首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Divergence times inferred for major lineages of Chelicerata (scorpions, spiders, mites, pycnogonids and xiphosurans) in a recent paper on mitochondrial phylogeny by Jeyaprakash and Hoy are compared to the known stratigraphical occurrences of these groups. Erroneous statements concerning fossil date estimates in the original study are corrected. We emphasize that the fossil record of chelicerates is more complete than is sometimes assumed, and that paleontology plays a key role in dating cladogenesis by setting minimum divergence times, which can and do falsify molecular clock estimates where the inferred divergence is substantially younger than the known fossil record. The oldest representatives of each chelicerate order are documented here, together with similar data for the major mite lineages down to family level. Through these, we hope to provide a robust framework and reference points for future molecular systematic studies of this nature.  相似文献   

2.
    
Phylogenetic hypotheses for the Old World monkey tribe Papionini based on molecular data are incongruent with those inferred from previous morphological analyses. Morphologists have often inferred a close relationship between Mandrillus and Papio based on their overall similarity. Theropithecus has been variously proposed to be either quite distantly related to these two genera, their sister taxon, or anywhere in between. Molecular and chromosomal analyses on the other hand unambiguously group Theropithecus and Papio together to the exclusion of Mandrillus. Additionally, molecular and chromosomal analyses reveal that mangabeys (Cerocebus) are paraphyletic. Morphologists have acknowledged this possibility resurrecting the genus name Lophocebus for one group of mangabeys. A review and reanalysis of the morphological characters put forth by various researchers find little to contradict the consensus phylogeny derived from analysis of chromosomal banding, nuclear RNA restriction mapping, alpha and beta hemoglobin sequences, albumin and transferrin microcomplement fixation, DNA-DNA hybridization, repetitive DNA patterns, immunodiffusion, hemoglobin and adenylate kinase isozymes, and mitochondrial cytochrome oxidase subunit II DNA sequences. © 1994 Wiley-Liss, Inc.  相似文献   

3.
    
Analysis of the patterns and levels of diversity in duplicate gene not only traces evolutionary history of polyploids, but also provides insight into how the evolutionary process differs between lineages and between homoeologous loci within lineages. Elymus sensu lato is a group of allopolyploid species, which share a common St genome and with the different combinations of H, Y, P, and W genomes. To estimate the evolutionary process of the rbcL gene in species of Elymus s. l. and its putative dioploid relatives, 74 sequences were obtained from 21 species of Elymus s. l. together with 24 diploid taxa representing 19 basic genomes in Triticeae. Phylogeny and sequence diversity pattern analysis suggested that (1) species of Pseudoroegneria (Nevski) Á. Löve might serve as the maternal donor of the species of Elymus s. l; (2) differentiation of St genome were shown in the species of Elymus s. l. following polyploidy event; (3) divergences within the species might associate with geographic diversity and morphological variability; (4) differences in the levels and patterns of nucleotide diversity of the rbcL gene implied that the St genome lineages in the species of Elymus s. l. have differently evolutionary potentials.  相似文献   

4.
叶绿体系统发育基因组学的研究进展   总被引:4,自引:0,他引:4  
系统发育基因组学是由系统发育研究和基因组学相结合产生的一门崭新的交叉学科。近年来,在植物系统发育研究中,基于叶绿体基因组的系统发育基因组学研究优势渐显端倪,为一些分类困难类群的系统学问题提出了解决方案,但同时也存在某些问题。本文结合近年来叶绿体系统发育基因组学研究中的一些典型实例,讨论了叶绿体系统发育基因组学在植物系统关系重建中的价值和应用前景,并针对其存在问题进行了探讨,其中也涉及了新一代测序技术对叶绿体系统发育基因组学的影响。  相似文献   

