首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 205 毫秒
1.
The minicollagens found in the nematocysts of Hydra constitute a family of invertebrate collagens with unusual properties. They share a common modular architecture with a central collagen sequence ranging from 14 to 16 Gly-X-Y repeats flanked by polyproline/hydroxyproline stretches and short terminal domains that show a conserved cysteine pattern (CXXXCXXXCXXX-CXXXCC). The minicollagen cysteine-rich domains are believed to function in a switch of the disulfide connectivity from intra- to intermolecular bonds during maturation of the capsule wall. The solution structure of the C-terminal fragment including a minicollagen cysteine-rich domain of minicollagen-1 was determined in two independent groups by 1H NMR. The corresponding peptide comprising the last 24 residues of the molecule was produced synthetically and refolded by oxidation under low protein concentrations. Both presented structures are identical in their fold and disulfide connections (Cys2-Cys18, Cys6-Cys14, and Cys10-Cys19) revealing a robust structural motif that is supposed to serve as the polymerization module of the nematocyst capsule.  相似文献   

2.
The nematocyst capsules of the cnidarians are specialized explosive organelles that withstand high osmotic pressures of approximately 15 MPa (150 bar). A tight disulfide network involving cysteine-rich capsule wall proteins, like minicollagens and nematocyst outer wall antigen, characterizes their molecular composition. Nematocyst discharge leads to the expulsion of a long inverted tubule that was coiled inside the capsule matrix before activation. Spinalin has been characterized as a glycine-rich, histidine-rich protein associated with spine structures on the surface of everted tubules. Here, we show that full-length Hydra spinalin can be expressed recombinantly in HEK293 cells and has the property to form disulfide-linked oligomers, reflecting its state in mature capsules. Furthermore, spinalin showed a high tendency to associate into dimers in vitro and in vivo. Our data, which show incomplete disulfide connectivity in recombinant spinalin, suggest a possible mechanism by which the spine structure may be linked to the overall capsule polymer.  相似文献   

3.
The minicollagens found in the inner layer of the Hydra nematocyst walls are the smallest collagens known with 12-16 Gly-X-Y repeats. Minicollagen-1, the best characterized member of this protein family so far, consists of a central collagen triple helix of 12 nm in length flanked at both ends by a polyproline stretch and a conserved cysteine-rich domain. The cysteine-rich tails are proposed to function in the assembly of soluble minicollagen trimers to high molecular structures by a switch of the disulfide linkage from intramolecular to intermolecular bonds. In this study, we investigate the trimeric nature of minicollagen-1 and its capacity to form disulfide-linked polymers in vitro. A fusion protein of minicollagen-1 with maltose-binding protein is secreted as a soluble trimer with only intrachain and no interchain disulfide bridges as confirmed by melting the collagen triple helix under reducing and non-reducing conditions. The conversion of minicollagen-1 trimers to monomers takes place between 40 and 55 degrees C with the melting point being approximately 45 degrees C. Oxidative reshuffling of the minicollagen-1 trimers leads to the formation of high molecular aggregates, which upon reduction show distinct polytrimeric states. Minicollagen trimers in isolated nematocyst capsules proved to be sensitive to SDS and were engaged in polymeric structures with additional cross-links that were resistant to reducing agent.  相似文献   

4.
The nematocyst is a unique extrusive organelle involved in the defense and capture of prey in cnidarians. Minicollagens and the glycoprotein NOWA are major components of the nematocyst capsule wall, which resists osmotic pressure of 15 MPa. Here we present the recombinant expression of NOWA, which spontaneously assembles to globular macromolecular particles that are sensitive to reduction as the native wall structure. Ultra-structural analysis showed that the Hydra nematocyst wall is composed of several layers of globular particles, which are interconnected via radiating rodlike protrusions. Evidence is presented that native wall particles contain NOWA and minicollagen, supposed to be linked via disulfide bonds between their homologous cysteine-rich domains. Our data suggest a continuous suprastructure of the nematocyst wall, assembled from wall proteins that share a common oligomerization motif.  相似文献   

