共查询到20条相似文献,搜索用时 15 毫秒
1.
Three divergent lineages within an Australian marsupial (Petrogale penicillata) suggest multiple major refugia for mesic taxa in southeast Australia 下载免费PDF全文
Stephanie L. Hazlitt Anne W. Goldizen James A. Nicholls Mark D. B. Eldridge 《Ecology and evolution》2014,4(7):1102-1116
Mesic southeastern Australia represents the continent's ancestral biome and is highly biodiverse, yet its phylogeographic history remains poorly understood. Here, we examine mitochondrial DNA (mtDNA) control region and microsatellite diversity in the brush‐tailed rock‐wallaby (Petrogale penicillata; n = 279 from 31 sites), to assess historic evolutionary and biogeographic processes in southeastern Australia. Our results (mtDNA, microsatellites) confirmed three geographically discrete and genetically divergent lineages within brush‐tailed rock‐wallabies, whose divergence appears to date to the mid‐Pleistocene. These three lineages had been hypothesized previously but data were limited. While the Northern and Central lineages were separated by a known biogeographic barrier (Hunter Valley), the boundary between the Central and Southern lineages was not. We propose that during particularly cool glacial cycles, the high peaks of the Great Dividing Range and the narrow adjacent coastal plain resulted in a more significant north–south barrier for mesic taxa in southeastern Australia than has been previously appreciated. Similarly, located phylogeographic breaks in codistributed species highlight the importance of these regions in shaping the distribution of biodiversity in southeastern Australia and suggest the existence of three major refuge areas during the Pleistocene. Substructuring within the northern lineage also suggests the occurrence of multiple local refugia during some glacial cycles. Within the three major lineages, most brush‐tailed rock‐wallaby populations were locally highly structured, indicating limited dispersal by both sexes. The three identified lineages represent evolutionarily significant units and should be managed to maximize the retention of genetic diversity within this threatened species. 相似文献
2.
The Assassin Spiders of the family Archaeidae from southern Australia are revised, with a new genus (Zephyrarchaeagen. n.) and nine new species described from temperate, mesic habitats in southern Victoria, South Australia and south-western Western Australia: Zephyrarchaea austinisp. n., Zephyrarchaea barrettaesp. n., Zephyrarchaea grayisp. n., Zephyrarchaea janineaesp. n., Zephyrarchaea maraesp. n., Zephyrarchaea markisp. n., Zephyrarchaea melindaesp. n., Zephyrarchaea porchisp. n. and Zephyrarchaea vichickmanisp. n. Specimens of the type species, Zephyrarchaea mainae (Platnick, 1991), comb. n., are redescribed from the Albany region of Western Australia, along with the holotype female of Zephyrarchaea robinsi (Harvey, 2002) comb. n. from the Stirling Range National Park. The previously described species Archaea hickmani Butler, 1929 from Victoria is here recognised as a nomen dubium. A key to species and multi-locus molecular phylogeny complement the species-level taxonomy, with maps, habitat photos, natural history information and conservation assessments provided for all species. 相似文献
3.
The assassin spiders of the family Archaeidae from tropical north-eastern Queensland are revised, with eight new species described from rainforest habitats of the Wet Tropics bioregion and Mackay-Whitsundays Hinterland: Austrarchaea griswoldi
sp. n., Austrarchaea hoskini
sp. n., Austrarchaea karenae
sp. n., Austrarchaea tealei
sp. n., Austrarchaea thompsoni
sp. n., Austrarchaea wallacei
sp. n., Austrarchaea westi
sp. n. and Austrarchaea woodae
sp. n. Specimens of the only previously described species, Austrarchaea daviesae Forster & Platnick, 1984, are redescribed from the southern Atherton Tableland. The rainforests of tropical eastern Queensland are found to be a potential hotspot of archaeid diversity and endemism, with the region likely to be home to numerous additional short-range endemic taxa. A key to species complements the taxonomy, with maps, natural history information and conservation assessments provided for all species. 相似文献
4.