5.
miR-124基因家族的分子进化与靶基因预测   总被引:1,自引:0,他引:1  
MicroRNA (miRNA)是一类内源基因编码的长度约22个核苷酸的非编码单链RNA分子.依据其在进化中高度保守的特点,利用生物信息学方法在目前已测序的物种中搜寻在哺乳动物中枢神经系统特异表达的miR-124基因的同源序列.在80个不同的动物物种中找到了150条miR-124基因的同源序列,其中27条为新发现的序列.目前发现的miR-124基因中,除线虫cel-mir-124和小鼠mmu-mir-124-2位于内含子之外,其他均位于基因间隔区.不同物种中,miR-124基因成熟序列的相似性为89.54%,前体序列为41.98%.miR-124基因在大多数无脊椎动物中为单拷贝,而在脊椎动物中大多为多拷贝,表明从无脊推动物到脊椎动物进化过程中miR-124基因发生了重复.靶基因预测结果显示,在人、小鼠和大鼠等哺乳动物中mir-124大多靶位点也是保守的.  相似文献   

6.
A method is described for preparing thin-layer chromatography plates for use in the classroom. Glass plates are coated with adsorbent using a technique which is cheap, rapid and reliable and which avoids the need for expensive, commercially-available apparatus. It can be adapted to preparative use. The main adsorbent described is silicic acid H and G but other adsorbents such as cellulose can be spread by the same method. Points to watch for in setting up plates for thin-layer chromatography and applying solute samples are discussed.  相似文献   

7.
While it is fairly easy to devise a phylogenetic tree based on molecular data, it has proven difficult to tell how reliable any such tree is. Thus while the genetic inference that humans, chimpanzees, and gorillas cluster together is widely accepted, the genetic inference that the primary division among Old World human populations is between Asia and EurAfrica is not. A molecular phylogenetic inference linking humans and chimpanzees was proposed in the 1980s based on the technique of DNA hybridization. Despite several recent publications in primary and secondary source material, much confusion still exists surrounding the work. This paper tries to clarify issues that may still be confusing to physical anthropologists, and proposes criteria upon which to judge the robusticity of a phylogenetic inference based on DNA hybridization, in light of a recent published claim of replication. The claim of replication is considered critically. Interestingly, the original DNA hybridization data may actually show a chimp-gorilla link, in harmony with other phylogenetic results.  相似文献   

8.
Summary A phylogenetic tree for the human lymphadenopathy-associated virus (LAV), the human T-cell lymphotrophic virus type III (HTLV-III), and the acquired immune deficiency syndrome (AIDS)-associated retrovirus (ARV) has been constructed from comparisons of the amino acid sequences of their gag proteins. A method is proposed for estimating the divergence times among these AIDS viruses and the rates of nucleotide substitution for their RNA genomes. The analysis indicates that the LAV and HTLV-III strains diverged from one another after 1977 and that their common ancestor diverged from the ARV virus no more than 10 years earlier. Hence, the evolutionary diversity among strains of the AIDS viruses apparently has been generated within the last 20 years. It is estimated that the genome of the AIDS virus has a nucleotide substitution rate on the order of 10–3 per site per year, with the rate in the second half of the genome being double that in the first half.  相似文献   

9.
Phylogenetic associations among six closely related South American felid species were defined by changes in protein-encoding gene loci. We analyzed proteins isolated from skin fibroblasts using two-dimensional electrophoresis and allozymes extracted from blood cells. Genotypes were determined for multiple individuals of ocelot, margay, tigrina, Geoffroy's cat, kodkod, and pampas cat at 548 loci resolved by two-dimensional electrophoresis and 44 allozyme loci. Phenograms were constructed using the methods of Fitch-Margoliash and neighbor-joining on a matrix of Nei's unbiased genetic distances for all pairs of species. Results of a relative-rate test indicate changes in two-dimensional electrophoresis data are constant among all South American felids with respect to a hyena outgroup. Allelic frequencies were transformed to discrete character states for maximum parsimony analysis. Phylogenetic reconstruction indicates a major split occurred approximately 5–6 million years ago, leading to three groups within the ocelot lineage. The earliest divergence led to Leopardus tigrina, followed by a split between an ancestor of an unresolved trichotomy of three species (Oncifelis guigna, O. geoffroyi, and Lynchaduris colocolo) and a recent common ancestor of Leopardus pardalis and L. wiedii. The results suggest that modern South American felids are monophyletic and evolved rapidly after the formation of the Panama land bridge between North and South America.Correspondence to: J. Pecon Slattery  相似文献   

