首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Sialic acid-binding lectin (SABL) plays crucial role in both innate and adaptive immune responses benefiting from its predominant affinity toward glycan. In the present study, two SABLs from razor clam Solen grandis (designated as SgSABL-1 and SgSABL-2) were identified, and their expression patterns, both in tissues and towards microorganism glycan stimulation, were then characterized. The cDNA of SgSABL-1 and SgSABL-2 was 988 and 1281 bp, containing an open reading frame (ORF) of 744 and 570 bp, respectively, and deduced amino acid sequences showed high similarity to other invertebrates SABLs. Both SgSABL-1 and SgSABL-2 encoded a C1q domain. SgSABL-1 and SgSABL-2 were found to be constitutively expressed in a wide range of tissues with different levels, including mantle, gill, gonad, hemocyte, muscle, and hepatopancreas, and both of them were highly expressed in hepatopancreas. SgSABL-1 and SgSABL-2 could be significantly induced after razor clams were stimulated by acetylated subunits-containing glycan LPS and PGN, suggesting the two SgSABLs might perform potential function of glycan recognition. In addition, SgSABL-2 could also be induced by β-1,3-glucan. All these results indicated that SgSABL-1 and SgSABL-2 might be involved in the immune response against microbe infection and contributed to the pathogens recognition.  相似文献   

2.
In innate immunity, pattern recognition molecules recognize cell wall components of microorganisms and activate subsequent immune responses, such as the induction of antimicrobial peptides and melanization in Drosophila. The diaminopimelic acid (DAP)-type peptidoglycan potently activates imd-dependent induction of antibacterial peptides. Peptidoglycan recognition protein (PGRP) family members act as pattern recognition molecules. PGRP-LC loss-of-function mutations affect the imd-dependent induction of antibacterial peptides and resistance to Gram-negative bacteria, whereas PGRP-LE binds to the DAP-type peptidoglycan, and a gain-of-function mutation induces constitutive activation of both the imd pathway and melanization. Here, we generated PGRP-LE null mutants and report that PGRP-LE functions synergistically with PGRP-LC in producing resistance to Escherichia coli and Bacillus megaterium infections, which have the DAP-type peptidoglycan. Consistent with this, PGRP-LE acts both upstream and in parallel with PGRP-LC in the imd pathway, and is required for infection-dependent activation of melanization in Drosophila. A role for PGRP-LE in the epithelial induction of antimicrobial peptides is also suggested.  相似文献   

3.
4.
哺乳动物肽聚糖识别蛋白(peptidoglycan recognition proteins, PGRPs)是一类可识别肽聚糖的模式识别受体,在先天免疫应答中发挥重要的识别和调节功能。PGRPs通过与肽聚糖结合,诱导激活细菌双组分系统(two-component systems, TCSs)如CssR-CssS、CpxA-CpxR等,诱导氧化应激、硫醇应激和金属应激等反应发挥抗菌活性。现对PGRPs的抗菌活性及其与抗生素的杀菌机制进行比较,旨在为疾病的防治提供理论依据。  相似文献   

5.
Peptidoglycan recognition proteins (PGRPs) form a recently discovered protein family, which is conserved from insect to mammals and is implicated in the innate immune system by interacting with/or degrading microbial peptidoglycans (PGNs). Drosophila PGRP-SA is a member of this family of pattern recognition receptors and is involved in insect Toll activation. We report here the crystal structure of PGRP-SA at 1.56 A resolution, which represents the first example of a "recognition" PGRP. Comparison with the catalytic Drosophila PGRP-LB reveals an overall structure conservation with an L-shaped hydrophilic groove that is likely the PGN carbohydrate core binding site, but further suggests some possible functional homology between recognition and catalytic PGRPs. Consistent with sequence analysis, PGRP-SA does not contain the canonical zinc-binding residues found in catalytic PGRPs. However, substitution of the zinc-binding cysteine residue by serine, along with an altered coordinating histidine residue, assembles a constellation of residues that resembles a modified catalytic triad. The serine/histidine juxtaposition to a threonine residue and a carbonyl oxygen atom, along with conservation of the catalytic water molecule found in PGRP-LB, tantalizingly suggests some hydrolytic function for this member of receptor PGRPs.  相似文献   