The Assassin Spiders of the family Archaeidae are an ancient and iconic lineage of basal araneomorph spiders, characterised by a specialised araneophagic ecology and unique, 'pelican-like' cephalic morphology. Found throughout the rainforests, wet sclerophyll forests and mesic heathlands of south-western, south-eastern and north-eastern Australia, the genus Austrarchaea Forster & Platnick, 1984 includes a diverse assemblage of relictual, largely short-range endemic species. With recent dedicated field surveys and significant advances in our understanding of archaeid biology and ecology, numerous new species of assassin spiders have been discovered in the montane sub-tropical and warm-temperate closed forests of mid-eastern Australia, including several rare or enigmatic taxa and species of conservation concern. This fauna is revised and 17 new species are described from south-eastern Queensland and eastern New South Wales: Austrarchaea alanisp. n., Austrarchaea aleenaesp. n., Austrarchaea binfordaesp. n., Austrarchaea christopherisp. n., Austrarchaea clyneaesp. n., Austrarchaea cunninghamisp. n., Austrarchaea dianneaesp. n., Austrarchaea harmsisp. n., Austrarchaea helenaesp. n., Austrarchaea judyaesp. n., Austrarchaea mascordisp. n., Austrarchaea mcguiganaesp. n., Austrarchaea milledgeisp. n., Austrarchaea monteithisp. n., Austrarchaea platnickorumsp. n., Austrarchaea ravenisp. n. and Austrarchaea smithaesp. n. Adult specimens of the type species, Austrarchaea nodosa (Forster, 1956) are redescribed from the Lamington Plateau, south-eastern Queensland, and distinguished from the sympatric species Austrarchaea dianneaesp. n. A key to species and a molecular phylogenetic analysis of COI and COII mtDNA sequences complement the species-level taxonomy, with maps, habitat photos, natural history information and conservation assessments provided for all species. 相似文献
5.
HANNAH WOOD 《Zoological Journal of the Linnean Society》2008,152(2):255-296
An endemic group of Malagasy spiders (Araneae: Archaeidae: Eriauchenius ) called the gracilicollis group is revised. The monophyly and phylogenetic relationships of the gracilicollis group are tested based on morphological characters. Archaeid spiders of Madagascar have evolved varying degrees of elongation in the cephalic area. Historically, it was believed that the extremely elongated cephalic area had evolved only once. These morphological data support the monophyly of the gracilicollis group and suggest that the elongated cephalic area has evolved more than once. All 14 species from the gracilicollis group are described and keyed, of which nine are new species: Eriauchenius ambre sp. nov. , Eriauchenius anabohazo sp. nov. , Eriauchenius borimontsina sp. nov. , Eriauchenius griswoldi sp. nov. , Eriauchenius halambohitra sp. nov. , Eriauchenius lavatenda sp. nov. , Eriauchenius namoroka sp. nov. , Eriauchenius spiceri sp. nov. and Eriauchenius voronakely sp. nov . The morphology of the gracilicollis group is examined in detail and figures of the male and female genitalia are presented. The distributions of the gracilicollis group species are presented and discussed and higher species group relationships within the Archaeidae are discussed. © 2008 The Linnean Society of London, Zoological Journal of the Linnean Society , 2008, 152 , 255–296. 相似文献
6.
The mygalomorph spider genera Antrodiaetus and Atypoides (Antrodiaetidae) belong to an ancient lineage that has persisted since at least the Cretaceous. These spiders display a classic disjunct Holarctic distribution with species in the eastern Palaearctic plus the western and eastern Nearctic. Prior phylogenetic analyses of this group have been proposed on the basis of morphology, but lack strong support and independent corroboration. Here we present the first phylogenetic analysis of species-level relationships based on molecular data obtained from the mitochondrial (cytochrome c oxidase subunit I) and nuclear (18S and 28S rRNA) genomes. Analyses corroborate earlier findings that Atypoides forms a paraphyletic grade with respect to Antrodiaetus, and consequently, that genus is formally synonymized under Antrodiaetus. In addition, our results support the relatively early divergence of Antrodiaetus roretzi. Antrodiaetus pacificus is "paraphyletic" with respect to the A. lincolnianus group and is likely an assemblage of numerous species. The final topology based on a combined molecular dataset, in conjunction with two different molecular dating techniques (penalized likelihood plus a Bayesian approach) and ancestral distribution reconstructions, was used to infer the historical biogeography of these spiders. Trans-Beringian and trans-Atlantic routes appear to account for the present-day distribution of Antrodiaetus in Japan and North America. Future studies on Antrodiaetus phylogeny will be used to address questions regarding morphological stasis and the evolution of quantitative morphological characters. 相似文献
7.