10.
Microsporidia are unicellular eukaryotes living as obligate intracellular parasites. Lacking mitochondria, they were initially considered as having diverged before the endosymbiosis at the origin of mitochondria. That microsporidia were primitively amitochondriate was first questioned by the discovery of microsporidial sequences homologous to genes encoding mitochondrial proteins and then refuted by the identification of remnants of mitochondria in their cytoplasm. Various molecular phylogenies also cast doubt on the early divergence of microsporidia, these organisms forming a monophyletic group with or within the fungi. The 2001 proteins putatively encoded by the complete genome of Encephalitozoon cuniculi provided powerful data to test this hypothesis. Phylogenetic analysis of 99 proteins selected as adequate phylogenetic markers indicated that the E. cuniculi sequences having the lowest evolutionary rates preferentially clustered with fungal sequences or, more rarely, with both animal and fungal sequences. Because sequences with low evolutionary rates are less sensitive to the long-branch attraction artifact, we concluded that microsporidia are evolutionarily related to fungi. This analysis also allowed comparing the accuracy of several phylogenetic algorithms for a fast-evolving lineage with real rather than simulated sequences.This article contains online supplementary material.Reviewing Editor: Dr. Wen-Hsiung LiSupplementary material is available at  相似文献   

11.
Summary Previous analyses have demonstrated that, among the echinoderms, the sea star (class: Asteroidea) mitochondrial genome contains a large inversion in comparison to the mitochondrial DNA of sea urchins (class: Echinoidea). Polymerase chain reaction amplification, DNA cloning, and sequencing have been used to examine the relationships of the brittle stars (class: Ophiuroidea) and sea cucumbers (class: Holothuroidea) to the sea stars and sea urchins. The DNA sequence of the regions spanning potential inversion junctions in both brittle stars and sea cucumbers has been determined. This study has also revealed a highly modified tRNA cluster in the ophiuroid mitochondrial genome. Our data indicate mitochondrial gene arrangement patterns that group the sea cucumbers with sea urchins and sea stars with brittle stars. This use of molecular characters clarifies the relationships among these classes.  相似文献   

12.
Orthologs generally are under selective pressure against loss of function, while paralogs usually accumulate mutations and finally die or deviate in terms of function or regulation. Most ortholog detection methods contaminate the resulting datasets with a substantial amount of paralogs. Therefore we aimed to implement a straightforward method that allows the detection of ortholog clusters with a reduced amount of paralogs from completely sequenced genomes. The described cross-species expansion of the reciprocal best BLAST hit method is a time-effective method for ortholog detection, which results in 68% truly orthologous clusters and the procedure specifically enriches single-copy orthologs. The detection of true orthologs can provide a phylogenetic toolkit to better understand evolutionary processes. In a study across six photosynthetic eukaryotes, nuclear genes of putative mitochondrial origin were shown to be over-represented among single copy orthologs. These orthologs are involved in fundamental biological processes like amino acid metabolism or translation. Molecular clock analyses based on this dataset yielded divergence time estimates for the red/green algae (1,142 MYA), green algae/land plant (725 MYA), mosses/seed plant (496 MYA), gymno-/angiosperm (385 MYA) and monocotyledons/core eudicotyledons (301 MYA) divergence times. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

13.
14.
Metallothioneins are cysteine-rich, low-molecular weight metal-binding proteins ubiquitously expressed in living organisms. In the last past years, the increasing amount of vertebrate non-mammalian metallothionein sequences available have disclosed for these proteins differences in the primary structure that have not been supposed before. To provide a more up-to-date view of the metallothioneins in non-mammalian tetrapods, we decided to increase the still scarce knowledge concerning the primary structure and the evolution of metallothioneins in amphibians. Our data demonstrate an unexpected diversity of metallothionein sequences among amphibians, accompanied by remarkable features in their phylogeny. Phylogenetic analysis also reveals the complexity of vertebrate metallothionein evolution, made by both ancient and more recent events of gene duplication and loss.  相似文献   