6.
7.
8.
9.
Abstract

Peptidoglycan recognition proteins (PGRPs) belong to the family of pattern recognition receptor, represent the major constituent of innate immunity. Although PGRPs are structurally conserved through evolution, their involvement in innate immunity is different in vertebrates and invertebrates. They are highly specific towards recognition of ligands and can hydrolyze bacterial peptidoglycans (PGNs). Zebrafish PGRPs (zPGRPs) have both peptidoglycans lytic amidase activity and broad-spectrum bactericidal activity, but far less is known about how these receptors recognize these microbial ligands. Such studies are hindered due to lack of structural and functional configuration of zPGRPs. Therefore, in this study, we predicted the three-dimensional structure of zPGRP2 through theoretical modeling, investigated the conformational and dynamic properties through molecular dynamics simulations. Molecular docking study revealed the microbial ligands, that is, muramyl pentapeptide–DAP , muramyl pentapeptide–LYS, muramyl tripeptide–DAP, muramyl tripeptide–Lys, muramyl tetrapeptide–DAP, muramyl tetrapeptide–LYS and tracheal cytotoxin interacts with the conserved amino acids of the ligand recognition site comprised of β1, α2, α4, β4 and loops connecting β1 ? α2, α2 ? β2, β3 ? β4 and α4 ? α5. Conserved His31, His32, Ala34, Ile35, Pro36, Lys38, Asp60, Trp61, Trp63, Ala89, His90, Asp106, His143 and Arg144 are predicted to essential for binding and provides stability to these zPGRP–PGN complexes. Our study provides basic molecular information for further research on the immune mechanisms of PGRP’s in Zebrafish. The plasticity of the zPGRP’s binding site revealed by these microbial ligands suggests an intrinsic capacity of the innate immune system to rapidly evolve specificities to meet new microbial challenges in the future.

Communicated by Ramaswamy H. Sarma  相似文献   

10.
11.
Peptidoglycan recognition proteins (PGRPs) are pattern recognition receptors of the innate immune system that bind peptidoglycans (PGNs) of bacterial cell walls. These molecules, which are highly conserved from insects to mammals, contribute to host defense against infections by both Gram-positive and Gram-negative bacteria. Here, we present the crystal structure of human PGRP-S at 1.70A resolution. The overall structure of PGRP-S, which participates in intracellular killing of Gram-positive bacteria, is similar to that of other PGRPs, including Drosophila PGRP-LB and PGRP-SA and human PGRP-Ialpha. However, comparison with these PGRPs reveals important differences in both the PGN-binding site and a groove formed by the PGRP-specific segment on the opposite face of the molecule. This groove, which may constitute a binding site for effector or signaling proteins, is less hydrophobic and deeper in PGRP-S than in PGRP-IalphaC, whose PGRP-specific segments vary considerably in amino acid sequence. By docking a PGN ligand into the PGN-binding cleft of PGRP-S based on the known structure of a PGRP-Ialpha-PGN complex, we identified potential PGN-binding residues in PGRP-S. Differences in PGN-contacting residues and interactions suggest that, although PGRPs may engage PGNs in a similar mode, structural differences exist that likely regulate the affinity and fine specificity of PGN recognition.  相似文献   

12.
13.
In entomopathogenic fungi, secretory protein phosphatases might function in the utilization of phosphoproteins from the environment. But if secreted into the host, secretory protein phosphatases might play a role in pathogenesis by dephosphorylation of host phosphoproteins. Our group purified a novel phosphatase from entomopathogenic fungi, Metarhizium anisopliae. The substrate specificity and inhibitor sensitivity indicate that the phosphatase is a protein tyrosine phosphatase (PTPase). In order to analyze the targets of the PTPase in Locusta migratoria hemolymph, two-dimensional electrophoresis and mass spectrometry were used. The results indicated that the PTPase could specifically dephosphorylate two phosphoproteins from L. migratoria hemolymph. One phosphoprotein was identified as trans-Golgi p230. Previous studies have shown that trans-Golgi p230 participates in vesicular transport of functional proteins from the distal Golgi compartment. trans-Golgi p230 can be inactivated by dephosphorylation, which implies that M. anisopliae could interfere with the correct transportation of functional proteins by secreting extracellular PTPase into the hemolymph. There are some secretion proteins, such as transferrin, have been thought to participate in the insect innate immune against microbial infection, therefor M. anisopliae could interfere with immune defenses of L. migratoria by secreting extracellular PTPase into the hemolymph.  相似文献   