MICHAEL F. BRABY NAOMI E. PIERCE ROGER VILA 《Biological journal of the Linnean Society. Linnean Society of London》2007,90(3):413-440
The Australian fauna is composed of several major biogeographical elements reflecting different spatial and temporal histories. Two groups of particular interest are the Gondwanan Element, reflecting an ancient origin in Gondwana or southern Gondwana (southern vicariance hypothesis), and the Asian Element, reflecting a more recent origin in Asia, Eurasia or Laurasia (northern dispersal hypothesis). Theories regarding the origin and evolution of butterflies (Hesperioidea, Papilionoidea) in Australia are controversial, with no clear consensus. Here, we investigate the phylogenetic and historical biogeographical relationships of the subtribe Aporiina, a widespread taxon with disjunct distributions in each of the major zoogeographical regions. Attention is paid to origins of the subtribe in the Australian Region for which several conflicting hypotheses have been proposed for the Old World genus Delias Hübner. Our phylogenetic reconstruction was based on analysis of fragments of two nuclear genes (elongation factor‐1α, wingless) and one mitochondrial gene (cytochrome oxidase subunit I) for 30 taxa. Phylogenetic analyses based on maximum parsimony, maximum likelihood and Bayesian inference of the combined data set (2729 bp; 917 parsimony informative characters) recovered six major lineages within the monophyletic Aporiina, with the following topology: (Cepora + Prioneris + (Mylothris + (Aporia + Delias group + Catasticta group))). Given a probable age of origin of the stem‐group near the Cretaceous/Tertiary boundary (69–54 Mya), followed by diversification of the crown‐group in the early to mid Tertiary (57–45 Mya), we show that an origin of the Aporiina in either southern Gondwana or Laurasia is equally parsimonious, and that dispersal has played a major role in shaping the underlying phylogenetic pattern. We tentatively conclude that an origin in southern Gondwanan is more likely; however, neither hypothesis satisfactorily explains the present‐day distribution, and additional lower‐level phylogenies are needed to determine the directionality of dispersal events of several taxa and to reject one hypothesis over the other. Dispersal is inferred to have occurred primarily during cooler periods when land bridges or stepping‐stones were available between many of the zoogeographical regions. © 2007 The Linnean Society of London, Biological Journal of the Linnean Society, 2007, 90 , 413–440. 相似文献
8.
Of the eight genera (30 species) of extant Acari in Continental (= East) Antarctica, the genus Maudheimia Dalenius & Wilson, 1958 (Oribatida; Maudheimiidae) is uniquely endemic. A Gondwanan origin is proposed for the genus based on antiquity, inferred from endemism, a widespread distribution throughout Continental Antarctica and a limited dispersal capacity. Adaptation for a high montane epilithic existence, a necessity for the origination and long-term persistence in Antarctica, is inferred from the life history, physiology and ecology of Maudheimia. Phylogenetic analysis placed all four Maudheimia species in a single (generic) clade with the following structure (M. pelronia Wallwork, 1962 (M. tanngardenensis Coctzee, 1997 (M. manhalli Coetzee, 1997 (M. wilsoni Dalenius & Wilson, 1958)))). Geographical distributions of the Maudheimia species, in relation to their phylogenetic relationships, support the hypothesis that post-Gondwanan speciation occurred as a consequence of isolation during glaciation of Antarctica. 相似文献
9.
The phylogenetic relationships of members of the ciliate class Litostomatea were determined by a molecular phylogeny using the small subunit of the ribosomal RNA (ssu-rRNA) gene and a morphological phylogeny based on ultrastructural analyses of the group. Molecular analyses consistently supported the monophyly of Trichostomatia, Entodiniomorphida and the "Australian" trichostomes but provided limited support for a monophyletic Vestibuliferida and Haptoria. The results of the morphological analyses depended on the way in which the dataset was treated: "unordered" and "ordered" recovered a monophyletic Trichostomatia, Haptoria and the "Australian" trichostomes but challenged the monophyly of Entodinimorphida and Vestibuliferida; "dollo" recovered a monophyletic Trichostomatia and Entodiniomorphida but at the cost of a greatly longer tree than either "unordered" or "ordered" datasets. The monophyly of each "Australian" trichostome family was supported in all analyses and by both approaches. These results suggest that the trichostome ciliates may have become associated with mammals in Gondwana with the "Australian" trichostome ciliates entering Australia with primitive herbivorous marsupials. Subsequent diversification of the "Australian" families was probably a result of dietary specialization and oral and cortical synapomorphies define each family. We decline at this time to erect a formal taxon name for the "Australian" trichostomes due to the instability of other superfamilial taxa within the Litosomatea and concerns about the stability of tree topology until a better taxon sample of litostome ciliates is available. 相似文献
10.
