首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Intra- and extra-mitochondrial Ca2+ participates in vital cellular processes. This work investigates the influence of 4-hydroxynonenal (HNE) on pro-oxidant-induced Ca2+ release from rat liver mitochondria. Ca2+ movements across the mitochondrial inner membrane, the pyridine nucleotide redox state and pyridine (nicotinamide) nucleotide hydrolysis were analysed. HNE did not influence Ca2+ uptake by mitochondria, but inhibited in a concentration-dependent manner Ca2+ release induced by t-butylhydroperoxide (tbh). Total inhibition was achieved with about 50 microM-HNE. Ca2+ release induced by the pro-oxidant alloxan was also inhibited by HNE. Oxidation of pyridine nucleotides, induced by tbh through the concerted action of glutathione peroxidase, glutathione reductase and the energy-linked transhydrogenase, was not affected by up to 50 microM-HNE. In contrast, HNE inhibited pyridine nucleotide hydrolysis in a concentration-dependent manner. The data suggest that HNE toxicity may be in part attributed to an impaired intramitochondrial Ca2+ homeostasis.  相似文献   

2.
The energy-dependent, respiration-supported uptake and the uncoupler- or Na+-induced release of Ca2+ and Mn2+ by mitochondria from rat liver, heart and brain were investigated, using as indicators radioisotopes (45Ca and 54Mn), proton ejection, oxygen consumption, nicotinamide nucleotide oxidation-reduction and, in the case of Ca2+, the metallochromic dye Arsenazo III. Ca2+ uptake in the presence of Pi was rapid in mitochondria from liver and brain, and less rapid in those from heart. Mn2+ uptake was much slower than that of Ca2+ in liver and heart, but only slightly slower in brain. When added together, Ca2+ accelerated the uptake of Mn2+, and Mn2+ retarded the uptake of Ca2+, by mitochondria from all three tissues. When Mn2+ was present during Ca2+ uptake, its own uptake remained accelerated even after Ca2+ uptake was terminated. Mg2+, which was not taken up, inhibited Ca2+ uptake by mitochondria from all three tissues, and, when present during Ca2+ uptake, accelerated the subsequent uptake of Mn2+. The uncoupler CCCP induced a release of both Ca2+ and Mn2+ from all three sources of mitochondria; yet, release of Mn2+ took place only in the absence of Pi. The release followed the same pattern as the uptake, i.e., Ca2+ accelerated the release of Mn2+ and Mn2+ retarded the release of Ca2+. Na+ induced a release of both Ca2+ and Mn2+ from heart and brain but not from liver mitochondria; again, Mn2+ release occurred only in the absence of Pi. The Na+-induced release of Ca2+ was inhibited by Mn2+, but the Na+-induced release of Mn2+ was not accelerated by Ca2+.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
Adenine nucleotide transport over the carboxyatractyloside-insensitive ATP-Mg/Pi carrier was assayed in isolated rat liver mitochondria with the aim of investigating a possible regulatory role for Ca2+ on carrier activity. Net changes in the matrix adenine nucleotide content (ATP + ADP + AMP) occur when ATP-Mg exchanges for Pi over this carrier. The rates of net accumulation and net loss of adenine nucleotides were inhibited when free Ca2+ was chelated with EGTA and stimulated when buffered [Ca2+]free was increased from 1.0 to 4.0 microM. The unidirectional components of net change were similarly dependent on Ca2+; ATP influx and efflux were inhibited by EGTA in a concentration-dependent manner and stimulated by buffered free Ca2+ in the range 0.6-2.0 microM. For ATP influx, increasing the medium [Ca2+]free from 1.0 to 2.0 microM lowered the apparent Km for ATP from 4.44 to 2.44 mM with no effect on the apparent Vmax (3.55 and 3.76 nmol/min/mg with 1.0 and 2.0 microM [Ca2+]free, respectively). Stimulation of influx and efflux by [Ca2+]free was unaffected by either ruthenium red or the Ca2+ ionophore A23187. Calmodulin antagonists inhibited transport activity. In isolated hepatocytes, glucagon or vasopressin promoted an increased mitochondrial adenine nucleotide content. The effect of both hormones was blocked by EGTA, and for vasopressin, the effect was blocked also by neomycin. The results suggest that the increase in mitochondrial adenine nucleotide content that follows hormonal stimulation of hepatocytes is mediated by an increase in cytosolic [Ca2+]free that activates the ATP-Mg/Pi carrier.  相似文献   

