共查询到20条相似文献,搜索用时 0 毫秒
1.
A possible contribution of mRNA secondary structure to translation initiation efficiency in Lactococcus lactis 总被引:3,自引:0,他引:3
Maarten van de Guchte Ted van der Lende Jan Kok Gerard Venema 《FEMS microbiology letters》1991,81(2):201-208
Gene expression signals derived from Lactococcus lactis were linked to lacZ-fused genes with different 5'-nucleotide sequences. Computer predictions of mRNA secondary structure were combined with lacZ expression studies to direct base-substitutions that could possibly influence gene expression. Mutations were made such that the DNA sequence upstream of the ATG start codon was not changed. Moreover, care was taken that the substitutions, which were all within the first six codons, neither affected the amino acid sequence of the gene product nor introduced codons rarely used in L. lactis. The results suggest that mRNA secondary structure contributes to the efficiency of translation initiation in L. lactis. 相似文献
2.
Keum JW Ahn JH Choi CY Lee KH Kwon YC Kim DM 《Biochemical and biophysical research communications》2006,350(3):562-567
In our experiments to produce different combinations of recombinant proteins in a cell-free protein synthesis system derived from Escherichia coli, we found that certain pairs of ORFs were not expressed equally. Instead, only a single DNA species was expressed dominantly, while the expression of the others was almost completely repressed. This bias during the co-expression of the DNA pairs was eliminated when an identical downstream box sequence was added to the 5'-ends of the template DNA pairs. By introducing identical nucleotide sequences of the his-tag or the downstream box of chloramphenicol acetyltransferase (CAT-DB) in front of the target genes that were otherwise not expressed compatibly, both of the encoded proteins were produced at similar productivities. Moreover, in the presence of a common downstream box, multiple genes were simultaneously expressed in the same reaction mixture. We expect that the proposed approach will offer a powerful tool for the preparation of unbiased protein libraries, as well as for studying the structure and functions of interacting proteins. 相似文献
3.
The total number of RNA secondary structures of a given length with minimal hairpin loop length m(m>0) and with minimal stack length l(l>0) is computed, under the assumption that all base pairs can occur. Asymptotics are derived from the determination of recurrence relations of decomposition properties. 相似文献
4.
NS3H, the helicase domain of HCV NS3, possesses RNA-stimulated ATPase and ATP hydrolysis-dependent dsRNA unwinding activities. Here, the ability of NS3H to facilitate RNA structural rearrangement is studied using relatively long RNA strands as the model substrates. NS3H promotes intermolecular annealing, resolves three-stranded RNA duplexes, and assists dsRNA and ssRNA inter-conversions to establish a steady state among RNA structures. NS3H facilitates RNA structure conversions in a mode distinct from an ATP-independent RNA chaperone. These findings expand the known function of HCV NS3 helicase and reveal a role for viral helicase in assisting RNA structure conversions during virus life cycle. 相似文献
5.
A new method of contextual analysis was used to search the long non-random inverted repeats and the complementary palindromes in the genes of E. coli and T7 RNA polymerases. These genes were found to contain from 25% to 50% of all the nucleotides involved in such helices. The 5' -and 3' -ends of mRNA can be protected by neighbouring double helices from the nuclease attack. Some double helices are competing and very similar to the attenuator of E. coli trp-operon. 相似文献
6.
Croitoru V Semrad K Prenninger S Rajkowitsch L Vejen M Laursen BS Sperling-Petersen HU Isaksson LA 《Biochimie》2006,88(12):1875-1882
Translation initiation factor IF1 is an indispensable protein for translation in prokaryotes. No clear function has been assigned to this factor so far. In this study we demonstrate an RNA chaperone activity of this protein both in vivo and in vitro. The chaperone assays are based on in vivo or in vitro splicing of the group I intron in the thymidylate synthase gene (td) from phage T4 and an in vitro RNA annealing assay. IF1 wild-type and mutant variants with single amino acid substitutions have been analyzed for RNA chaperone activity. Some of the IF1 mutant variants are more active as RNA chaperones than the wild-type. Furthermore, both wild-type IF1 and mutant variants bind with high affinity to RNA in a band-shift assay. It is suggested that the RNA chaperone activity of IF1 contributes to RNA rearrangements during the early phase of translation initiation. 相似文献
7.