SARAH C. CREWS ROSEMARY G. GILLESPIE 《Biological journal of the Linnean Society. Linnean Society of London》2010,101(2):288-322
The Caribbean region includes a geologically complex mix of islands, which have served as a backdrop for some significant studies of biogeography, mostly with vertebrates. Here, we use the tropical/subtropical spider genus Selenops (Selenopidae) to obtain a finer resolution of the role of geology in shaping patterns of species diversity. We obtained a broad geographic sample from over 200 localities from both the islands and American mainland. DNA sequence data were generated for three mitochondrial genes and one nuclear gene for eleven outgroup taxa and nearly 60 selenopid species. Phylogenetic analysis of the data revealed several biogeographic patterns common to other lineages that have diversified in the region, the most significant being: (1) a distinct biogeographic break between Northern and Southern Lesser Antilles, although with a slight shift in the location of the disjunction; (2) diversification within the islands of Jamaica and Hispaniola; (3) higher diversity of species in the Greater Antilles relative to the Lesser Antilles. However, a strikingly unique pattern in Caribbean Selenops is that Cuban species are not basal in the Caribbean clade. Analyses to test competing hypotheses of vicariance and dispersal support colonization through GAARlandia, an Eocene–Oligocene land span extending from South America to the Greater Antilles, rather than over‐water dispersal. © 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2010, 101 , 288–322. 相似文献
11.
Phylogenetic relationships of the Malagasy and Australasian rainbowfishes are investigated using 4394 characters derived from five mitochondrial genes (12S, 16S, tRNA-Valine, ND5, and COI), three nuclear genes (28S, histone H3, and TMO-4c4), and 102 morphological transformations. This study represents the first phylogenetic analysis of the endemic Malagasy family Bedotiidae and includes a nearly complete taxonomic review of all nominal species, as well as numerous undescribed species. Simultaneous analysis of the molecular and morphological datasets results in two equally most parsimonious trees. Results indicate that Bedotiidae (Bedotia+Rheocles) and Bedotia are monophyletic, whereas Rheocles is paraphyletic with the inclusion of two recently described species from northeastern Madagascar, R. vatosoa, and R. derhami. Rheocles vatosoa and R. derhami are sister taxa, and this clade is recovered as the sister group to Bedotia. The remaining species of Rheocles are not sexually dimorphic and comprise a clade that is recovered as the sister group to Bedotia+(R. derhami+R. vatosoa), all of which are sexually dichromatic, and sexually dimorphic for pigmentation and fin development. Three geographically distinct clades are recovered within Bedotia, one comprising species with distributions ranging from mid- to southeastern Madagascar, another including species restricted to eastern drainages north of the Masoala Peninsula, and a third comprising taxa with distributions extending from the Masoala Peninsula south to the Ivoloina River. The Australian/New Guinean melanotaeniids are monophyletic and are recovered as the sister group to Bedotiidae. The Australasian Telmatherinidae and Pseudomugilidae comprise a clade that is recovered as the sister group to the Melanotaeniidae-Bedotiidae clade. This sister-group relationship between Malagasy bedotiids and a clade restricted to Australia-New Guinea, and the absence of a close relationship between bedotiids and African or Mascarene atheriniforms, is congruent with the break-up of Gondwana, not a scenario reliant on Cenozoic trans-oceanic dispersal. Finally, results of the phylogenetic analysis indicate that Atheriniformes is polyphyletic and further corroborate recent morphological hypotheses, which have recovered Bedotiidae in a derived position within Atherinoidei. 相似文献
12.