14.
In this paper, we firstly reported a C-type lectin cDNA clone of 1029 bps from the larvae of A. Pernyi (Ap-CTL) using PCR and RACE techniques. The full-length cDNA contains an open reading frame encoding 308 amino acid residues which has two different carbohydrate-recognition domains (CRDs) arranged in tandem. To investigate the biological activities in the innate immunity, recombinant Ap-CTL was expressed in E. coli with a 6-histidine at the amino-terminus (Ap-rCTL). Besides acted as a broad-spectrum recognition protein binding to a wide range of PAMPs and microorganisms, Ap-rCTL also had the ability to recognize and trigger the agglutination of bacteria and fungi. In the proPO activation assay, Ap-rCTL specifically restored the PO activity of hemolymph blocked by anti-Ap-rCTL antibody in the presence of different PAMPs or microorganisms. In summary, Ap-rCTL plays an important role in insect innate immunity as an pattern recognition protein. [BMB Reports 2013; 46(7): 358-363]  相似文献   

15.
The family of peptidoglycan recognition proteins (PGRPs) is conserved from insects to mammals. Recently, Drosophila PGRP-SC1B was demonstrated to be an N-acetylmuramoyl-L-alanine amidase (NAMLAA), an enzyme that cleaves the lactylamide bond between muramic acid and the peptide chain in peptidoglycan (PGN). We now show an M x mPGRP-L mRNA to be expressed in the liver. The recombinant M x mPGRP-L protein has NAMLAA activity and degrades PGN from both Escherichia coli and Staphylococcus aureus; however, the Gram-positive PGN was a better substrate after lysozyme treatment. The activity of M x mPGRP-L was further analysed using Bordetella pertussis tracheal toxin as a substrate. Cleavage products were separated on HPLC and identified using mass spectrometry. From these results we conclude that M x mPGRP-L has activity and other properties identifying it as the NAMLAA protein present in mammalian sera.  相似文献   

16.
A bacterial strain with high cellulase activity was isolated of feces sample of Golden Takin (Budorcas taxicolor Bedfordi). The bacterium was classified and designated Bacillus subtilis LN by morphological and 16SrDNA gene sequence analysis. Two putative cellulase genes, CelL15 and CelL73, were simultaneously cloned from the isolated strain by PCR. The putative gene CelL15 consisted of an open reading frame (ORF) of 1470 nucleotides and encoded a protein of 490 amino acids with a molecular weight of 54 kDa. The CelL73 gene consisted of an open reading frame (ORF) of 741 nucleotides and encoded a protein of 247 amino acids with a molecular weight of 27 kDa. Both genes were purified and cloned into pET-28a for expression in Escherichia coli BL21 (DE3). The ability of E. coli to degrade cellulose was enhanced when the two recombinants were cultured together.  相似文献   

17.
18.
19.
20.
Peptidoglycan recognition proteins (PGRPs) are pattern recognition receptors that specifically bind to peptidoglycans, a major component of bacterial cell wall. Generally, PGRPs are responsible for recognition of bacterial invasion in invertebrates. Full length cDNAs of PGRP, designated as CgPGRP-S1S, -S1L, -S2 and -S3, were identified from the Pacific oyster, Crassostrea gigas. Homology and domain searches classified these CgPGRPs as short-type PGRPs for extracellular PGN recognition. Amidase activity was predicted in all CgPGRPs, and defensin-like domains were found in CgPGRP-S1S and -S1L, suggesting that they may also function as antimicrobial proteins. Although phylogenetic analysis indicated that CgPGRPs are closely related to each other, they showed different tissue expression patterns; CgPGRP-S1S in the mantle and the gill, -S1L in the mantle, -S2 in the hemocytes and -S3 in the digestive diverticula. The CgPGRPs seem to survey bacterial invasion in their corresponding expression tissues. This is the first report of the possibility that bivalve mollusks have PGN recognition systems as suggested by the identification of multiple PGRPs distributed in various tissues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号