4.
The present work deals with the effects of alloxan on rat liver mitochondria, involving formation of toxic oxygen derivatives and Ca2+ release, and its relations to a physiological pathway, pyrimidine biosynthesis, particularly dihydroorotate dehydrogenation. Ca2+ release by intact isolated mitochondria was studied and redox transfer from solubilized mitochondria to 2,6-dichloroindophenol in the presence of cyanide. In intact mitochondria 5mM dihydroorotate caused a Ca2+ efflux comparable to 2mM alloxan. Both effects were suppressed by orotate, a potent inhibitor of dihydroorotate dehydrogenase, and by ADP, an inhibitor of the alloxan effects. In lysed mitochondria orotate but not ADP inhibited ubiquinone-linked reduction of 2,6-dichloroindophenol with dihydroorotate and with alloxan in a concentration-dependent manner. It is concluded that in vitro part of the redox cycling of alloxan is catalysed by dihydroorotate dehydrogenase whereas the nonsuppressible part reacts nonenzymatically. Without ADP the respiratory control blocks the reoxidation of coenzyme Q via the respiratory chain, thus giving preference to the regeneration by artificial electron acceptors, e.g. oxygen, yielding superoxide radicals and hydrogen peroxide, a notorious inducer of Ca2+ release. In vivo the enzymatic reoxidation of reduced alloxan by dihydroorotate dehydrogenase may be superior to the non-enzymatic pathway since the nonenzymatic fraction of reoxidation decreases with decreasing alloxan concentration.  相似文献   

5.
The Na+-induced release of accumulated Ca2+ from heart mitochondria is inhibited by amiloride, benzamil and several other amiloride analogues. These drugs do not affect uptake or release of Ca2+ mediated by the ruthenium red-sensitive uniporter and their effects, like those of diltiazem and other Ca2+-antagonists, appear to be localized principally at the Na+/Ca2+ antiporter of the mitochondrion. Benzamil inhibits Na+/Ca2+ antiport non-competitively with respect to [Na+] with a Ki of 167 microM. In the presence of 1.5 mM Pi the Ki for benzamil inhibition of this reaction is decreased to 87 microM.  相似文献   

6.
Jan CR  Tseng CJ  Chen WC 《Life sciences》2000,66(11):1053-1062
The effect of fendiline, a documented inhibitor of L-type Ca2+ channels and calmodulin, on Ca2+ signaling in Madin Darby canine kidney (MDCK) cells was investigated using fura-2 as a Ca2+ probe. Fendiline at 5-100 microM significantly increased [Ca2+]i concentration-dependently. The [Ca2+]i rise consisted of an initial rise and a slow decay. External Ca2+ removal partly inhibited the Ca2+ signals induced by 25-100 microM fendiline by reducing both the initial rise and the decay phase. This suggests that fendiline triggered external Ca2+ influx and internal Ca2+ release. In Ca(2+)-free medium, pretreatment with 50 microM fendiline nearly abolished the [Ca2+]i rise induced by 1 microM thapsigargin, an endoplasmic reticulum Ca2+ pump inhibitor, and vice versa, pretreatment with thapsigargin prevented fendiline from releasing internal Ca2+. This indicates that the internal Ca2+ source for fendiline overlaps with that for thapsigargin. At a concentration of 50 microM, fendiline caused Mn2+ quench of fura-2 fluorescence at the 360 nm excitation wavelenghth, which was inhibited by 0.1 mM La3+ by 50%, implying that fendiline-induced Ca2+ influx has two components separable by La3+. Consistently, 0.1 mM La3+ pretreatment suppressed fendiline-induced [Ca2+]i rise, and adding La3+ during the rising phase immediately inhibited the signal. Addition of 3 mM Ca2+ increased [Ca2+]i after preincubation with 50-100 microM fendiline in Ca(2+)-free medium. However, 50-100 microM fendiline inhibited 1 microM thapsigargin-induced capacitative Ca2+ entry. Pretreatment with 40 microM aristolochic acid to inhibit phospholipase A2 inhibited 50 microM fendiline-induced internal Ca2+ release by 48%, but inhibition of phospholipase C with 2 microM U73122 or inhibition of phospholipase D with 0.1 mM propranolol had no effect. Collectively, we have found that fendiline increased [Ca2+]i in MDCK cells by releasing internal Ca2+ in a manner independent of inositol-1,4,5-trisphosphate (IP3), followed by external Ca2+ influx.  相似文献   