5.
Minicollagens constitute a family of unusually short collagen molecules isolated from cnidarians. They are restricted to the nematocyst, a cylindrical explosive organelle serving in defense and capture of prey. The nematocyst capsule contains a long tubule inside of its matrix, which is expelled and everted during an ultrafast discharge process. Here, we report the cloning and characterization of a novel minicollagen in Hydra, designated minicollagen-15 (NCol-15). NCol-15, like NCol-3 and NCol-4, shows deviations from the canonical cysteine pattern in its terminal cysteine-rich domains (CRDs). Minicollagens share common domain architectures with a central collagen sequence flanked by polyproline stretches and short N- and C-terminal CRDs. The CRDs are involved in the formation of a highly resistant cysteine network, which constitutes the basic structure of the nematocyst capsule. Unlike NCol-1, which is part of the capsule wall, NCol-15 is localized to tubules, arguing for a functional differentiation of minicollagens within the nematocyst architecture. NMR analysis of the altered C-terminal CRD of NCol-15 showed a novel disulfide-linked structure within the cysteine-containing region exhibiting similar folding kinetics and stability as the canonical CRDs. Our data provide evidence for evolutionary diversification among minicollagens, which probably facilitated alterations in the morphology of the nematocyst wall and tubule.  相似文献   

6.
The nematocyst wall of cnidarians is a unique biomaterial that withstands extreme osmotic pressures, allowing an ultrafast discharge of the nematocyst capsules. Assembly of the highly robust nematocyst wall is achieved by covalent linkage of cysteine-rich domains (CRDs) from two main protein components, minicollagens and nematocyst outer wall antigen (NOWA). The bipolar minicollagens have different disulfide patterns and topologies in their N and C-terminal CRDs. The functional significance of this polarity has been elusive. Here, we show by NMR structural analysis that all representative cysteine-rich domains of NOWA are structurally related to N-terminal minicollagen domains. Natural sequence insertions in NOWA CRDs have very little effect on the tightly knit domain structures, nor do they preclude the efficient folding to a single native conformation. The different folds in NOWA CRDs and the atypical C-terminal minicollagen domain on the other hand can be directly related to different conformational preferences in the reduced states. Ultrastructural analysis in conjunction with aggregation studies argues for an association between the similar NOWA and N-terminal minicollagen domains in early stages of the nematocyst wall assembly, which is followed by the controlled association between the unusual structures of C-terminal minicollagen domains.  相似文献   

7.
Hydra minicollagen, the shortest collagen known, is an important component of the nematocyst wall, which has a very high tensile strength. It has an unusual structure, with small and closely related Cys-rich domains at both ends of its chains. Three chains are trimerized by a central collagenous domain. Polyhydroxyproline helices connect the Cys-rich domains with the collagenous domain. The minicollagen precursor contains three internal disulfide bridges in each Cys-rich domain and no disulfide bridges between chains of the same trimeric molecule or between different molecules. Biochemical and structural evidence as well as confocal immunofluorescence microscopy points to disulfide-mediated assembly during maturation of nematocysts.  相似文献   

8.
The DNA of most vertebrate sperm cells is packaged by protamines. The primary structure of mammalian protamine I can be divided into three domains, a central DNA binding domain that is arginine-rich and amino- and carboxyl-terminal domains that are rich in cysteine residues. In native bull sperm chromatin, intramolecular disulfide bonds hold the terminal domains of bull protamine folded back onto the central DNA binding domain, whereas intermolecular disulfide bonds between DNA-bound protamines help stabilize the chromatin of mature mammalian sperm cells. Folded bull protamine was used to condense DNA in vitro under various solution conditions. Using transmission electron microscopy and light scattering, we show that bull protamine forms particles with DNA that are morphologically similar to the subunits of native bull sperm chromatin. In addition, the stability provided by intermolecular disulfide bonds formed between bull protamine molecules within in vitro DNA condensates is comparable with that observed for native bull sperm chromatin. The importance of the bull protamine terminal domains in controlling the bull sperm chromatin morphology is indicated by our observation that DNA condensates formed under identical conditions with a fish protamine, which lacks cysteine-rich terminal domains, do not produce as uniform structures as bull protamine. A model is also presented for the bull protamine.DNA complex in native sperm cell chromatin that provides an explanation for the positions of the cysteine residues in bull protamine that form intermolecular disulfide bonds.  相似文献   