Mathews DH 《Journal of molecular biology》2006,359(3):526-532
RNA structure formation is hierarchical and, therefore, secondary structure, the sum of canonical base-pairs, can generally be predicted without knowledge of the three-dimensional structure. Secondary structure prediction algorithms evolved from predicting a single, lowest free energy structure to their current state where statistics can be determined from the thermodynamic ensemble. This article reviews the free energy minimization technique and the salient revolutions in the dynamic programming algorithm methods for secondary structure prediction. Emphasis is placed on highlighting the recently developed method, which statistically samples structures from the complete Boltzmann ensemble. 相似文献
8.
The thermodynamics of RNA secondary structure formation in small model systems provides a database for predicting RNA structure from sequence. Methods for making these measurements are reviewed with emphasis on optical methods and treatment of experimental errors. Analysis of experimental results in terms of simple nearest-neighbor models is presented. Some measured sequence dependences of non-Watson-Crick motifs are discussed. © 1998 John Wiley & Sons, Inc. Biopoly 44: 309–319, 1997 相似文献
9.
Accurate prediction of RNA pseudoknotted secondary structures from the base sequence is a challenging computational problem. Since prediction algorithms rely on thermodynamic energy models to identify low-energy structures, prediction accuracy relies in large part on the quality of free energy change parameters. In this work, we use our earlier constraint generation and Boltzmann likelihood parameter estimation methods to obtain new energy parameters for two energy models for secondary structures with pseudoknots, namely, the Dirks–Pierce (DP) and the Cao–Chen (CC) models. To train our parameters, and also to test their accuracy, we create a large data set of both pseudoknotted and pseudoknot-free secondary structures. In addition to structural data our training data set also includes thermodynamic data, for which experimentally determined free energy changes are available for sequences and their reference structures. When incorporated into the HotKnots prediction algorithm, our new parameters result in significantly improved secondary structure prediction on our test data set. Specifically, the prediction accuracy when using our new parameters improves from 68% to 79% for the DP model, and from 70% to 77% for the CC model. 相似文献
10.
In this study, we describe the development of a cost effective and highly productive cell-free protein synthesis system derived from Escherichia coli. Through the use of an optimal energy source and cell extract, approximately 1.3 mg/mL of protein was generated from a single batch reaction at greatly reduced reagent costs. Compared to previously reported systems, the described method yields approximately 14-fold higher productivity per unit reagent cost making this cell-free synthesis technique a promising alternative for more efficient protein production. 相似文献
11.
The dissemination of biological information has become critically dependent on the Internet and World Wide Web (WWW), which enable distributed access to information in a platform independent manner. The mode of interaction between biologists and on-line information resources, however, has been mostly limited to simple interface technologies such has hypertext links, tables and forms. The introduction of platform-independent runtime environments facilitates the development of more sophisticated WWW-based user interfaces. Until recently, most such interfaces have been tightly coupled to the underlying computation engines, and not separated as reusable components. We believe that many subdisciplines of biology have intuitive and familiar graphical representations of knowledge that can serve as multipurpose user interface elements. We call such graphical idioms “domain graphics”. In order to illustrate the power of such graphics, we have built a reusable interface based on the standard two dimensional (2D) layout of RNA secondary structure. The interface can be used to represent any pre-computed layout of RNA, and takes as a parameters the sets of actions to be performed as a user interacts with the interface. It can provide to any associated application program information about the base, helix, or subsequence selected by the user. We show the versatility of this interface by using it as a special purpose interface to BLAST, Medline and the RNA MFOLD search/compute engines. These demonstrations are available at: ir|url|http://www-smi.stanford.edu/projects/helix/pubs/ gene-combis-96/ 相似文献
12.
Andrea A. Putnam Eckhard Jankowsky 《Biochimica et Biophysica Acta (BBA) - Gene Regulatory Mechanisms》2013,1829(8):884-893
DEAD-box helicases perform diverse cellular functions in virtually all steps of RNA metabolism from Bacteria to Humans. Although DEAD-box helicases share a highly conserved core domain, the enzymes catalyze a wide range of biochemical reactions. In addition to the well established RNA unwinding and corresponding ATPase activities, DEAD-box helicases promote duplex formation and displace proteins from RNA. They can also function as assembly platforms for larger ribonucleoprotein complexes, and as metabolite sensors. This review aims to provide a perspective on the diverse biochemical features of DEAD-box helicases and connections to structural information. We discuss these data in the context of a model that views the enzymes as integrators of RNA, nucleotide, and protein binding. This article is part of a Special Issue entitled: The Biology of RNA helicases — Modulation for life. 相似文献
13.