7.
Activation of a wide variety of membrane receptors leads to a sustained elevation of intracellular Ca2+ ([Ca2+]i) that is pivotal to subsequent cell responses. In general, in nonexcitable cells this elevation of [Ca2+]i results from two sources: an initial release of Ca2+ from intracellular stores followed by an influx of extracellular Ca2+. These two phases, release from intracellular stores and Ca2+ influx, are generally coupled: stimulation of influx is coordinated with depletion of Ca2+ from stores, although the mechanism of coupling is unclear. We have previously shown that histamine effects a typical [Ca2+]i response in interphase HeLa cells: a rapid rise in [Ca2+]i followed by a sustained elevation, the latter dependent entirely on extracellular Ca2+. In mitotic cells only the initial elevation, derived by Ca2+ release from intracellular stores, occurs. Thus, in mitotic cells the coupling of stores to influx may be specifically broken. In this report we first provide additional evidence that histamine-stimulated Ca2+ influx is strongly inhibited in mitotic cells. We show that efflux is also strongly stimulated by histamine in interphase cells but not in mitotics. It is possible, thus, that in mitotics intracellular stores are only very briefly depleted of Ca2+, being replenished by reuptake of Ca2+ that is retained within the cell. To ensure the depletion of Ca2+ stores in mitotic cells, we employed the sesquiterpenelactone, thapsigargin, that is known to affect the selective release of Ca2+ from intracellular stores by inhibition of a specific Ca(2+)-ATPase; reuptake is inhibited. In most cells, and in accord with Putney's capacitative model (1990), thapsigargin, presumably by depleting intracellular Ca2+ stores, stimulates Ca2+ influx. This is the case for interphase HeLa cells. Thapsigargin induces an increase in [Ca2+]i that is dependent on extracellular Ca2+ and is associated with a strong stimulation of 45Ca2+ influx. In mitotic cells thapsigargin also induces a [Ca2+]i elevation that is initially comparable in magnitude and largely independent of extracellular Ca2+. However, unlike interphase cells, in mitotic cells the elevation of [Ca2+]i is not sustained and 45Ca2+ influx is not stimulated by thapsigargin. Thus, the coupling between depletion of intracellular stores and Ca2+ influx is specifically broken in mitotic cells. Uncoupling could account for the failure of histamine to stimulate Ca2+ influx during mitosis and would effectively block all stimuli whose effects are mediated by Ca2+ influx and sustained elevations of [Ca2+]i.  相似文献   