Pekár S Coddington JA Blackledge TA 《Evolution; international journal of organic evolution》2012,66(3):776-806
Stenophagy (narrow diet breadth) represents an extreme of trophic specialization in carnivores, but little is known about the forces driving its evolution. We used spiders, the most diversified group of terrestrial predators, to investigate whether stenophagy (1) promoted diversification; (2) was phylogenetically conserved and evolutionarily derived state; and (3) was determined either by geographical distribution and foraging guild. We used published data on the prey of almost 600 species. Six categories of stenophagy were found: myrmecophagy, araneophagy, lepidopterophagy, termitophagy, dipterophagy, and crustaceophagy. We found that the species diversity of euryphagous genera and families was similar to stenophagous genera and families. At the family level, stenophagy evolved repeatedly and independently. Within families, the basal condition was oligophagy or euryphagy. Most types of stenophagy were clearly derived: myrmecophagy in Zodariidae; lepidopterophagy in Araneidae; dipterophagy in Theridiidae. In contrast, araneophagy was confined to basal and intermediate lineages, suggesting its ancestral condition. The diet breadth of species from the tropics and subtropics was less diverse than species from the temperate zone. Diet breadth was lower in cursorial spiders compared to web-building species. Thus, the evolution of stenophagy in spiders appears to be complex and governed by phylogeny as well as by ecological determinants. 相似文献
13.
Rebecca L. Hunter Michael Scott Webb Thomas M. Iliffe Jaime R. Alvarado Bremer 《Journal of Biogeography》2008,35(1):65-75
Aim To infer phylogenetic relationships among five species of the cave‐adapted shrimp genus Typhlatya in order to test competing hypotheses of dispersal and colonization of the disjunct cave localities occupied by these five species. Location Typhlatya species are found in caves and anchialine ponds across the northern margin of the Caribbean Sea, along the Mediterranean and Adriatic coasts and on oceanic islands in the Atlantic and eastern Pacific oceans. This study focuses on five species, one from Bermuda, one from the Caicos Islands and three from the Yucatan Peninsula of Mexico. Methods Partial sequences (c. 1400 bp) from the mitochondrial cytochrome b, 16S rDNA and COI genes were obtained from representative samples of the five species. Phylogenetic inference was carried out with maximum parsimony and maximum likelihood analyses. Parsimony networks were constructed for the Bermudian species Typhlatya iliffei and one Yucatan species Typhlatya mitchelli, to determine the degree of connectivity among populations inhabiting different cave systems. Results All three land masses were recovered as monophyletic. The two insular marine species from Bermuda and the Caicos Islands formed a clade, while the three continental freshwater species from the Yucatan Peninsula formed another. Within both Bermuda and the Yucatan, shared haplotypes were found in different cave systems, suggesting recent or ongoing gene flow among populations in both locales. Main conclusions The two insular marine Typhlatya species originated from an ancestral marine population, possibly already cave‐adapted, that is suggested to have colonized the Caicos Islands and subsequently dispersed to Bermuda via the Gulf Stream. Divergence estimates suggest that colonization occurred before the formation of present‐day anchialine cave habitat, which did not form on either island until the late Pliocene to early Pleistocene. Divergence estimates also indicate that the Yucatan freshwater species split before the formation of freshwater cave habitat in the Yucatan. These species could have inhabited crevicular marine habitats before the late Pliocene/early Pleistocene in the Yucatan or elsewhere in the Caribbean, and subsequently migrated to freshwater caves once they formed. 相似文献
14.
Phylogeny and historical biogeography of the paper wasp genus Polistes (Hymenoptera: Vespidae): implications for the overwintering hypothesis of social evolution 下载免费PDF全文
Bernardo F. Santos Ansel Payne James M. Carpenter 《Cladistics : the international journal of the Willi Hennig Society》2015,31(5):535-549
The phylogeny of the paper wasp genus Polistes is investigated using morphological and behavioural characters, as well as molecular data from six genes (COI, 12S, 16S, 28S, H3, and EF1‐α). The results are used to investigate the following evolutionary hypotheses about the genus: (i) that Polistes first evolved in Southeast Asia, (ii) that dispersal to the New World occurred only once, and (iii) that long‐term monogyny evolved as an adaptation to overwintering in a temperate climate. Optimization of distribution records on the recovered tree does not allow unambiguous reconstruction of the ancestral area of Polistes. While the results indicate that Polistes dispersed into the New World from Asia, South America is recovered as the ancestral area for all New World Polistes: Nearctic species groups evolved multiple times from this South American stock. The final tree topology suggests strongly that the genus first arose in a tropical environment, refuting the idea of monogyny as an overwintering adaptation. 相似文献
15.