9.
Secretory proteins become folded and acquire stabilizing disulfide bonds in the endoplasmic reticulum (ER). Correct disulfide bond formation is a key step in ER quality control (ERQC). Proteins with incorrect disulfide bonds are recognized by the quality control machinery and are retrotranslocated into the cytosol where they are degraded by the proteasome. The mammalian ER contains 17 disulfide isomerases and at least one of them, ERp57, works in conjunction with the ER lectin-like chaperones calnexin and calreticulin. The targeting of ERp57 to calnexin-calreticulin is mediated by its noncatalytic b' domain, and analogous domains in other disulfide isomerases likely determine their substrate and partner preferences. This review discusses some explanations for the multiplicity of disulfide isomerases and highlights structural differences in the b' domains of PDI and ERp57 as an example of how noncatalytic domains define specialized roles in oxidative folding.  相似文献   

10.
Energetics of structural domains in alpha-lactalbumin.   总被引:3,自引:3,他引:0       下载免费PDF全文
alpha-Lactalbumin is a small, globular protein that is stabilized by four disulfide bonds and contains two structural domains. One of these domains is rich in alpha-helix (the alpha-domain) and has Cys 6-Cys 120 and Cys 28-Cys 111 disulfide bonds. The other domain is rich in beta-sheet (the beta-domain), has Cys 61-Cys 77 and Cys 73-Cys 91 disulfide bonds, and includes one calcium binding site. To investigate the interaction between domains, we studied derivatives of bovine alpha-lactalbumin differing in the number of disulfide bonds, using calorimetry and CD at different temperatures and solvent conditions. The three-disulfide form, having a reduced Cys 6-Cys 120 disulfide bond with carboxymethylated cysteines, is similar to intact alpha-lactalbumin in secondary and tertiary structure as judged by its ellipticity in the near and far UV. the two-disulfide form of alpha-lactalbumin, having reduced Cys 6-Cys 120 and Cys 28-Cys 111 disulfide bonds with carboxymethylated cysteines, retains about half the secondary and tertiary structure of the intact alpha-lactalbumin. The remaining structure is able to bind calcium and unfolds cooperatively upon heating, although at lower temperature and with significantly lower enthalpy and entropy. We conclude that, in the two disulfide form, alpha-lactalbumin retains its calcium-binding beta-domain, whereas the alpha-domain is unfolded. It appears that the beta-domain does not require alpha-domain to fold, but its structure is stabilized significantly by the presence of the adjacent folded alpha-domain.  相似文献   

11.
Disulfide bridge-mediated folding of Sindbis virus glycoproteins.   总被引:3,自引:3,他引:0       下载免费PDF全文
The Sindbis virus envelope is composed of 80 E1-E2 (envelope glycoprotein) heterotrimers organized into an icosahedral protein lattice with T=4 symmetry. The structural integrity of the envelope protein lattice is maintained by E1-E1 interactions which are stabilized by intramolecular disulfide bonds. Structural domains of the envelope proteins sustain the envelope's icosahedral lattice, while functional domains are responsible for virus attachment and membrane fusion. We have previously shown that within the mature Sindbis virus particle, the structural domains of the envelope proteins are significantly more resistant to the membrane-permeative, sulfhydryl-reducing agent dithiothreitol (DTT) than are the functional domains (R. P. Anthony, A. M. Paredes, and D. T. Brown, Virology 190:330-336, 1992). We have used DTT to probe the accessibility of intramolecular disulfides within PE2 (the precursor to E2) and E1, as these proteins fold and are assembled into the spike heterotrimer. We have determined through pulse-chase analysis that intramolecular disulfide bonds within PE2 are always sensitive to DTT when the glycoproteins are in the endoplasmic reticulum. The reduction of these disulfides results in the disruption of PE2-E1 associations. E1 acquires increased resistance to DTT as it folds through a series of disulfide intermediates (E1alpha, -beta, and -gamma) prior to assuming its native and most compact conformation (E1epsilon). The transition from a DTT-sensitive form into a form which exhibits increased resistance to DTT occurs after E1 has folded into its E1beta conformation and correlates temporally with the dissociation of BiP-E1 complexes and the formation of PE2-E1 heterotrimers. We propose that the disulfide bonds within E1 which stabilize the protein domains required for maintaining the structural integrity of the envelope protein lattice form early within the folding pathway of E1 and become inaccessible to DTT once the heterotrimer has formed.  相似文献   