8.
The aim of the present study was to investigate the relationship between agonist-induced changes in intracellular free Ca2+ ([Ca2+]i) and the refilling of intracellular Ca2+ stores in Fura 2-loaded thyroid FRTL-5 cells. Stimulating the cells with ATP induced a dose-dependent increase in ([Ca2+]i). The ATP-induced increase in [Ca2+]i was dependent on both release of sequestered intracellular Ca2+ as well as influx of extracellular Ca2+. Addition of Ni2+ prior to ATP blunted the component of the ATP-induced increase in [Ca2+]i dependent on influx of Ca2+. In cells stimulated with ATP in a Ca(2+)-free buffer, readdition of Ca2+ induced a rapid increase in [Ca2+]i; this increase was inhibited by Ni2+. In addition, the ATP-induced influx of 45Ca2+ was blocked by Ni2+. Stimulating the cells with noradrenaline (NA) also induced release of sequestered Ca2+ and an influx of extracellular Ca2+. When cells were stimulated first with NA, a subsequent addition of ATP induced a blunted increase in [Ca2+]i. If the action of NA was terminated by addition of prazosin, and ATP was then added, the increase in [Ca2+]i was restored to control levels. Addition of Ni2+ prior to prazosin inhibited the restoration of the ATP response. In the presence of extracellular Mn2+, ATP stimulated quenching of Fura 2 fluorescence. The quenching was probably due to influx of Mn2+, as it was blocked by Ni2+. The results thus suggested that stimulating release of sequestered Ca2+ in FRTL-5 cells was followed by influx of extracellular Ca2+ and rapid refilling of intracellular Ca2+ stores.  相似文献   

9.
The uptake and the washout of 45Ca2+ and 32Pi is described in free fat-cells and whole epididymal fat-pads from fed rats. 2. In isolated fat-cells, the uptake of 45Ca2+ proceeds with an initial rapid phase of about 1 min duration, followed by a slower subsequent accumulation. In contrast with the rapid phase, the slow phase is inhibited by 2,4-dinitrophenol, warfarin, oligomycin and verapamil, shows saturation, and presumably represents transport across the plasma membrane. 3. The washout of 45Ca2+ from preloaded cells consists of a rapid (1 min) initial phase and a slow phase which is non-monoexponential, suggesting that the radioactive isotope is released from several cellular pools. 4. When Pi is omitted from the incubation medium, the slow phase of 45Ca uptake is almost abolished, and the washout of 45Ca from preloaded fat-cells is markedly accelerated. At elevated extracellular concentrations of Pi (2,4-6.2mM), the uptake of 45Ca is stimulated by 2-10-fold, and the release of the radioactive isotope from preloaded cells is inhibited. In whole epididymal fat-pads, variations in the extracellular concentration of Pi have no detectable effect on the uptake or the washout of 45Ca. 5. In isolated fat-cells, the accumulation of 32Pi is inhibited by 2,4-dinitrophenol or the omission of glucose from the incubation medium. In a Ca2+-depleted buffer, the uptake of 32Pi is diminished, and hyperosmolarity, which stimulates 45Ca uptake, also accelerates the accumulation of 32Pi. 6. It is concluded that in free fat-cells, the uptake and release of Ca2+ and Pi take place by closely interrelated processes, which are dependent on mitochondrial energy production.  相似文献   

10.
In addition to their critical function in energy metabolism, mitochondria contain a permeability transition pore, which is regulated by adenine nucleotides. We investigated conditions required for ATP to induce a permeability transition in mammalian mitochondria. Mitochondrial swelling associated with mitochondria permeability transition (MPT) was initiated by adding succinate to a rat liver mitochondrial suspension containing alloxan, a diabetogenic agent. If alloxan was added immediately with or 5 min after adding succinate, MPT was strikingly decreased. MPT induced by alloxan was inhibited by EGTA and several agents causing thiol oxidation, suggesting that alloxan leads to permeability transition through a mechanism dependent on Ca(2+) uptake and sulfhydryl oxidation. Antimycin A and cyanide, inhibitors of electron transfer, carbonyl cyanide m-chlorophenylhydrazone, and oligomycin all inhibited MPT. During incubation with succinate, alloxan depleted ATP in mitochondria after an initial transient increase. However, in a mitochondrial suspension containing EGTA, ATP significantly increased in the presence of alloxan to a level greater than that of the control. These results suggest the involvement of energized transport of Ca(2+) in the MPT initiation. Addition of exogenous ATP, however, did not trigger MPT in the presence of alloxan and had no effect on MPT induced by alloxan. We conclude that alloxan-induced MPT requires mitochondrial energization, oxidation of protein thiols, and matrix ATP to promote energized uptake of Ca(2+).  相似文献   

