect to incubation time, and reaction order with respect to inhibitor concentration was close to unity, indicating that inhibition resulted from the binding of one inhibitor molecule per active unit of NADH-ubiquinone reductase. In the bovine NADH-ubiquinone reductase complex (complex I), [14C]DCCD was preferentially incorporated into two subunits of molecular weight 49,000 and 29,000. The time course of labeling of the 29,000 molecular weight subunit with [14C]DCCD paralleled the time course of inhibition of NADH-ubiquinone reductase activity.  相似文献   

8.
The electron transfer activity of purified cytochrome b6-f complex of spinach chloroplast is inhibited by dicyclohexylcarbodiimide (DCCD) in a concentration and incubation time dependent manner. The maximum inhibition of 75% is observed when 300 mole of DCCD per mole of protein (based on cytochrome f) is incubated with cytochrome b6-f complex at room temperature for 40 min. The inhibition of the complex is not due to the formation of cross links between subunits but due to the modification of carboxyls. The amount of DCCD incorporation is directly proportional to the activity loss, suggesting that some carboxyl groups in the complex are directly or indirectly involved in the catalytic function. The incorporated DCCD is located mainly at cytochrome b6 protein. The partially inhibited complex shows the same H+/e-ratio as that of the intact complex when embedded in phospholipid vesicles.  相似文献   

9.
The inhibitor N,N'-dicyclohexylcarbodiimide (DCCD) was used to probe the structure and function of the vacuolar H+-translocating ATPase from oat roots (Avena sativa var. Lang). The second-order rate constant for DCCD inhibition was inversely related to the concentration of membrane, indicating that DCCD reached the inhibitory site by concentrating in the hydrophobic environment. [14C]DCCD preferentially labeled a 16-kDa polypeptide of tonoplast vesicles, and the amount of [14C]DCCD bound to the 16-kDa peptide was directly proportional to inhibition of ATPase activity. A 16-kDa polypeptide had previously been shown to be part of the purified tonoplast ATPase. As predicted from the observed noncooperative inhibition, binding studies showed that 1 mol of DCCD was bound per mol of ATPase when the enzyme was completely inactivated. The DCCD-binding 16-kDa polypeptide was purified 12-fold by chloroform/methanol extraction. This protein was thus classified as a proteolipid, and its identity as part of the ATPase was confirmed by positive reaction with the antibody to the purified ATPase on immunoblots. From the purification studies, we estimated that the 16-kDa subunit was present in multiple (4-8) copies/holoenzyme. The purification of the proteolipid is a first step towards testing its proposed role in H+ translocation.  相似文献   

10.
The Na level inside cells of Anacystis nidulans is lower than in the external medium reflecting an effective Na extrusion. Na efflux is an active process and is driven by a Na+/H+-antiport system. The necessary H+-gradient is generated by a proton translocating ATPase in the plasmalemma. This ATPase (electrogenic proton pump) also produces the membrane potential (about -110 mV) responsible for K accumulation. N,N-dicyclohexylcarbodiimide (DCCD) inhibits the ATPase and the H+-gradient completely, but the membrane potential is only reduced (<-70 mV), since K efflux initiated by DCCD maintains the potential partly by diffusion potential.With DCCD, active Na efflux is inhibited thus revealing Na uptake and leading by equilibration to the membrane potential to a 5–20 fold accumulation. Na uptake depends on the DCCD concentration with an optimum at (1–2)×10-4 M DCCD. Pretreatment with DCCD for a few minutes followed by replacement of the medium suffices to induce Na uptake.DCCD induced Na influx is about 5 times faster in light than in darkness, and the steady state is reached much earlier in light; a 5 fold increase by light was also found for Rb uptake with untreated cells. Valinomycin stimulates the influx of Rb to about the same rate in light and dark. Therefore light may unspecifically increase the permeability of the plasma-lemma probably via the ATP level. Similarly to DCCD also 3×10-3 M N-ethylmaleimide induces Na uptake.Abbreviations Used DCCD N,N-dicyclohexylcarbodiimide - NEM N-ethylmaleimide - CCCP carbonylcyanide m-chlorophenylhydrazone - Pipes piperazine-N,N-bis(2-ethanesulfonic acid) - DCMU 3-(3,4-dichlorophenyl)-1,1-dimethylurea  相似文献   