12.
CenA and Cex are beta-1,4-glycanases produced by the cellulolytic bacterium Cellulomonas fimi. Both enzymes are composed of two domains and contain six Cys residues. Two disulfide bonds were assigned in both enzymes by peptide analysis of the isolated catalytic domains. A further disulfide bond was deduced in both cellulose-binding domains from the absence of free thiols under denaturing conditions. Corresponding Cys residues are conserved in eight of nine other known C. fimi-type cellulose-binding domains. CenA and Cex belong to families B and F, respectively, in the classification of beta-1,4-glucanases and beta-1,4-xylanases based on similarities in catalytic domain primary structure. Disulfide bonds in the CenA catalytic domain correspond to the two disulfide bonds in the catalytic domain of Trichoderma reesei cellobiohydrolase II (family B) which stabilize loops forming the active-site tunnel. Sequence alignment indicates the probable occurrence of disulfides at equivalent positions in the two other family B enzymes. Partial resequencing of the gene encoding Streptomyces KSM-9 beta-1,4-glucanase CasA (family B) revealed five errors in the original nucleotide sequence analysis. The corrected amino acid sequence contains an Asp residue corresponding to the proposed proton donor in hydrolysis catalysed by cellobiohydrolase II. Cys residues which form disulfide bonds in the Cex catalytic domain are conserved in XynZ of Clostridium thermocellum and Xyn of Cryptococcus albidus but not in the other eight known family F enzymes. Like other members of its family, Cex catalyses xylan hydrolysis. The catalytic efficiency (kcat/Km) for hydrolysis of the heterosidic bond of p-nitrophenyl-beta-D-xylobioside is 14,385 min-1.mM-1 at 25 degrees C; the corresponding kcat/Km for p-nitrophenyl-beta-D-cellobioside hydrolysis is 296 min-1.mM-1.  相似文献   

13.
《Biophysical journal》2022,121(11):2168-2179
Cysteine residues perform a dual role in mammalian hairs. The majority help stabilize the overall assembly of keratins and their associated proteins, but a proportion of inter-molecular disulfide bonds are assumed to be associated with hair mechanical flexibility. Hair cortical microstructure is hierarchical, with a complex macro-molecular organization resulting in arrays of intermediate filaments at a scale of micrometres. Intermolecular disulfide bonds occur within filaments and between them and the surrounding matrix. Wool fibers provide a good model for studying various contributions of differently situated disulfide bonds to fiber mechanics. Within this context, it is not known if all intermolecular disulfide bonds contribute equally, and, if not, then do the disproportionally involved cysteine residues occur at common locations on proteins? In this study, fibers from Romney sheep were subjected to stretching or to their breaking point under wet or dry conditions to detect, through labeling, disulfide bonds that were broken more often than randomly. We found that some cysteines were labeled more often than randomly and that these vary with fiber water content (water disrupts protein-protein hydrogen bonds). Many of the identified cysteine residues were located close to the terminal ends of keratins (head or tail domains) and keratin-associated proteins. Some cysteines in the head and tail domains of type II keratin K85 were labeled in all experimental conditions. When inter-protein hydrogen bonds were disrupted under wet conditions, disulfide labeling occurred in the head domains of type II keratins, likely affecting keratin-keratin-associated protein interactions, and tail domains of the type I keratins, likely affecting keratin-keratin interactions. In contrast, in dry fibers (containing more protein-protein hydrogen bonding), disulfide labeling was also observed in the central domains of affected keratins. This central “rod” region is associated with keratin-keratin interactions between anti-parallel heterodimers in the tetramer of the intermediate filament.  相似文献   

14.
Synthetic replicates of naturally occurring cysteine-rich peptides such as hormones, neurotransmitters, growth factors, enzyme inhibitors, defensins and toxins often can be oxidatively folded in high yields to their native structure in simple redox buffers. Thereby, identical cysteine patterns in the sequence were found to generate identical disulfide connectivities and homologous spatial structures despite significant variability in the non-cysteine positions. Minicollagen-1 from the nematocysts of Hydra is a trimeric protein that contains cysteine-rich domains at the N and C termini, which are involved in the assembly of an intermolecular disulfide network. Determination of the three-dimensional structures of peptides corresponding to the N-terminal and C-terminal domains by NMR spectroscopy revealed a remarkable exception from the general rule. Despite an identical cysteine pattern, the two domains of minicollagen-1 form different disulfide bridges and exhibit distinctly different folds, both of which are not found in the current structural databases. To our knowledge, this is the first case where two relatively short peptides with the abundant cysteine residues in identical sequence positions fold uniquely and with high yields into defined, but differing, structures. Therefore, the cysteine-rich domains of minicollagen constitute ideal model systems for studies of the interplay between folding and oxidation in proteins.  相似文献   

