首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Biologicals》2014,42(2):101-108
Speculation that the Japanese modified intra-cerebral challenge assay, which is used in several countries for control of acellular pertussis vaccines, depends on the presence of small amounts of active pertussis toxin led to an assumption that it may not be appropriate for highly toxoided or genetically detoxified vaccines. Consequently, at the recommendation of a World Health Organisation AD Hoc Working Group on mouse protection models for testing and control of acellular pertussis vaccine, the effect of pertussis toxin on the modified intra-cerebral challenge assay (modified Kendrick, MICA) was evaluated in an international collaborative study. Results of this study showed that for genetically detoxified vaccines both with and without active pertussis toxin the MICA clearly distinguished mice vaccinated with acellular vaccines from unvaccinated mice and gave a significant dose–response relationship. However, vaccine samples containing active pertussis toxin (5 or 50 ng/single human dose) appeared to be more potent than the equivalent sample without active pertussis toxin. Similar results were also given by two respiratory infection models (intranasal and aerosol) included in the study. The results also indicated that the effect of pertussis toxin may vary depending on mouse strain.  相似文献   

2.
Histamine-sensitization test method based on histamine-sensitizing death is widely used for controlling residual activity of pertussis toxin in acellular pertussis vaccines. The test method evaluates the residual activity according to the death of mice injected with a test vaccine after histamine challenge and the test result, therefore, depends on the sensitivity of mice. A highly sensitive test method based on change in rectal temperature of mice has been used in Japan for many years but has limited feasibility in other countries. We examined the possibility of a test method using dermal temperature measured by infrared thermometer to reduce animal suffering instead of rectal temperature. The dermal temperature method was shown to be as sensitive as the rectal temperature method. Furthermore, the dermal as well as rectal temperature methods can evaluate the activity of a test vaccine in relative to a reference preparation so as to allow direct comparison of the test results among different laboratories. The activity by means of the dermal temperature method was also found to be well consistent with that by the rectal temperature method.  相似文献   

3.
The in vitro response of human B- and T-lymphocytes to the acellular vaccines JNIH-6 (containing pertussis toxoid and filamentous hemagglutinin), and JNIH-7 (containing pertussis toxoid), and to the purified components JNIH-4 (filamentous hemagglutinin) and JNIH-5 (pertussis toxin) was investigated. Pertussis toxoid and filamentous hemagglutinin induced specific Ig synthesis in vitro in lymphocytes obtained from convalescent pertussis patients as target cells. The antigen-dependent Ig production was demonstrated in lymphocyte culture supernatants by ELISA techniques and by a chinese hamster ovary cell toxin neutralization assay. Particularly with JNIH-4, -6 and -7, high antibody titers were obtained. At optimal antigen concentrations a marked lymphocyte blast transformation was found in lymphocyte cultures from whooping cough patients, but not in cultures of lymphocytes obtained from healthy volunteers. At high concentrations native pertussis toxin as well as the B oligomer (S2-5) of the toxin induced a strong proliferation of patient as well as control lymphocytes, indicating non-specific mitogenic activity. At lower concentrations lymphocyte blast transformation was seen in patient cultures only, which indicates an antigen-specific T-cell response. The A protomer (S1), dimer 1 (S2 + 4) and dimer 2 (S3 + 4) induced proliferation of patient lymphocytes, which demonstrates the presence of T-cell epitopes on these peptides. The in vitro B-cell response and the lymphocyte blast transformation assay are both useful tools for estimating the potency of acellular pertussis vaccines in man. Spontaneously acquired and vaccine induced immunity to Bordetella pertussis can be investigated at the level of B- and T-lymphocytes.  相似文献   

4.
Acellular pertussis vaccines: evaluation of reversion in a nude mouse model   总被引:4,自引:0,他引:4  
An animal model has been developed to assess the safety of acellular pertussis vaccines in terms of reversion to toxicity. Adsorbed pertussis toxoid preparations, alone or combined in a DTP formulation, were administered to nude mice intraperitoneally. In parallel, groups of positive and negative control mice received pertussis toxin and buffer, respectively. The circulating white blood cells of the animals were monitored for 28 days. Mice immunized with glutaraldehyde toxoid preparations did not develop a lymphocytosis during the observation period, whereas mice immunized with an experimental formalin pertussis toxoid vaccine exhibited a high lymphocytosis six days after vaccine administration, demonstrating, in this model, a reversion of the toxoid. The nude mouse model thus appears to reveal the in-vivo reversion of pertussis toxoids and could be included in the quality control panel for the assessment of the safety of acellular pertussis vaccine.  相似文献   