11.
Mechanism of alloxan-induced calcium release from rat liver mitochondria   总被引:9,自引:0,他引:9  
The objective of the present work was to investigate the mechanism of alloxan-induced Ca2+ release from rat liver mitochondria. Transport of Ca2+, oxidation and hydrolysis of mitochondrial pyridine nucleotides, changes in the mitochondrial membrane potential, and oxygen consumption by mitochondria were investigated. Alloxan does not inhibit the uptake of Ca2+ but stimulates the release of Ca2+ from liver mitochondria, which is accompanied by oxidation and hydrolysis of pyridine nucleotides. Oxidation of mitochondrial pyridine nucleotides by alloxan is not mediated by glutathione peroxidase and glutathione reductase and may occur largely nonenzymatically. Measurements of the mitochondrial membrane potential in combination with inhibitors of Ca2+ reuptake indicate that Ca2+ release takes place from intact liver mitochondria via a distinct pathway. Limited redox cycling of alloxan by mitochondria is indicated by measurements of the membrane potential and O2 consumption in the presence of cyanide. It is concluded that alloxan can cause Ca2+ release from intact rat liver mitochondria. Redox cycling of alloxan is not significantly involved in the Ca2+ release mechanism. Oxidation and hydrolysis of pyridine nucleotides, possibly in conjunction with oxidation of critical sulfhydryl groups, seem to be key events in the alloxan-induced Ca2+ release. Disturbance of cellular Ca2+ homeostasis may partly explain alloxan toxicity.  相似文献   

12.
The role of ADP in the regulation of Ca2+ efflux in rat brain mitochondria was investigated. ADP was shown to inhibit Ruthenium-Red-insensitive H+- and Na+-dependent Ca2+-efflux rates if Pi was present, but had no effect in the absence of Pi. The primary effect of ADP is an inhibition of Pi efflux, and therefore it allows the formation of a matrix Ca2+-Pi complex at concentrations above 0.2 mM-Pi and 25 nmol of Ca2+/mg of protein, which maintains a constant free matrix Ca2+ concentration. ADP inhibition of Pi and Ca2+ efflux is nucleotide-specific, since in the presence of oligomycin and an inhibitor of adenylate kinase ATP does not substitute for ADP, is dependent on the amount of ADP present, and requires ADP concentrations in excess of the concentrations of translocase binding sites. Brain mitochondria incubated with 0.2 mM-Pi and ADP showed Ca2+-efflux rates dependent on Ca2+ loads at Ca2+ concentrations below those required for the formation of a Pi-Ca2+ complex, and behaved as perfect cytosolic buffers exclusively at high Ca2+ loads. The possible role of brain mitochondrial Ca2+ in the regulation of the tricarboxylic acid-cycle enzymes and in buffering cytosolic Ca2+ is discussed.  相似文献   

13.
EGTA (ethanedioxybis(ethylamine)tetra-acetic acid) induced a release of Ca2+ from mitochondria isolated from both rat liver and rat heart that was inhibited by Ruthenium Red. The concentration of Ruthenium Red giving half-maximal inhibition was about 350 pmol/mg of protein, a value approximately 7 times greater than that giving half-maximal inhibition of the initial rate of Ca2+ transport. The EGTA-induced release of Ca2+ was temperature-dependent and was inhibited by the local anaesthetic, nupercaine.Pi, acetate, and tributyltin in the presence of Cl?, inhibited the Ruthenium Red-sensitive Ca2+ release induced by EGTA, whereas these agents enhanced the Ruthenium Red-insensitive release of Ca2+ induced by acetoacetate in liver and heart mitochondria and by Na+ in heart mitochondria.  相似文献   