Rees F. Garmann Ajaykumar Gopal Shreyas S. Athavale Charles M. Knobler William M. Gelbart Stephen C. Harvey 《RNA (New York, N.Y.)》2015,21(5):877-886
The lifecycle, and therefore the virulence, of single-stranded (ss)-RNA viruses is regulated not only by their particular protein gene products, but also by the secondary and tertiary structure of their genomes. The secondary structure of the entire genomic RNA of satellite tobacco mosaic virus (STMV) was recently determined by selective 2′-hydroxyl acylation analyzed by primer extension (SHAPE). The SHAPE analysis suggested a single highly extended secondary structure with much less branching than occurs in the ensemble of structures predicted by purely thermodynamic algorithms. Here we examine the solution-equilibrated STMV genome by direct visualization with cryo-electron microscopy (cryo-EM), using an RNA of similar length transcribed from the yeast genome as a control. The cryo-EM data reveal an ensemble of branching patterns that are collectively consistent with the SHAPE-derived secondary structure model. Thus, our results both elucidate the statistical nature of the secondary structure of large ss-RNAs and give visual support for modern RNA structure determination methods. Additionally, this work introduces cryo-EM as a means to distinguish between competing secondary structure models if the models differ significantly in terms of the number and/or length of branches. Furthermore, with the latest advances in cryo-EM technology, we suggest the possibility of developing methods that incorporate restraints from cryo-EM into the next generation of algorithms for the determination of RNA secondary and tertiary structures. 相似文献
14.
We designed a new approach for selection of translation enhancer sequences that enables efficient protein synthesis in cell-free systems. The selection is based on a gel shift assay of a messenger RNA (mRNA)–protein fusion product that is synthesized in a cell-free translation system using an mRNA display method. A library of randomized 20-nt-long sequences, with all possible combinations of the four nucleotides, upstream of a coding region was screened by successive rounds of screening in which the translation time of the succeeding round was reduced compared with the previous round. An efficient translation enhancer sequence capable of more rapid initiation of cell-free protein synthesis, with a minimal translation time of 5 min, than a natural longer enhancer sequence (Xenopus β-globin 5′UTR) was selected using rabbit reticulocyte extract as a model cell-free translation system. Furthermore, a successful screening of cap-independent translation enhancer sequence and a significant sequence similarity of the selected candidates validated the efficiency of the combined mRNA display and gel shift assay method for the rapid development of advanced cell-free translation systems. 相似文献
15.
Ballana E Morales E Rabionet R Montserrat B Ventayol M Bravo O Gasparini P Estivill X 《Biochemical and biophysical research communications》2006,341(4):950-957
Mutations in the mitochondrial DNA are one of the most important causes of sensorineural hearing loss, especially in the 12S ribosomal RNA (rRNA) gene. We have analyzed the mtDNA 12S rRNA gene in a cohort of 443 families with hearing impairment, and have identified the A1555G mutation in 69 unrelated cases. A1555G is not a fully penetrant change, since only 63% of subjects with this change have developed hearing impairment. In addition, only 22% of the 183 A1555G deaf subjects were treated with aminoglycosides. Two novel nucleotide changes (T1291C and T1243C) were identified. T1243C was found in five deafness cases and one control sample. Mutation T1291C was detected in all maternally related individuals of a pedigree and in none of 95 control samples. Conservation analysis and comparison of the 12S rRNA structure with the 16S rRNA of Escherichia coli showed that the T at nucleotide 1243 and A at nucleotide 1555 are conserved positions. Prediction of RNA secondary structure showed changes in all 12S rRNA variants, the most severe being for T1291C. The reported data confirm the high prevalence of mutation A1555G in deafness cases and the major role of the 12S rRNA gene in hearing. The two novel changes reported here might have different contributions as deafness-related variants. T1291C fulfills the criteria of a disease-causing change. As in the case of mutation A1555G, the underlying phenotype of T1291C is not homogeneous for all family members, providing evidence for the implication of environmental and/or additional genetic factors. 相似文献
16.