5.
The results of the weight gain test on mice have shown that acellular pertussis vaccine is less toxic than the pertussis component of adsorbed diphtheria-pertussis-tetanus (DPT) vaccine due to a lower content of endotoxin in the acellular vaccine; but the leukocytosis-promoting and histamine-sensitizing activities of JNIH-6 and adsorbed DPT vaccines are indicative of incomplete inactivation of Bordetella pertussis toxin. The content of incompletely inactivated B. pertussis toxin is practically the same in both preparations, constituting 1/100-1/200 of the calculated initial activity. For this reason, the use of the new pertussis vaccine also involves a risk of development of serious postvaccinal reactions and/or complications caused by this toxin. Search for the optimum method of inactivation of B. pertussis main toxin should be continued. As shown by the enzyme immunoassay, acellular pertussis vaccine used in the same immunizing dose as adsorbed DPT vaccine induces a more intensive immune response to hemagglutinin and B. pertussis toxin. This is due to higher residual toxicity of the corpuscular component of adsorbed DPT vaccine. Induction of antibodies to B. pertussis toxin has been shown to decrease in response to injection of acellular pertussis vaccine containing a certain residual amount of incompletely inactivated B. pertussis toxin.  相似文献   

6.
The study is based on assumption that B. pertussis strains harbouring different allele variants of genes encoding subunit S1 of pertussis toxin and pertactin might be eliminated with different efficiency from lung tissue of mice which were immunized with whole-cell and acellular pertussis vaccines. It has been assumed that strains containing combinations of genes alleles which were not prevalent since 1990-ties are consisting of mutated strains in respect to pertussis toxin subunit S1 and pertactin, and are capable to decrease efficiency of pertussis vaccines. Experiments performed in vivo dealt with activity of tested vaccines against B. pertussis strains of different combinations of ptxS1/prn. The study indicated for lowered efficiency of whole-cell and acellular pertussis vaccines in elimination of mutated strains of B. pertussis from animal lung tissue in comparison with strains currently used for vaccine production.  相似文献   

7.
Development of acellular pertussis vaccines.   总被引:8,自引:0,他引:8  
Y Sato  H Sato 《Biologicals》1999,27(2):61-69
In 1974, the authors reported the isolation and characterization of protective antigens of Bordetella pertussis in mice. With this information, an acellular pertussis vaccine was developed, composed mainly of pertussis toxin (PT) and filamentous haemagglutinin (FHA). Substances causing side effects, especially lipopoly sacahoride (LPS) or endotoxin that cause fever, were removed, and detoxification of the PT by formaldehyde with retention of potency was achieved. In 1981, an acellular pertussis vaccine called the "Adsorbed Purified Pertussis Vaccine" was approved in Japan, in place of the whole-cell pertussis vaccine. The acellular pertussis vaccine has been widely accepted as safer and more efficacious in Japan. Since 1981, intense surveillance has shown that there are only rare adverse reactions and that pertussis has virtually been eliminated in Japan. Evaluation of active immunization with highly purified and pharmacologically inert PT and FHA and passive immunization with polyclonal and monoclonal antibodies, provide quantitative data about the vaccine-induced immunity in mice. Finally, it was discovered that the PT toxoid in the vaccine is the major and essential protective antigen. The toxoid of PT should be sufficient for protection against pertussis.  相似文献   

8.
The efficacy of six acellular pertussis vaccines, prepared by various manufacturers in Japan, was investigated in a murine model of respiratory infection (aerosol challenge model) and a murine intracerebral (i.c.) challenge model. There was a good correlation between bacterial clearance from the lungs after aerosol challenge and the potency of vaccines as determined by i.c. challenge. The levels of antibodies against filamentous hemagglutinin were higher after immunizations with all tested vaccines than the levels of antibodies against pertussis toxin and pertactin. Spleen cells from mice immunized with each individual vaccine secreted interferon gamma (IFN-gamma) in response to stimulation by pertussis toxin, filamentous hemagglutinin and fimbriae. The production of interleukin-4 in response to each of the antigens tested was detected but was lower than that of IFN-gamma. However, antibody levels and cell-mediated immune responses were not correlated with the protective effects of the vaccines after aerosol challenge and after i.c. challenge.  相似文献   

