首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Catalase is an important antioxidant protein which can protect organisms against various oxidative stresses by eliminating hydrogen peroxide. The catalase cDNA of Cristaria plicata (cpCAT) was cloned from the haemocytes using degenerate primers by the method of 3' and 5' rapid amplification of cDNA ends PCR. The gene is 4863 bp long and has a total of two introns and three exons. The precise size and location of the introns and exons have been determined. In addition the full-length cDNA of cpCAT contained 2618 bp, The cDNA contained a 5' untranslated region (UTR) of 136 nucleotides, the 3' UTR of 979 bp with a canonical polyadenylation signal sequence AATAAA and a polyA tail, and an open reading frame (ORF) of 1503 bp, encoding 501 amino acid residues with 56.86 kDa predicted molecular weight. The theoretical isoelectric point was 6.77. BLAST analysis showed that the deduced amino acid sequence of cpCAT had significant homology to catalases from animals, plants and bacteria. The deduced amino acid sequence of cpCAT had characteristic features of catalase family such as catalytic site motif (61FNRERIPERVVHAKGAG77), heme-ligand signature motif (351RLYSYSDTH359), two glycosylation sites (N145, N436), NADPH binding site and the three catalytic amino acid residues (His72, Asn145 and Tyr355). It had no signal peptide. The phylogenetic tree indicated that cpCAT gene was very close to the gene of scallops, Chlamys farreri. The enzymatic activity of purified recombinant cpCAT was 11194.4 ± 40.4 U/mg, it might resist against H(2)O(2). The recombinant enzyme held higher thermal stability, the optimum temperature was 25 °C, it retained more than 82% activity between 25 and 60 °C. The stability of the recombinant enzyme were higher between pH 5 and 10, and the optimal pH value was 7.0. When cpCAT was treated with 2-4 moL/L urea and 1%-3% SDS, the activity was also stable, it kept more than 80% activity.  相似文献   

3.
4.
5.
6.
Seigler DS 《Phytochemistry》2005,66(13):1567-1580
The major cyanogenic glycoside of Guazuma ulmifolia (Sterculiaceae) is (2R)-taxiphyllin (>90%), which co-occurs with (2S)-dhurrin. Few individuals of this species, but occasional other members of the family, have been reported to be cyanogenic. To date, cyanogenic compounds have not been characterized from the Sterculiaceae. The cyanogenic glycosides of Ostrya virginiana (Betulaceae) are (2S)-dhurrin and (2R)-taxiphyllin in an approximate 2:1 ratio. This marks the first report of the identification of cyanogenic compounds from the Betulaceae. Based on NMR spectroscopic and TLC data, the major cyanogenic glucoside of Tiquilia plicata is dhurrin, whereas the major cyanide-releasing compound of Tiquilia canescens is the nitrile glucoside, menisdaurin. NMR and TLC data indicate that both compounds are present in each of these species. The spectrum was examined by CI-MS, 1H and 13C NMR, COSY, 1D selective TOCSY, NOESY, and 1J/2,3J HETCOR experiments; all carbons and protons are assigned. The probable absolute configuration of (2R)-dhurrin is established by an X-ray crystal structure. The 1H NMR spectrum of menisdaurin is more complex than might be anticipated, containing a planar conjugated system in which most elements are coupled to several other atoms in the molecule. The coupling of one vinyl proton to the protons on the opposite side of the ring involves a 6J- and a 5/7J-coupling pathway. A biogenetic pathway for the origin of nitrile glucosides is proposed.  相似文献   

7.
The hemA gene encoding 5-aminolevulinic acid synthase (ALAS) was cloned from the genomic DNA of photosynthetic bacterium Rhodopseudomonas palustris KUGB306. The deduced protein (ALAS) of this gene contained 409 amino acids. The hemA gene was subcloned into an expression vector pGEX-KG and the encoded protein was overexpressed as a fusion protein with glutathione-S-transferase (GST) in Escherichia coli BL21. The recombinant ALAS was purified and isolated free of the fusion partner (GST) by affinity purification on glutathione-Sepharose 4B resin and cleavage of the purified fusion protein by thrombin protease. The optimum pH and temperature of the recombinant ALAS was found to be at pH 7.5-8.0 and 35-40 degrees C, respectively. The Km value of the enzyme was 2.01 mM for glycine and 49.55 microM for succinyl-CoA. The enzyme activity was strongly inhibited by Pb2+, Fe2+, Co2+, Cu2+, and Zn2+ at 1 mM, but slightly affected by Mg2+ and K+. The recombinant ALAS required pyridoxal 5'-phosphate (PLP) as a cofactor for catalysis. Removal of this cofactor led to complete loss of the activity. Ultraviolet-visible spectroscopy with the ALAS suggested the presence of an aldimine linkage between the enzyme and PLP.  相似文献   