15.
Expression of active human C1 inhibitor serpin domain in Escherichia coli.   总被引:1,自引:0,他引:1  
Human C1 inhibitor is a highly glycosylated serine protease inhibitor of the serpin family. The protein contains two disulfide bonds. In this study, an N-terminally truncated form of recombinant C1 inhibitor was overexpressed in Escherichia coli strains BL21(DE3) and AD494(DE3), the latter enabling the formation of disulfide bonds within the cytoplasm. With both strains, a major fraction of the recombinant protein produced appeared to be insoluble. However, the soluble fraction of lysates from strain AD494(DE3) inhibited the C1s target protease in functional assays. Recombinant C1 inhibitor produced in this strain also displayed the ability to complex with C1s in vitro. In contrast, lysates from strain BL21(DE3) displayed no C1 inhibitor activity. These data support the notion that glycosylation is not important, whereas disulfide bond formation appears to be essential for the production of an active recombinant C1 inhibitor. Thus, bacterial strains that permit the formation of disulfide bonds may represent a reliable system for the production of recombinant C1 inhibitor. However, a major obstacle to large-scale production will be to produce the protein in a soluble form. Attempts to increase the yield of soluble protein by coexpression of the GroEL/ES chaperonins resulted in an increase in solubility.  相似文献   

16.
The hexameric complex of globular domains of type IV collagen was isolated after collagenase digestion of human placenta and the different monomers and dimers present were chromatographically separated. The ratio of alpha 1(IV)NC1 to alpha 2(IV)NC1 was 2:1. About 50% of the NC1 domains were connected to dimers. Predominantly alpha 1-alpha 1 dimers were found. Only 12% were alpha 2-alpha 2 dimers and no alpha 1-alpha 2 dimers could be detected. The majority (88%) of the intermolecular bonds was found to be disulfide bridges. The remainder could not be cleaved by reduction. To elucidate the arrangement of the disulfide bonds, the unreduced alpha 1(IV)NC1 monomers were treated with cyanogen bromide, the disulfide-bridged peptides isolated and characterized by Edman degradation. Each of the two homologous subdomains within a monomer is stabilized by an identical set of three disulfide bonds. In subdomain I, cysteines at positions 20 and 53 are connected with the C-terminal cysteine pair 108 and 111. Thus formed, the disulfide knot stabilizes two interconnected loops of 32 and 54 residues, respectively. A smaller loop of five residues occurs due to a disulfide bond between the cysteines 65 and 71. A similar disulfide arrangement is indicated for subdomain II which is separated from subdomain I by a segment of 20 amino acid residues. The same arrangement of disulfide bonds has been strongly suggested for the alpha 2(IV)NC1 monomer by the isolation and characterization of its disulfide-bridged tryptic fragments. Similar investigations on the dimeric alpha 1(IV)NC1 domain established the arrangement of the intermolecular disulfide bonds. They are formed by a complete disulfide exchange between corresponding disulfide knots of two monomeric NC1 domains.  相似文献   

17.
The amino acid sequence of one of the major lysosomal membrane glycoproteins, lysosome-associated membrane protein 1 (lamp-1), was deduced from its cDNA sequence (Fukuda, M., Viitala, J., Matteson, J., and Carlsson, S. R. (1988) J. Biol. Chem. 263, 18920-18928). This amino acid sequence suggests that lamp-1 contains a hinge-like structure and could form disulfide bridges that are observed in the immunoglobulin superfamily. To test this possibility, we have determined the positions of the disulfide bridges by isolating and sequencing cystine-containing peptides which contain disulfide bridges. The results indicate that disulfide arrangement of lamp-1 is different from that of immunoglobulins. Each molecule contains, in total, four loops formed by disulfide bonds, and each loop contains 36-39 amino acid residues. However, none of the disulfide bonds connects two domains that are separated by a hinge-like structure. The results indicate that the hinge region has no ordered structure, and the relative positions of the two domains can be altered in space. Examination of the ultrastructure of lamp-1 by electron microscopy showed that the hinge-like structure actually functions as a hinge. These results indicate that the lamp-1 molecule represents a novel family of glycoproteins with unique structural properties.  相似文献   