11.
The carboxyl group reagents dicyclohexylcarbodiimide (DCCD) and N-ethoxycarboxyl-2-ethoxy-1,2-dihydroquinoline (EEDQ) inactivate the soluble Rhodospirillum rubrum F1-ATPase (RrF1). The inactivation is both time- and concentration-dependent and also pH-dependent, being more marked at acid pH. Under the same conditions, N-ethyl-5-phenylisoxazolium 3'-sulfonate causes almost no inactivation of the RrF1-ATPase. Complete inhibition of the enzyme activity requires the binding of 1 mol of DCCD/mol of RrF1. The isolated, reconstitutively active, beta-subunit of RrF1 is affected by the three carboxyl group reagents in a very similar manner to the RrF1-ATPase. Incubation of the beta-subunit with DCCD and EEDQ eliminates its capacity to rebind to beta-less chromatophores. Consequently the DCCD or EEDQ-modified beta-subunit cannot restore ATP synthesis or hydrolysis activities to the beta-less chromatophores. The interaction of the isolated beta-subunit with DCCD and EEDQ is both time and concentration dependent. The elimination of the reconstitutive activity of the beta-subunit by DCCD is accompanied with a covalent binding of about 1 mol of [14C]DCCD/mol of beta and is pH-dependent, showing a half-maximal effect at about pH 7.4. Divalent cations, inorganic phosphate, and to a lesser extent ATP and ADP decrease the binding stoichiometry of DCCD to the beta-subunit. Pretreatment of either RrF1 or its isolated beta-subunit with EEDQ reduces drastically their ability to bind [14C]DCCD, suggesting that in both RrF1 and the beta-subunit, EEDQ and DCCD might react at the same site. The similar effect of the carboxyl group reagents on RrF1 and on its isolated beta-subunit is in accord with the suggestion that DCCD and EEDQ affect the F1-ATPases by interacting with their beta-subunits.  相似文献   

12.
IAA-induced elongation and control growth of light-grown cucumberhypocotyl sections were markedly inhibited by DCCD, an inhibitorof membrane-bound ATPases. The concentration effective for inducingmarked inhibition was more than 10–5 M. At 10–5M DCCD, there was an apparent antagonism between IAA and DCCD.At 5 x 10–5 M DCCD, the inhibition was partially recoveredby 10–4 M of IAA. The results might indicate a close associationof the auxin action with membrane-bound ATPases. The DCCD inhibitionwas so strong that treatment with 10–4 M DCCD for about5 min significantly suppressed further growth and longer incubationkilled the sections. In contrast, DCCD had not inhibitory effecton both control growth and IAA-induced elongation if GA3 waspresent simultaneously. DCCD treatment followed by GA3 treatmentstill resulted in the inhibition, suggesting that the inhibitionwas not reversible. In order to obtain reversal of DCCD inhibitionby GA3 both compounds must be present at the same time. TheGA3 effect is discussed in connection with the mechanism ofDCCD action on membrane-bound ATPases. (Received October 6, 1975; )  相似文献   

13.
The 1-butanol extracted proteolipid from mitochondria was incorporated to liposomes. This proteolipid mediates the H+ transfer across the lipid bilayer in response to a negative charge produced by valinomycin and KCl. The process is sensitive to DCCD, but not to oligomycin. The flux of H+ depends on the concentration of proteolipid and the inhibition of this flux depends on the concentration of DCCD.  相似文献   

14.
Prakash C. Misra 《BBA》1982,680(2):228-230
Cells of the yeast Rhodotorula glutinis on treatment with N,N′-dicyclohexylcarbodiimide (DCCD) at a concentration of about 0.5 mM fail to accumulate d-xylose, cause efflux of accumulated sugar and do not exhibit H+/sugar symport. The results are interpreted as being due to depolarization of the membrane potential by DCCD.  相似文献   