15.
Summary The nucleotide substitution rate in structural portions of the embryonic β-globin genes of placental mammals is lower than that for the adult β-globin genes. This difference occurs entirely within the class of substitutions that result in nonsynonymous (replacement) differences between these genes, and therefore represents a constraint on the structure of the mammalian embryonic β-globin proteins relative to the adult proteins (Shapiro et al. 1983; Hardison 1984). A similar effect has also been observed in marsupial mammals (Koop and Goodman 1988). In an effort to determine whether the observed rates are evidence of a uniform degree of selective constraint on the embryonic β-globin genes, analyses were performed that compared replacement substitution rates. The analyses reveal that embryonic β-globin genes appear to have been fixing replacement substitutions at nearly the same average rate not only in placental and marsupial mammals but in avian and amphibian species as well. In contrast, the adult β-globin genes from these organisms appear to have a more variable rate of replacement substitution with an especially low rate for birds. In the chicken (Gallus gallus), the adult β-globin gene replacement substitution rate appears to be lower than the embryonic replacement substitution rate.  相似文献   

16.
  总被引:14,自引:0,他引:14  
Summary The nature and extent of DNA sequence divergence between homologous proteincoding genes fromEscherichia coli andSalmonella typhimurium have been examined. The degree of divergence varies greatly among genes at both synonymous (silent) and nonsynonymous sites. Much of the variation in silent substitution rates can be explained by natural selection on synonymous codon usage, varying in intensity with gene expression level. Silent substitution rates also vary significantly with chromosomal location, with genes nearoriC having lower divergence. Certain genes have been examined in more detail. In particular, the duplicate genes encoding elongation factor Tu,tufA andtufB, fromS. typhimurium have been compared to theirE. coli homologues. As expected these very highly expressed genes have high codon usage bias and have diverged very little between the two species. Interestingly, these genes, which are widely spaced on the bacterial chromosome, also appear to be undergoing concerted evolution, i.e., there has been exchange between the loci subsequent to the divergence of the two species.Presented at the NATO Advanced Research Workshop on Genome Organization and Evolution, held in Spetses, Greece, September 1990  相似文献   

17.

Background

Zoraptera, generally regarded as a member of Polyneoptera, represents one of the most enigmatic insect orders. Although phylogenetic analyses based on a wide array of morphological and/or nuclear data have been performed, the position of Zoraptera is still under debate. Mitochondrial genome (mitogenome) information is commonly considered to be preferable to reconstruct phylogenetic relationships, but no efforts have been made to incorporate it in Zorapteran phylogeny. To characterize Zoraptera mitogenome features and provide insights into its phylogenetic placement, here we sequenced, for the first time, one complete mitogenome of Zoraptera and reconstructed the phylogeny of Polyneoptera.

Results

The mitogenome of Zorotypus medoensis with an A + T content of 72.50% is composed of 13 protein-coding genes, 22 transfer RNA genes, 2 ribosomal RNA genes, and a noncoding A + T-rich region. The gene content and arrangement are identical to those considered ancestral for insects. This mitogenome shows a number of very unusual features. First, it is very compact, comprising 14,572 bp, and is the smallest among all known polyneopteran mitogenomes. Second, both noncoding sequences and coding genes exhibit a significant decrease in size compared with those of other polyneopterans. Third, Z. medoensis mitogenome has experienced an accelerated substitution rate. Fourth, truncated secondary structures of tRNA genes occur with loss of dihydrouridine (DHU) arm in trnC, trnR, and trnS(AGN) and loss of TΨC arm in trnH and trnT. The phylogenetic analyses based on the mitogenome sequence information indicate that Zoraptera, represented by Z. medoensis, is recovered as sister to Embioptera. However, both Zoraptera and Embioptera exhibit very long branches in phylogenetic trees.