9.
G A Calver 《Biologicals》1999,27(2):143-147
Vaccines containing acellular pertussis components, either separate or combined with other microbial antigens, were evaluated for specific immune responses in guinea-pigs and mice. The capacity of sera to protect chick embryos from the lethal effect of pertussis toxin was independent of the Chinese hamster ovary cell clumping neutralization titre and the antigen binding ELISA anti-toxin titre. Direct correlations did not exist between ELISA titres to Pt, FHA, fimbria or 69 kDa and capacity to prevent killing of embryos by different strains of Bordetella pertussis. With the exception of one combination vaccine product, addition of foreign microbial antigens to acellular pertussis vaccines did not significantly alter capacity of the sera to protect embryos against toxin or bacteria.  相似文献   

10.
Recent clinical trials have shown that the new generation of acellular pertussis vaccines (Pa) can confer protection against whooping cough with negligible adverse reactions. We have compared the effects of pertussis whole cell and acellular vaccines on pulmonary immune responses after aerosol challenge in a murine model of infection. Mice were vaccinated with PBS, Pw or Pa and challenged with Bordetella pertussis by the aerosol route. Cytokine gene expression was analysed from lung tissue and cells; lung lymphocytes were re-stimulated in vitro and cytokines produced measured. The results obtained are consistent with the proposal that a strong Th-1 response is associated with bacterial clearance in both the non-vaccinated and Pw vaccinated mice. The acellular vaccine treated mice cleared the bacterial challenge (with an intermediate efficacy) in the presence of low levels of any of the cytokines assessed. This suggests that Pa protects via a Th-2 independent mechanism.  相似文献   

11.
A guinea pig model to assess the immunogenicity of a combination vaccine containing diphtheria, tetanus and acellular pertussis (DTaP) vaccine and Haemophilus influenzae type b (Hib) capsular polysaccharide conjugated to tetanus toxoid (HibT) was evaluated comparatively with the mouse immunogenicity test to study the effect of combining these antigens on the immunogenicity of various components. The immunogenicity test in mice was performed by subcutaneous injection of groups of 10 animals twice at an interval of four weeks with 1/10 of a single human dose of various formulations of combination vaccines, DTaP or HibT vaccine. The animals were bled at 4 and 6 weeks and IgG or total antibodies to various components were determined by ELISA or RIA. The guinea pig immunogenicity model included groups of animals injected subcutaneously twice at an interval of six weeks with 1.5 times the single human dose of various formulations. The animals were bled at 4, 6 and 8 weeks and serum samples were tested for antibodies to various components by ELISA, RIA and/or neutralization tests. Additionally, potency of tetanus and diphtheria components was assessed as per the US Food and Drug Administration's regulations. Aluminium phosphate (AIPO(4)) adsorbed HibT vaccine or HibT as a combination with AIPO(4)adsorbed DTaP vaccine showed significant increases in IgG antibodies to tetanus toxin in mice as well increased tetanus antitoxin levels in guinea pigs as compared to soluble HibT vaccine. In general, combining DTaP and HibT vaccines did not affect the antibody levels to tetanus and diphtheria toxoids whereas DTaP-HibT combination vaccine elicited significantly lower IgG antibodies to pertussis toxin and filamentous haemagglutinin than DTaP vaccine alone, particularly after first injection. Mice showed similar Hib antibody responses for the combination and HibT alone whereas guinea pigs consistently showed lower anamnestic responses to Hib for combination formulations than for HibT alone. Reducing the amount of HibT and/or tetanus toxoid in the combination formulations reduced this suppression of Hib antibody response in guinea pigs. Suppression of Hib antibody response in combination vaccines has also been reported from recent clinical trials. Based on the results from this study, it appears that the guinea pig model may be able to predict the human response to various components of combination vaccines.  相似文献   