15.
Interaction of N,N'-dicyclohexylcarbodiimide (DCCD) with ATPase of Mycobacterium phlei membranes results in inactivation of ATPase activity. The rate of inactivation of ATPase was pseudo-first order for the initial 30-65% inactivation over a concentration range of 5-50 microM DCCD. The second-order rate constant of the DCCD-ATPase interaction was k = 8.5 X 10(5) M-1 X min(-1). The correlation between the initial binding of [14C]DCCD and 100% inactivation of ATPase activity shows 1.57 nmol DCCD bound per mg membrane protein. The proteolipid subunit of the F0F1-ATPase complex in membranes of M. phlei with which DCCD covalently reacts to inhibit ATPase was isolated by labeling with [14C]DCCD. The proteolipid was purified from the membrane in free and DCCD-modified form by extraction with chloroform/methanol and subsequent chromatography on Sephadex LH-20. The polypeptide was homogeneous on SDS-acrylamide gel electrophoresis and has an apparent molecular weight of 8000. The purified proteolipid contains phosphatidylinositol (67%), phosphatidylethanolamine (18%) and cardiolipin (8%). Amino acid analysis indicates that glycine, alanine and leucine were present in elevated amounts, resulting in a polarity of 27%. Cysteine and tryptophan were lacking. Butanol-extracted proteolipid mediated the translocation of protons across the bilayer, in K+-loaded reconstituted liposomes, in response to a membrane potential difference induced by valinomycin. The proton translocation was inhibited by DCCD, as measured by the quenching of fluorescence of 9-aminoacridine. Studies show that vanadate inhibits the proton gradient driven by ATP hydrolysis in membrane vesicles of M. phlei by interacting with the proteolipid subunit sector of the F0F1-ATPase complex.  相似文献   

16.
The effects of N,N'-dicyclohexylcarbodiimide (DCCD) on light-induced H+-transport and transmembrane electric potential (delta phi) formation were studied in the membrane vesicles of Halobacterium halobium R1M1. In accordance with our previous finding of the existence of two DCCD-binding components in vesicle membrane using 14C-DCCD (Konishi & Murakami FEBS Lett. 169, 283-286 (1984)), DCCD inhibited the H+-influx process biphasically; that is, the H+-influx process which is electrically silent was initially inhibited at concentrations below 30 nmol of DCCD/mg vesicle protein, while another H+-influx process which is coupled to delta phi formation was secondarily inhibited above this concentration of DCCD. The latter H+-influx process was highly dependent on the Na+ concentration. The extents of Na+-dependent recovery of delta phi formation and H+-influx were quantitatively correlated. From these results, it was concluded that the second DCCD-sensitive H+-influx process which is coupled to delta phi formation is due to the hypothetical Na+/H+-antiporter postulated by Lanyi and MacDonald (Biochemistry 15, 4608-4614 (1976)). It was also found that Li+ can be substituted for Na+ in this system, as is the case with Na+/H+-antiporters found in other organisms.  相似文献   

17.
The effect of the alkylating reagent dicyclohexylcarbodiimide (DCCD) on mitochondrial Ca2+ content was studied. The results obtained indicate that DCCD at a concentration of 100 µM induces mitochondrial Ca2+ efflux. This reaction is accompanied by an increasing energy drain on the system, stimulation of oxygen consumption, and mitochondrial swelling. These DCCD effects can be partially suppressed by supplementing the incubation medium with 1 mM phosphate. By electrophoretic analysis on polyacrylamide-sodium dodecyl sulfate, it was found that DCCD binds to a membrane component with anM r of 20 to 29 kDa.  相似文献   

18.
Dicyclohexylcarbodi-imide (DCCD) inhibition of NADH: ubiquinone oxidoreductase was studied in submitochondrial particles and in the isolated form, together with the binding of the reagent to the enzyme. DCCD inhibited the isolated enzyme in a time- and concentration-dependent manner. Over the concentration range studied, a maximum inhibition of 85% was attained within 60 min. The time course for the binding of DCCD to the enzyme was similar to that of activity inhibition. The NADH:ubiquinone oxidoreductase activity of the submitochondrial particles was also sensitive to DCCD, and the locus of binding of the inhibitor was studied by subsequent resolution of the enzyme into subunit polypeptides. Only two subunits (molecular masses 13.7 and 21.5 kDa) were labelled by [14C]DCCD, whereas, when the enzyme in its isolated form was treated with [14C]DCCD, six subunits (13.7, 16.1, 21.5, 39, 43 and 53 kDa) were labelled. Comparison with the subunit labelling of F1F0-ATPase and ubiquinol:cytochrome c oxidoreductase indicated that the labelling pattern of NADH:ubiquinone oxidoreductase, and enzyme complex with a multitude of subunits, is unique and not due to contamination by other inner-membrane proteins. The correlation between the electron- and proton-transport functions and the DCCD-binding components remains to be established.  相似文献   