Improvement of translation efficiency in an Escherichia coli cell-free protein system using cysteine
Cell-free protein synthesis systems are powerful tools for protein expression, and allow large amounts of specific proteins to be obtained even if these proteins are detrimental to cell survival. In this report we describe the effect of cysteine on cell-free protein synthesis. The addition of cysteine caused a 2.7-fold increase in the level of synthesized glutathione S-transferase (GST). Moreover, the levels of sulfhydryl group reductants, including reduced glutathione and dithiothreitol (DTT), were increased 1.9- and 1.7-fold, respectively, whereas levels of the disulfide dimers, cystine and oxidized glutathione, were suppressed 87% and 66%, respectively. These trends were also observed for green fluorescent protein (GFP) expression. The addition of cysteine competitively reversed the inhibitory effect of cystine on protein expression. These results suggest that the sulfhydryl group in cysteine plays a crucial role in enhancing protein synthesis, and that the addition of excess cysteine could be a convenient and useful method for improving protein expression. 相似文献
17.
18.
RNA二级结构的预测算法研究已有近40年的发展历程,研究假结也将近30年的历史。在此期间,RNA二级结构的预测算法取得了很大进步,但假结预测的正确率依然偏低。其中启发式算法能较好地处理复杂假结,使其成为率先解决假结预测难题可能性最大的算法。迄今为止,未见系统地专门总结预测假结的各种启发式算法及其优点与缺点的报道。本文详细介绍了近年来国际上流行的贪婪算法、遗传算法、ILM算法、HotKnots算法以及FlexStem算法等五种算法,并总结分析了每种算法的优点与不足,最后提出在未来一段时期内,利用启发式算法提高假结预测准确度应从建立更完善的假结模型、加入更多影响因素、借鉴不同算法的优势等方面入手。为含假结RNA二级结构预测的研究提供参考。 相似文献
19.
The secondary structure of encapsidated MS2 genomic RNA poses an interesting RNA folding challenge. Cryoelectron microscopy has demonstrated that encapsidated MS2 RNA is well-ordered. Models of MS2 assembly suggest that the RNA hairpin-protein interactions and the appropriate placement of hairpins in the MS2 RNA secondary structure can guide the formation of the correct icosahedral particle. The RNA hairpin motif that is recognized by the MS2 capsid protein dimers, however, is energetically unfavorable, and thus free energy predictions are biased against this motif. Computer programs called Crumple, Sliding Windows, and Assembly provide useful tools for prediction of viral RNA secondary structures when the traditional assumptions of RNA structure prediction by free energy minimization may not apply. These methods allow incorporation of global features of the RNA fold and motifs that are difficult to include directly in minimum free energy predictions. For example, with MS2 RNA the experimental data from SELEX experiments, crystallography, and theoretical calculations of the path for the series of hairpins can be incorporated in the RNA structure prediction, and thus the influence of free energy considerations can be modulated. This approach thoroughly explores conformational space and generates an ensemble of secondary structures. The predictions from this new approach can test hypotheses and models of viral assembly and guide construction of complete three-dimensional models of virus particles. 相似文献
20.
The function of many RNAs depends crucially on their structure. Therefore, the design of RNA molecules with specific structural properties has many potential applications, e.g. in the context of investigating the function of biological RNAs, of creating new ribozymes, or of designing artificial RNA nanostructures. Here, we present a new algorithm for solving the following RNA secondary structure design problem: given a secondary structure, find an RNA sequence (if any) that is predicted to fold to that structure. Unlike the (pseudoknot-free) secondary structure prediction problem, this problem appears to be hard computationally. Our new algorithm, "RNA Secondary Structure Designer (RNA-SSD)", is based on stochastic local search, a prominent general approach for solving hard combinatorial problems. A thorough empirical evaluation on computationally predicted structures of biological sequences and artificially generated RNA structures as well as on empirically modelled structures from the biological literature shows that RNA-SSD substantially out-performs the best known algorithm for this problem, RNAinverse from the Vienna RNA Package. In particular, the new algorithm is able to solve structures, consistently, for which RNAinverse is unable to find solutions. The RNA-SSD software is publically available under the name of RNA Designer at the RNASoft website (www.rnasoft.ca). 相似文献