12.
Synthetic antigens employed in experimental synthetic vaccines are generally small haptenic peptides. Therefore, effective immunization with these antigens usually requires the use of an immunogenic carrier. Tetanus toxoid has been proposed for use as a carrier in future synthetic vaccines due to its high immunogenicity and acceptance for human use. Previous studies employing standard hapten/carrier systems such as DNP/KLH have demonstrated, however, that an epitope-specific suppression occurs when mice previously primed with carrier are subsequently immunized with an haptenic epitope conjugated to the same carrier. These same studies have shown that Bordetella pertussis vaccine administered at the time of carrier priming abrogates epitopic suppression. In the present investigation, epitopic suppression was studied in a synthetic vaccine model employing tetanus toxoid as a carrier. Results from these studies indicated that mice primed with tetanus toxoid 1 month before immunization with a peptide-tetanus toxoid conjugate exhibited enhanced secondary anti-tetanus toxin responses but decreased anti-peptide responses. Furthermore, injection of pertussis vaccine or purified B. pertussis toxin or endotoxin at the time of carrier priming could block the establishment of epitopic suppression. Administration of B. pertussis components enhanced antibody responses to both the carrier and the synthetic peptides as compared with responses of control animals. In addition, administration of an adjuvant-active nonpyrogenic derivative of muramyl dipeptide. Murabutide, with carrier priming reduced epitopic suppression of anti-peptide responses. B. pertussis toxin or endotoxin administered to mice previously suppressed by carrier priming with the first injection of carrier-peptide conjugate overcame epitopic suppression with resultant titers of anti-peptide antibody equal to or greater than nonsuppressed controls. These results suggest that the use of adjuvants with future synthetic vaccines may contribute the additional advantage of overcoming epitopic suppression, thus permitting the use of common, well-tolerated carrier systems such as tetanus toxoid in synthetic vaccine preparations.  相似文献   

13.
The immunomodulating activity of acellular pertussis vaccine (APV) and adsorbed DPT vaccine with acellular pertussis component (DPTA vaccine) was studied. The study revealed that only large doses of APV, 10 immunizing doses (ID), suppressed humoral and cell-mediated response to sheep red blood cells (SRBC). 1 ID produced no influence on the formation of antibody producing cells, but increased the development of delayed hypersensitivity (DH) to SRBC. The modulation of cell-mediated immune response, induced by APV, returned to normal after the injection of purified staphylococcal toxoid, used as immunomodulator, in doses of 0.15 BU per mouse and 1.5 BU per mouse. DPTA vaccine containing 1 ID, as well as 10 ID, produced no immunomodulating effect. This was established by the evaluation of humoral response to SRBC in CBA mice and the study of the formation of DH to SRBC in BALB/c mice. As indicated by the total of the presented data, the inclusion of APV into DPTA vaccine enhanced the immunological safety of its pertussis component.  相似文献   

14.
Studies concerned evaluation of differences between parameters of cell-mediated immunity in mice, induced with whole-cell and acellular pertussis vaccines with subsequent challenge with B. pertussis strains harbouring different ptxS1/prn allele genes. In the study, concentrations of IFN-gamma/Il-2 and 1l-4/Il-5 in supernatants of cultured mice splenocytes have been determined to evaluate differences in Th1 or Th2 lymphocytes subpopulation response. Simultaneously, studies of intracellular expression of genes encoding of Il-2, Il-12, IFN-gamma and Il-4, Il-5, Il-10, Il-13 in mice splenocytes, and genes encoding factors involved in inflammatory process in the lung tissue (GM-CSF, TNF-alpha, Il-1beta, Il-6 i TGF-beta) have been performed on RNA level. The obtained results, confirmed high polarization of immunological response toward Th1 in mice immunized with DTP vaccine with whole-cell pertussis component, and toward Th2 in mice immunized with acellular pertussis vaccine. Inflammatory process in the lung tissue was more pronounced in animals immunized with whole-cell pertussis vaccine. There were no quantitative differences of analysed factors involved in the immune response among mice challenged B. pertussis strains containing different ptxS1/prn composition.  相似文献   

15.
An acellular pertussis vaccine manufactured by Biken was investigated for purity, potency and toxicity. The vaccine was composed of almost equal proportions of pertussis toxin (PT) and filamentous hemagglutinin (FHA). The purity of the vaccine was 97-99%. The protective effects of component vaccines containing various ratios of PT and FHA were tested and it was found that the ratio of 1:1 provided the most effective vaccine.  相似文献   

16.
《Biologicals》1999,27(2):99-102
Most acellular pertussis vaccines contain a form of pertussis toxin (PT) detoxified by chemical treatment. The Chiron-Vaccines product is unique because it contains a genetically detoxified pertussis toxin. This molecule showed absolute safety, an antigenic profile similar to wild-type PT, and an immunogenicity that is superior to all chemically detoxified PTs. In the efficacy trial, the vaccine containing the genetically detoxified PT demonstrated early and long-lasting protection.  相似文献   