19.
N,N'-dicyclohexylcarbodiimide (DCCD) has been reported to inhibit proton translocation by cytochrome bc(1) and b(6)f complexes without significantly altering the rate of electron transport, a process referred to as decoupling. To understand the possible role of DCCD in inhibiting the protonogenic reactions of cytochrome bc(1) complex, we investigated the effect of DCCD modification on flash-induced electron transport and electrochromic bandshift of carotenoids in Rb. sphaeroides chromatophores. DCCD has two distinct effects on phase III of the electrochromic bandshift of carotenoids reflecting the electrogenic reactions of the bc(1) complex. At low concentrations, DCCD increases the magnitude of the electrogenic process because of a decrease in the permeability of the membrane, probably through inhibition of F(o)F(1). At higher concentrations (>150 microM), DCCD slows the development of phase III of the electrochromic shift from about 3 ms in control preparations to about 23 ms at 1.2 mM DCCD, without significantly changing the amplitude. DCCD treatment of chromatophores also slows down the kinetics of flash-induced reduction of both cytochromes b and c, from 1.5-2 ms in control preparations to 8-10 ms at 0.8 mM DCCD. Parallel slowing of the reduction of both cytochromes indicates that DCCD treatment modifies the reaction of QH(2) oxidation at the Q(o) site. Despite the similarity in the kinetics of both cytochromes, the onset of cytochrome c re-reduction is delayed 1-2 ms in comparison to cytochrome b reduction, indicating that DCCD inhibits the delivery of electrons from quinol to heme c(1). We conclude that DCCD treatment of chromatophores leads to modification of the rate of Q(o)H(2) oxidation by the iron-sulfur protein (ISP) as well as the donation of electrons from ISP to c(1), and we discuss the results in the context of the movement of ISP between the Q(o) site and cytochrome c(1).  相似文献   

20.
F R Gorga 《Biochemistry》1985,24(24):6783-6788
N,N'-Dicyclohexylcarbodiimide (DCCD), a reagent that reacts with carboxyl groups under mild conditions, irreversibly inhibits (Na+,K+)-ATPase activity (measured by using 1 mM ATP) with a pseudo-first-order rate constant of 0.084 min-1 (0.25 mM DCCD and 37 degrees C). The partial activities of the enzyme, including (Na+,K+)-ATPase at 1 microM ATP, Na+-ATPase, and the formation of enzyme-acyl phosphate (E-P), decayed at about one-third the rate at which (Na+,K+)-ATPase at 1 mM ATP was lost. The formation of E-P from inorganic phosphate was unaffected by DCCD while K+-phosphatase activity decayed at the same rate as (Na+,K+)-ATPase measured at 1 mM ATP. The enzyme's substrates (i.e., sodium, potassium, magnesium, and ATP) all decreased the rate of DCCD inactivation of (Na+,K+)-ATPase activity measured at either 1 mM or 1 microM ATP. The concentration dependence of the protection afforded by each substrate is consistent with its binding at a catalytically relevant site. DCCD also causes cross-linking of the enzyme into species of very high molecular weight. This process occurs at about one-tenth the rate at which (Na+,K+)-ATPase activity measured at 1 mM ATP is lost, too slowly to be related to the loss of enzymatic activity. Labeling of the enzyme with [14C]DCCD shows the incorporation of approximately 1 mol of DCCD per mole of large subunit; however, the incorporation is independent of the loss of enzymatic activity. The results presented here suggest that (Na+,K+)-ATPase contains two carboxyl groups that are essential for catalytic activity, in addition to the previously known aspartate residue which is involved in formation of E-P.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号