Conclusions

Characterization of Z. medoensis mitogenome contributes to our understanding of the enigmatic Zoraptera. Mitogenome data demonstrate an overall strong resolution of deep-level phylogenies of Polyneoptera but not Insecta. It is preferable to expand taxon sampling of Zoraptera and other poorly represented orders in future to break up long branches.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-1156) contains supplementary material, which is available to authorized users.  相似文献   

18.
Summary TheDrosophila nasuta group consists of about 12 closely related species distributed throughout the Indo-Pacific region. They are of great interest because of their evolutionary idiosyncrasies including little morphological differentiation, the ability to intercross in the laboratory often producing fertile offspring, and substantial chromosomal evolution. Studies of metric traits, reproductive isolation, and chromosomal and enzyme polymorphisms have failed to resolve the phylogeny of the species. We report the results of a survey of the mitochondrial DNA (mtDNA) restriction patterns of the species. The phylogeny obtained is consistent with other available information and suggests thatD. albomicans may represent the ancestral lineage of the group. The amount of polymorphism in local populations (=1.0% per site) is within the typical range observed in other animals, includingDrosophila. The degree of differentiation between species is, however, low: the origin of the group is tentatively dated about 6–8 million years ago. This study confirms the usefulness of mtDNA restriction patterns for ascertaining the phylogeny of closely related species.  相似文献   

19.
Phylogenetic analysis using parsimony and likelihood methods   总被引:1,自引:0,他引:1  
The assumptions underlying the maximum-parsimony (MP) method of phylogenetic tree reconstruction were intuitively examined by studying the way the method works. Computer simulations were performed to corroborate the intuitive examination. Parsimony appears to involve very stringent assumptions concerning the process of sequence evolution, such as constancy of substitution rates between nucleotides, constancy of rates across nucleotide sites, and equal branch lengths in the tree. For practical data analysis, the requirement of equal branch lengths means similar substitution rates among lineages (the existence of an approximate molecular clock), relatively long interior branches, and also few species in the data. However, a small amount of evolution is neither a necessary nor a sufficient requirement of the method. The difficulties involved in the application of current statistical estimation theory to tree reconstruction were discussed, and it was suggested that the approach proposed by Felsenstein (1981,J. Mol. Evol. 17: 368–376) for topology estimation, as well as its many variations and extensions, differs fundamentally from the maximum likelihood estimation of a conventional statistical parameter. Evidence was presented showing that the Felsenstein approach does not share the asymptotic efficiency of the maximum likelihood estimator of a statistical parameter. Computer simulations were performed to study the probability that MP recovers the true tree under a hierarchy of models of nucleotide substitution; its performance relative to the likelihood method was especially noted. The results appeared to support the intuitive examination of the assumptions underlying MP. When a simple model of nucleotide substitution was assumed to generate data, the probability that MP recovers the true topology could be as high as, or even higher than, that for the likelihood method. When the assumed model became more complex and realistic, e.g., when substitution rates were allowed to differ between nucleotides or across sites, the probability that MP recovers the true topology, and especially its performance relative to that of the likelihood method, generally deteriorates. As the complexity of the process of nucleotide substitution in real sequences is well recognized, the likelihood method appears preferable to parsimony. However, the development of a statistical methodology for the efficient estimation of the tree topology remains a difficult open problem.  相似文献   

20.
Astigmata comprise a diverse group of acariform mite species with a remarkable range of life histories, most of which involve parasitic or commensal relationships with other organisms. Several authors have suggested that Astigmata evolved as a paedomorphic clade from within Oribatida, and both morphology and gland-chemistry strongly suggest that their sister-clade is within the oribatid subgroup Desmonomata. The biologies of these groups contrast greatly, since oribatid mites are mostly soil-living detritivores and fungivores, and have life cycles that are much longer than those in Astigmata. We tested the hypothesis that Astigmata evolved from within Desmonomata using two molecular markers, the ribosomal 18S region (18S) and the nuclear elongation factor 1 alpha (ef1α) gene. Representative acariform mites included 28 species of Oribatida, eight of Astigmata, two of Prostigmata and two of Endeostigmata; outgroups included members of Opilioacariformes, Parasitiformes and Ricinulei. To minimize the possibility of long-branch attraction artifacts, we limited highly variable sites by removing gaps (18S) and third codon positions (ef1α) from the sequences. Maximum parsimony, neighbor-joining and Bayesian algorithms formed trees that consistently placed Astigmata outside monophyletic Oribatida, usually as sister-group of the endeostigmatid mite Alicorhagia sp. Analyses with and without outgroups resulted in similar topologies, showing no evidence for long-branch artifacts and leaving the conflict with morphological and biochemical data unexplained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号