18.
The two thread-like subunits (Mr approximately equal to 250 000) of the multidomain protein fibronectin are connected by a pair of inter-chain disulfide bridges in their C-terminal regions. In addition each chain contains 29 intra-chain disulfide bonds which are located in 12 type I and 2 type II structural domains in the N-terminal and C-terminal regions of the strands. The 15 to 17 type III domains in the central portion of the strands do not contain disulfide bonds. The susceptibility of inter-chain disulfide bonds to 10mM 1,4-dithiothreitol at pH 7.8 as quantitated by the rate of reductive cleavage of fibronectin into its subunits was found to be only 8-fold larger than that of the intra-chain bonds. Consequently at 90% completion of chain separation 30% of the intra-chain disulfides are also cleaved. The rate of inter-chain disulfide cleavage was found to be identical for fibronectin and a 140-kDa fragment comprising the C-terminal portions of the two subunits. This shows that the relatively high protection of the inter-chain disulfide bonds must originate from interactions between C-terminal domains which are probably also responsible for the V shaped arrangement of the two subunit strands. Changes of circular dichroism and thermal transition profiles for fibronectin and its C-terminal 140-kDa fragment indicated that already partial reduction of the intra-chain disulfide bonds alters the conformations of type I and II domains without affecting the type III domains.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
Previous studies demonstrated that structural perturbation of the alpha(1) domain of apolipoprotein B (apoB) blocked the initiation of lipoprotein assembly. We explored the hypothesis that this domain may interact with the inner leaflet of the endoplasmic reticulum membrane in a manner that may nucleate microsomal triglyceride transfer protein-dependent lipid sequestration. ApoB-17 (amino-terminal 17% of apoB), which contains most of the alpha(1) domain, was expressed stably in rat hepatoma cells and recovered from medium in lipid-poor form. On incubation with phospholipid vesicles composed of 1-myristol-2-myristoyl-sn-glycero-3-phosphocholine or 1-palmitoyl-2-oleoyl-sn-gylycero-3-phosphocholine, apoB-17 underwent vesicle binding and was recovered in the d < 1.25 g/ml gradient fraction. To determine whether vesicle binding is disrupted by the same structural perturbations that block lipoprotein assembly in vivo, apoB-17 was subjected to partial and complete chemical reduction. Although normally a soluble peptide, mild reduction of apoB-17 caused its precipitation, suggesting that hydrophobic, solvent-inaccessible domains within the alpha(1) domain of apoB are stabilized by intramolecular disulfide bonds. In contrast to apoB-17 chemically reduced in vitro, forms of apoB-17 bearing pairwise cysteine-to-serine substitutions were recovered in soluble form from transiently transfected COS-1 cell extracts. Although individual disruption of disulfide bond 2 or 4 in apoB-28 and apoB-50 was previously shown to block lipoprotein assembly in vivo, these alterations had no impact on the ability of apoB-17 to bind to phospholipid vesicles in vitro or on its capacity to form recombinant lipoprotein particles. These results suggest that while the vesicle/lipid-binding property of the alpha(1) domain may reflect an essential role required for the initiation of lipoprotein formation, some other aspect of alpha(1) domain function is perturbed by disruption of native disulfide bonds. -- DeLozier, J. A., J. S. Parks, and G. S. Shelness. Vesicle-binding properties of wild-type and cysteine mutant forms of alpha(1) domain of apolipoprotein B. J. Lipid Res. 2001. 42: 399--406.  相似文献   

20.
大肠杆菌分泌蛋白二硫键的形成是一系列蛋白协同作用的结果,主要是Dsb家族蛋白,迄今为止共发现了DsbA、DsbB、DsbC、DsbD、DsbE和DsbG。在体内,DsbA负责氧化两个巯基形成二硫键,DsbB则负责DsbA的再氧化。DsbC和DsbG负责校正DsbA导入的异常二硫键,DsbD则负责对DsbC和DsbG进行再还原,DsbE的功能与DsbD类似。除了直接和二硫键的形成相关外,DsbA、DsbC和DsbG都有分子伴侣功能。它们的分子伴侣功能独立于二硫键形成酶的活性并且对二硫键形成酶活性具有明显的促进作用。基于Dsb蛋白的功能特性,利用它们以大肠杆菌为宿主表达外源蛋白,特别是含有二硫键的蛋白,取得了很多成功的例子。本文简要介绍了这方面的进展,显示Dsb蛋白在促进外源蛋白在大肠杆菌中以可溶形式表达方面具有广阔的应用前景。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号