Southwestern Australia has been recognized as a biodiversity hot spot of global significance, and it is particularly well known for its considerable diversity of flowering plant species. Questions of interest are how this region became so diverse and whether its fauna show similar diverse patterns of speciation. Here, we carried out a phylogeographic study of trapdoor spiders (Migidae: Moggridgea), a presumed Gondwanan lineage found in wet forest localities across southwestern Australia. Phylogenetic, molecular clock and population genetic analyses of mitochondrial (mtDNA) COI gene and ITS rRNA (internal transcribed spacer) data revealed considerable phylogeographic structuring of Moggridgea populations, with evidence for long-term (>3 million years) isolation of at least nine populations in different geographic locations, including upland regions of the Stirling and Porongurup Ranges. High levels of mtDNA divergence and no evidence of recent mitochondrial gene flow among valley populations of the Stirling Range suggest that individual valleys have acted as refugia for the spiders throughout the Pleistocene. Our findings support the hypothesis that climate change, particularly the aridification of Australia after the late Miocene, and the topography of the landscape, which allowed persistence of moist habitats, have been major drivers of speciation in southwestern Australia. 相似文献
16.
Jes Johannesen Thomas Baumann Alfred Seitz Michael Veith 《Biological journal of the Linnean Society. Linnean Society of London》1998,63(1):81-98
Interdemic selection, inbreeding and highly structured populations have been invoked to explain the evolution of cooperative social behaviour in the otherwise solitary and cannibalistic spiders. The family Eresidae consists of species ranging from solitary and intermediate subsocial to species exhibiting fully cooperative social behaviour. In this study we, in a hierarchical analysis, investigated relatedness of putative family clusters, inbreeding and population genetic structure of the subsocial spider Eresus cinnaberinus. Five hierarchical levels of investigation ranging from large scale genetic structure (distances of 250 and 50 km level 1 and 2) over microgeographic structure (20 km2 and 4 km2, level 3 and 4) to a single hill transect of 200 m (level 5) were performed. The purpose of level 5 was two-fold: (1) to investigate the relatedness of putative family groups, and (2) to evaluate the influence of both family living and sampling design on higher level estimates. Relatedness estimates of putative family groups showed an average relatedness of R=0.26. There was no indication of inbreeding. In contrast to social spiders, genetic variation was abundant, He?0.10. The population genetic structure was intermediate between social and asocial spiders. Genetic variance increased continually across hierarchical levels. Family structured neighbourhoods biased differentiation estimates among level 5 samples (FST? 0.04) and level 3 and 4 samples (0.07ST<0.18), and apparent inbreeding among level 3 and 4 samples, FIS>0, was caused by disjunct sampling from separate neighbourhoods. Larger scale samples were highly differentiated 0.12ST<0.26, depending on level and sampling design. Due to a distance effect family living did not influence estimates of the higher level 1. Although the dispersing sex among social spiders and the subsocial E. cinnebarinus differ, females versus males, female behaviour of both sociality classes lead to high genetic variance. 相似文献
17.
JOHN T. MARGARITOPOULOS GAVIN MALARKY JOHN A. TSITSIPIS ROGER L. BLACKMAN 《Biological journal of the Linnean Society. Linnean Society of London》2007,91(4):687-702
The fossil record of mammals records a major interchange of northern and southern faunas in the New World, upon closure of the Panamanian isthmus approximately 3 Mya, termed the Great American Biotic Interchange (GABI). Due to their poor preservation in the fossil record, the degree of participation of birds in this interchange remains largely unknown. A phylogeny for wrens of the genus Campylorhynchus (Aves: Passeriformes) was reconstructed using DNA sequences from the mitochondrial control region and cytochrome b gene. This phylogeny, in combination with biogeographical inference and molecular clock methods, allows estimates of the importance of Late Pliocene interchange to the history of the group. Biogeographical reconstructions and divergence date estimates suggest that the genus began diversification in North America prior to closure of the Panamanian isthmus, consistent with a hypothesized North American origin for the family Troglodytidae. These reconstructions are consistent with pre-GABI dispersal of at most a single Campylorhynchus lineage into South America, with subsequent dispersal of additional lineages, probably across the fully formed isthmus. Increased sampling of avian taxa with widespread New World distributions will continue to clarify the timing and direction of continental interchange. © 2007 The Linnean Society of London, Biological Journal of the Linnean Society , 2007, 90 , 687–702. 相似文献
18.