14.
The status of glutathione (GSH) was studied in isolated rat liver mitochondria under conditions which induce a permeability transition. This transition, which is inhibited by cyclosporin A (CyA), requires the presence of Ca2+ and an inducing agent such as near physiological levels (3 mM) of inorganic phosphate (Pi). The transition is characterized by an increased inner membrane permeability to some low molecular weight solutes and by large amplitude swelling under some experimental conditions. Addition of 70 microM Ca2+ and 3 mM Pi to mitochondria resulted in mitochondrial swelling and extensive release of GSH that was recovered in the extramitochondrial medium as GSH. Both swelling and the efflux of mitochondrial GSH were prevented by CyA. Incubation of mitochondria in the presence of Ca2+, Pi, and GSH followed by addition of CyA provided a mechanism to load mitochondria with exogenous GSH that was greater than the rate of uptake by untreated mitochondria. Thus, GSH efflux from mitochondria may occur under toxicological and pathological conditions in which mitochondria are exposed to elevated Ca2+ in the presence of near physiological concentrations of Pi through a nonspecific pore. Cyclical opening and closing of the pore could also provide a mechanism for uptake of GSH by mitochondria.  相似文献   

15.
Manganese stimulates calcium flux through the mitochondrial uniporter   总被引:3,自引:0,他引:3  
Mn2+ alters the balance between the simultaneous uptake and release of Ca2+ across the mitochondrial inner membrane toward a lower external level. Addition of as little as 0.5 microM Mn2+ to energised mitochondria from rat liver, rat heart or guinea-pig brain changed the level at which they buffered Ca2+ in the medium. That extramitochondrial Mn2+ was responsible was suggested by a partial decay in the shift in Ca2+ steady state at a rate similar to the rate at which Mn2+ was accumulated by the mitochondria. The alteration of transmembrane Ca2+ distribution by Mn2+ required that both Mg2+ and Pi be present, and was almost maximal at Mg2+ and Pi levels in the physiological range. Substitution of spermine or Ni2+ for Mg2+, or acetate for Pi, abolished the effect. In contrast to Sr2+, Mn2+ did not inhibit either EGTA- or Ruthenium red-induced release of Ca2+ from the mitochondria. However, when flux through the uniporter was rate-limiting, Mn2+ accelerated Ca2+ uptake. The stimulation showed hyperbolic kinetics, with an element of competition discernible in the Mn2+-Mg2+ interaction. Thus, extramitochondrial Mn2+ at levels occurring in vivo can alter the mitochondrial 'set-point' by stimulating Ca2+ influx through the uniporter.  相似文献   

16.
The effect of the calmodulin antagonist, compound 48/80, on the Ca2+ release from skeletal muscle sarcoplasmic reticulum was investigated. Both the Ca2+ release by reversal of the Ca2+ pump and the Ca2+ release by the Mg2(+)-controlled Ca2+ channel were studied. It was observed that, when reversal of the pump is inoperative and Mg2+ is not present in the reaction medium, 48/80 stimulates Ca2+ release from the vesicles. In contrast, in the presence of Mg2+, which blocks the Ca2+ channel, 48/80 inhibits Ca2+ release induced by ADP and Pi. This effect is strong at low concentrations of Pi (approximately 1 mM), whereas high concentrations (approximately 15 mM) protect the system against the drug. Furthermore, it was observed that 48/80 has a maximum effect on the channel-mediated Ca2+ release at concentrations of about 20 micrograms/ml, whereas maximal inhibition of the pump-mediated Ca2+ release occurs at concentrations of about 60-80 micrograms/ml. The results indicate that both the Ca2+ channel complex and the Ca2(+)-ATPase may be target systems for the effects of 48/80 on the Ca2+ transport activity of sarcoplasmic reticulum. However, the Ca2+ channel is more sensitive to the drug, suggesting an involvement of calmodulin on this mechanism of Ca2+ release.  相似文献   