8.
9.
Reversible protein tyrosine phosphorylation is an essential signal transduction mechanism that regulates cell growth, differentiation, mobility, metabolism, and survival. Two genes coding for protein tyrosine phophatases, designed EhPTPA and EhPTPB, were cloned from Entamoeba histolytica. EhPTPA and EhPTPB proteins showed amino acid sequence identity of 37%, both EhPTPases showed similarity with Dictyostelium discoideum and vertebrate trasmembranal PTPases. mRNA levels of EhPTPA gene are up-regulated in trophozoites recovered after 96h of liver abscess development in the hamster model. EhPTPA protein expressed as a glutathione S-transferase fusion protein (GST::EhPTPA) showed enzymatic activity with p-nitrophenylphosphate as a substrate and was inhibited by PTPase inhibitors vanadate and molybdate. GST::EhPTPA protein selectively dephosphorylates a 130kDa phosphotyrosine-containing protein in trophozoite cell lysates. EhPTPA gene codifies for a 43kDa native protein. Up-regulation of EhPTPA expression suggests that EhPTPA may play an important role in the adaptive response of trophozoites during amoebic liver abscess development.  相似文献   

10.
11.
Histone deactylases (HDACs) are members of an ancient enzyme family found in eukaryotes as well as in prokaryotes such as archaebacteria and eubacteria. We here report a new histone deacetylase (Tca HDAC) that was cloned from the genomic library of Thermus caldophilus GK24 based on homology analysis with human histone deacetylase1 (HDAC1). The gene contains an open reading frame encoding 375 amino acids with a calculated molecular mass of 42,188 Da and the deduced amino acid sequence of Tca HDAC showed a 31% homology to human HDAC1. The Tca HDAC gene was over-expressed in Escherichia coli using a Glutathione-S transferase (GST) fusion vector (pGEX-4T-1) and the purified protein showed a deacetylase activity toward the fluorogenic substrate for HDAC. Moreover, the enzyme activity was inhibited by trichostatin A, a specific HDAC inhibitor, in a dose-dependent manner. Optimum temperature and pH of the enzyme was found to be approximately 70 degrees C and 7.0, respectively. In addition, zinc ion is required for catalytic activity of the enzyme. Together, these data demonstrate that Tca HDAC is a new histone deacetylase-like enzyme from T. caldophilus GK24 and will be a useful tool for deciphering the role of HDAC in the prokaryote and development of new biochemical reactions.  相似文献   

12.
Vertebrate gap junctions are constituted of connexin (Cx) proteins. In Xenopus laevis, only seven different Cxs have been described so far. Here, we identify two new Cxs from X. laevis. Cx28.6 displays >60% amino acid identity with human Cx25, Cx29 displays strong homology with mouse Cx26 and Cx30. Cx29 is expressed throughout embryonic development. Cx28.6 mRNA is only transiently found from stage 22 to 26 of development. While no Cx28.6 expression could be detected by whole mount in situ hybridization, expression of Cx29 was found in the developing endoderm, lateral mesoderm, liver anlage, pronephros, and proctodeum. Ectopic expression of Cx28.6 failed to produce functional gap-junctions. In contrast, ectopic expression of full-length Cx29 in HEK293 and COS-7 cells resulted in the formation of gap junction-like structures at the cell-cell interfaces. Ectopic expression of Cx29 in communication deficient N2A cell pairs led to functional electrical coupling.  相似文献   

13.
14.
Mammalian tapasin (TPN) is a key member of the major histocompatibility complex (MHC) class I antigen presentation pathway, being part of the multi-protein complex called the peptide loading complex (PLC). Several studies describe its important roles in stabilizing empty MHC class I complexes, facilitating peptide loading and editing the repertoire of bound peptides, with impact on CD8+ T cell immune responses. In this work, the gene and cDNA of the sea bass (Dicentrarchus labrax) glycoprotein TPN have been isolated and characterized. The coding sequence has a 1329 bp ORF encoding a 442-residue precursor protein with a predicted 24-amino acid leader peptide, generating a 418-amino acid mature form that retains a conserved N-glycosylation site, three conserved mammalian tapasin motifs, two Ig superfamily domains, a transmembrane domain and an ER-retention di-lysine motif at the C-terminus, suggestive of a function similar to mammalian tapasins. Similar to the human counterpart, the sea bass TPN gene comprises 8 exons, some of which correspond to separate functional domains of the protein. A three-dimensional homology model of sea bass tapasin was calculated and is consistent with the structural features described for the human molecule. Together, these results support the concept that the basic structure of TPN has been maintained through evolution. Moreover, the present data provides information that will allow further studies on cell-mediated immunity and class I antigen presentation pathway in particular, in this important fish species.  相似文献   