Phylogeny of the family Sialidae (Insecta: Megaloptera) inferred from morphological data,with implications for generic classification and historical biogeography 下载免费PDF全文
Xingyue Liu Fumio Hayashi Ding Yang 《Cladistics : the international journal of the Willi Hennig Society》2015,31(1):18-49
Sialidae (alderflies) is a family of the holometabolous insect order Megaloptera, with ca. 75 extant species in eight genera distributed worldwide. Alderflies are a group of “living fossils” with a long evolutionary history. The oldest fossil attributed to Sialidae dates back to the Early Jurassic period. Further, the global distribution of modern‐day species shows a remarkably disjunctive pattern. However, due to the rareness of most species and scarcity of comprehensive taxonomic revisions, the phylogeny of Sialidae remains largely unexplored, and the present classification system is in great need of renewal. Here we reconstruct the first phylogeny for Sialidae worldwide based on the most comprehensive sampling and broadest morphological data ever presented for this group of insects. All Cenozoic alderflies belong to a monophyletic clade, which may also include the Early Jurassic genus ?Dobbertinia, and the Late Jurassic genus ?Sharasialis is their putative sister taxon. Two subfamilies of Sialidae are proposed, namely ?Sharasialinae subfam. nov. and Sialidinae. Austrosialis is the sister of all other extant genera, an assemblage which comprises three monophyletic lineages: the Stenosialis lineage, the Ilyobius lineage, and the Sialis lineage. The revised classification of Sialidae is composed of 12 valid genera and 87 valid species. Ilyobius and Protosialis are recognized as valid generic names, while Nipponosialis is treated as a synonym of Sialis. Reconstruction of the ancestral area proposes a global distribution of alderflies in Pangaea before their diversification. The generic diversification of alderflies might have occurred before the breakup of Pangaea, but the divergence of some lineages or genera was probably promoted by the splitting of this supercontinent. 相似文献
19.
Evolution and biogeography of the endemic Roucela complex (Campanulaceae: Campanula) in the Eastern Mediterranean 下载免费PDF全文
Andrew A. Crowl Clayton J. Visger Guilhem Mansion Ralf Hand Hsin‐Hui Wu Georgia Kamari Dimitrios Phitos Nico Cellinese 《Ecology and evolution》2015,5(22):5329-5343
At the intersection of geological activity, climatic fluctuations, and human pressure, the Mediterranean Basin – a hotspot of biodiversity – provides an ideal setting for studying endemism, evolution, and biogeography. Here, we focus on the Roucela complex (Campanula subgenus Roucela), a group of 13 bellflower species found primarily in the eastern Mediterranean Basin. Plastid and low‐copy nuclear markers were employed to reconstruct evolutionary relationships and estimate divergence times within the Roucela complex using both concatenation and species tree analyses. Niche modeling, ancestral range estimation, and diversification analyses were conducted to provide further insights into patterns of endemism and diversification through time. Diversification of the Roucela clade appears to have been primarily the result of vicariance driven by the breakup of an ancient landmass. We found geologic events such as the formation of the mid‐Aegean trench and the Messinian Salinity Crisis to be historically important in the evolutionary history of this group. Contrary to numerous past studies, the onset of the Mediterranean climate has not promoted diversification in the Roucela complex and, in fact, may be negatively affecting these species. This study highlights the diversity and complexity of historical processes driving plant evolution in the Mediterranean Basin. 相似文献
20.
A. Soulier-Perkins 《Systematic Entomology》2005,30(2):281-288
Abstract. The Australian genus Solonaima comprises thirteen described plus two undescribed species. Six are cavernicolous, obligate or not, and are found in different caves. The phylogeny presented here confirms the monophyly of the genus. This phylogeny was compared with the estimate obtained using the method of Marques and Gnaspini, who recommend coding characters susceptible to parallelism differently from the others. Further comparison was made with a cladogram derived from the matrix from which such characters susceptible to parallelism were withdrawn. Scenarios concerning historical invasions of caves were tested using phylogenetic inference. The most-parsimonious hypothesis proposed four invasions of the caves, within two of which a diversification of species took place. 相似文献