17.
Calcium uptake by rat liver mitochondria driven by an artificial pH gradient is ruthenium red insensitive, electrically neutral, and inhibited by the local anesthetic, nupercaine. This pH-driven Ca2+ transport is also inhibited by NH3, Pi, and acetate. Direct measurements of Pi indicate it is not translocated with Ca2+ during pH-driven Ca2+ uptake. Calcium is therefore not transported by a Ca2+-Pi symport mechanism. Ruthenium red-insensitive Ca2+ efflux is similar in its inhibition by nupercaine and its kinetics, and is also electroneutral. This suggests that the Ca2+ uptake described here occurs via reversal of the principal pathway of mitochondrial Ca2+ release. From the available data, pH-driven Ca2+ uptake (and presumably Ca2+ efflux) is hypothesized to occur by Ca2+ symport with unidentified anions. Protons may move counter to Ca2+ or reversibly dissociate from cotransported anions, which therefore couples Ca2+ transport to the pH gradient.  相似文献   

18.
Acute ischemic and brain injury is triggered by excitotoxic elevation of intraneuronal Ca2+ followed by reoxygenation-dependent oxidative stress, metabolic failure, and cell death. Studies performed in vitro with neurons exposed to excitotoxic concentrations of glutamate demonstrate an initial rise in cytosolic [Ca2+], followed by a reduction to a normal, albeit slightly elevated concentration. This reduction in cytosolic [Ca2+] is due partially to active, respiration-dependent mitochondrial Ca2+ sequestration. Within minutes to an hour following the initial Ca2+ transient, most neurons undergo delayed Ca2+ deregulation characterized by a dramatic rise in cytosolic Ca2+. This prelethal secondary rise in Ca2+ is due to influx across the plasma membrane but is dependent on the initial mitochondrial Ca2+ uptake and associated oxidative stress. Mitochondrial Ca2+ uptake can stimulate the net production of reactive oxygen species (ROS) through activation of the membrane permeability transition, release of cytochrome c, respiratory inhibition, release of pyridine nucleotides, and loss of intramitochondrial glutathione necessary for detoxification of peroxides. Targets of mitochondrially derived ROS may include plasma membrane Ca2+ channels that mediate excitotoxic delayed Ca2+ deregulation.  相似文献   

19.
Isolated mouse liver mitochondria respiring on succinate released Ca2+ when incubated with alloxan, accompanied by decreased membrane potential, stimulated state 4 respiration and swelling. All these effects of alloxan were inhibited by equimolar or higher concentrations of dithioerythritol (DTE), and in presence of added ATP a carboxyatractyloside-sensitive reuptake of Ca2+ was observed. The process of release and uptake of Ca2+ could be repeated by additional administrations of higher concentrations of alloxan and DTE plus ATP, respectively. The data suggest that the mitochondrial action of alloxan involves oxidation of membrane thiol groups.  相似文献   

20.
Alloxan was found to inhibit a Ca2+- and calmodulin-dependent protein kinase recently identified in pancreatic islets. This effect of alloxan may be specifically related to the inhibitory action of alloxan on insulin secretion from islets since: 1) in islet-cell subcellular fractions, alloxan at micromolar concentrations irreversibly inhibits the Ca2+- and calmodulin-dependent protein kinase activity; 2) pretreatment of intact islets with alloxan at concentrations that inhibit insulin secretion similarly inhibits the protein kinase activity; and 3) alloxan inhibition of both insulin secretion and protein kinase activity in intact islets can be prevented by D-glucose. This inhibition by alloxan appears to be a direct effect on the enzyme since alloxan treatment of either the islet homogenate or the microsomal fraction enriched in protein kinase activity inhibited the kinase activity with similar concentration dependence. These results suggest that alloxan-induced inhibition of a Ca2+- and calmodulin-dependent protein kinase may represent a critical inhibitory site which mediates alloxan-induced inhibition of insulin secretion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号