17.
According to WHO and the European Pharmacopoeia, the current potency test for acellular pertussis vaccines is a mouse immunogenicity assay assessing consistency of production from batch to batch. The assay compares the batch under control with a reference vaccine of documented clinical efficacy. This study describes and illustrates critical aspects of the assay, based on our experience on a tricomponent vaccine: validation of immunoassay to quantify mouse antibody response, choice of vaccine immunising doses in the three-doses model, treatment of non-responder mice for calculations, establishment of assay validity criteria.  相似文献   

18.
Athymic (nu/nu) and euthymic (+/nu) BALB/c mice were immunized with a whole cell pertussis vaccine or with an acellular vaccine which contained detoxified pertussis toxin (PT) and filamentous hemagglutinin (FHA). Only the euthymic mice were protected against intracerebral challenge with virulent Bordetella pertussis which implies involvement of T-cells. As a cell transfer from mice immunized with whole cell or acellular vaccine prior to the challenge did not protect naive euthymic recipients, cellular immunity seems to be non-protective as an effector mechanism. Mice could be protected passively against a challenge by administration of immune sera. Therefore, T-cell dependent humoral immune responses to B. pertussis appear to be crucial for protection. The humoral response was further studied with athymic and euthymic mice. In euthymic mice the whole cell vaccine induced antibodies to FHA, pililipopolysaccharides (LPS) and an outer membrane protein (OMP) preparation, whereas the acellular vaccine induced antibodies to PT, FHA and OMP. Both IgM and IgG could be detected. From the nude mice only those immunized with the whole cell vaccine showed an antibody response which consisted of low titres of IgM directed to LPS. Sera from both +/nu and nu/nu mice immunized with the whole cell vaccine were bactericidal in vitro. These data demonstrate that in the mouse model protection to intracerebral challenge with B. pertussis is T-cell dependent as is the humoral response to PT, FHA, OMP and pili. The T-independent B-cell activation by the whole cell preparation is due to the presence of LPS.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
For the acellular pertussis vaccine with a high immunogenicity, the concentration, composition and characteristics of acellular pertussis antigens are the crucial points to be considered. Nevertheless, it has not been proved yet whether or not the polymerization degree, one of the characteristics of formalin-detoxified acellular pertussis antigens, has an influence on vaccine potency. Thus, in the present study, the correlations among detoxification conditions of acellular pertussis bulks, their polymerization degrees and their immunogenicities were examined. In addition, the relative importance of pertussis toxoid in vaccine immunogenicity was also investigated. Results show that a lower lysine concentration during detoxification induces highly-polymerized antigens, the immunogenicity has a great dependency on the polymerization degree of antigens, and also pertussis toxoid has a relatively stronger influence on the immunogenicity than other antigens. Accordingly, in the aspect of the potency of detoxified acellular pertussis vaccine, it can be demonstrated that the polymerization of antigens and its degree are the major factors affecting the immunogenicity along with a relatively high content of pertussis toxoid.  相似文献   

20.
I Heron  F M Chen  J Fusco 《Biologicals》1999,27(2):91-96
NAVA's acellular pertussis vaccine is based on highly purified pertussis toxin (PT) inactivated with H(2)O(2). PT was analysed using advanced biochemical methodology including mass spectroscopy (LC/MS), yielding mass and peptide mapping information on the subunits. Pertactin, adenylate cyclase, and Fim 1, 2 were below detection levels and only trace amounts of filamentous haemagglutinin (FHA) have been identified as a minor impurity. The vaccine does not induce anti-FHA antibodies during the course of a 3-dose primary immunization series in infants. B and T cell epitopes are preserved to a higher extent after H(2)O(2)detoxification when compared with chemical inactivation with formaldehyde, thus providing new information explaining why vaccines employing formaldehyde detoxified PT may need additional pertussis components added to induce high levels of protection. Anti-PT antibodies generated by NAVA diphtheria, tetanus, and acellular pertussis vaccine (DTaP) showed a positive correlation with protection against WHO-defined pertussis. The safety profiles for these vaccines showed low reactogenicity with no serious adverse events due to the vaccines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号