15.
16.
The Vibrio harveyi rpoS gene which encodes an alternative sigma factor (sigma(s) or sigma(38)), has been cloned and characterized. The predicted protein sequence is closely related to RpoS proteins in other bacteria with up to 86% sequence identity. A rpoS null mutant of V. harveyi was constructed and the phenotype studied. Comparison of the properties of the V. harveyi wild type and rpoS deletion mutant showed that rpoS affected the ability of the cells to survive only under specific types of environmental stresses. The rpoS null mutant had a lower survival rate compared to the wild type parental strain at high concentrations of ethanol and in the stationary phase. In contrast to other bacteria, deletion of rpoS in V. harveyi did not affect the resistance of the cells to high osmolarity or hydrogen peroxide, suggesting the existence of alternative systems in V. harveyi responsible for resistance to these stresses. RpoS appears not to be involved in the control of luminescence in V. harveyi even though it is implicated in regulation of other acyl-homoserine dependent quorum sensing systems.  相似文献   

17.
Sex pheromones of moths are largely classified into two types based on the presence (Type I) or absence (Type II) of a terminal functional group. While Type-I sex pheromones are synthesized from common fatty acids in the pheromone gland (PG), Type-II sex pheromones are derived from hydrocarbons produced presumably in the oenocytes and transported to the PG via the hemolymph. Recently, a fatty acid transport protein (BmFATP) was identified from the PG of the silkworm Bombyx mori, which produces a Type-I sex pheromone (bombykol). BmFATP was shown to facilitate the uptake of extracellular fatty acids into PG cells for the synthesis of bombykol. To elucidate the presence and function of FATP in the PG of moths that produce Type-II sex pheromones, we explored fatp homologues expressed in the PG of a lichen moth, Eilema japonica, which secretes an alkenyl sex pheromone (Type II). A fatp homologue cloned from E. japonica (Ejfatp) was predominantly expressed in the PG, and its expression is upregulated shortly after eclosion. Functional expression of EjFATP in Escherichia coli enhanced the uptake of long chain fatty acids (C18 and C20), but not pheromone precursor hydrocarbons. To the best of our knowledge, this is the first report of the cloning and functional characterization of a FATP in the PG of a moth producing a Type-II sex pheromone. Although EjFATP is not likely to be involved in the uptake of pheromone precursors in E. japonica, the expression pattern of Ejfatp suggests a role for EjFATP in the PG not directly linked to pheromone biosynthesis.  相似文献   

18.
A filamentous fungus Aspergillus terreus produces itaconic acid, which is predicted to be derived from cis-aconitic acid via catalysis by cis-aconitic acid decarboxylase (CAD) in the carbon metabolism of the fungus. To clarify the enzyme's function and a pathway for itaconic acid biosynthesis, we cloned a novel gene encoding the enzyme. The open reading frame of this gene (CAD1) consists of 1,529 bp encoding 490 amino acids and is interrupted by a single intron. Among the identified proteins in the database, the primary structure of the protein encoded by CAD1 shared high identity with the MmgE/PrpD family of proteins, including a number of 2-methylcitrate dehydratases of bacteria. The cloned gene excluding an intron was introduced into the expression plasmid pAUR-CAD1 controlled by the ADH1 promoter. The CAD activity in Saccharomyces cerevisiae was confirmed by directly detecting itaconic acid as a product from cis-aconitic acid as a substrate. This result reveals for the first time that this gene encodes CAD, which is essential for itaconic acid production in A. terreus.  相似文献   

19.
A cDNA clone encoding a sesquiterpene synthase, (+)-germacrene D synthase, has been isolated from ginger (Zingiber officinale). The full-length cDNA (AY860846) contains a 1650-bp open reading frame coding for 550 amino acids (63.8kDa) with a theoretical pI=5.59. The deduced amino acid sequence is 30-46% identical with sequences of other sesquiterpene synthases from angiosperms. The recombinant enzyme, produced in Escherichia coli, catalyzed the formation of a major product, (+)-germacrene D (50.2% of total sesquiterpenoids produced) and a co-product, germacrene B (17.1%) and a number of minor by-products. The optimal pH for the recombinant enzyme is around 7.5. Substantial (+)-germacrene D synthase activity is observed in the presence of Mg2+, Mn2+, Ni2+ or Co2+, while the enzyme is inactive when Cu2+ or Zn2+ is used. The Km- and kcat-values are 0.88 microM and 3.34 x 10(-3) s(-1), respectively. A reaction mechanism involving a double 1,2-hydride shift has been established using deuterium labeled substrates in combination with GC-MS analysis.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号