首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Insect parasitoids play a major role in terrestrial food webs as they are highly diverse, exploit a wide range of niches and are capable of affecting host population dynamics. Formidable difficulties are encountered when attempting to quantify host–parasitoid and parasitoid–parasitoid trophic links in diverse parasitoid communities. Here we present a DNA-based approach to effectively track trophic interactions within an aphid–parasitoid food web, targeting, for the first time, the whole community of parasitoids and hyperparasitods associated with a single host. Using highly specific and sensitive multiplex and singleplex polymerase chain reaction, endoparasitism in the grain aphid Sitobion avenae (F) by 11 parasitoid species was quantified. Out of 1061 aphids collected during 12 weeks in a wheat field, 18.9% were found to be parasitized. Parasitoids responded to the supply of aphids, with the proportion of aphids parasitized increasing monotonically with date, until the aphid population crashed. In addition to eight species of primary parasitoids, DNA from two hyperparasitoid species was detected within 4.1% of the screened aphids, with significant hyperparasitoid pressure on some parasitoid species. In 68.2% of the hyperparasitized aphids, identification of the primary parasitoid host was also possible, allowing us to track species-specific parasitoid-hyperparasitoid links. Nine combinations of primary parasitoids within a single host were found, but only 1.6% of all screened aphids were multiparasitized. The potential of this approach to parasitoid food web research is discussed.  相似文献   

2.
A small collection of aphid hyperparasitic species of Tetrastichinae obtained by rearing mummified aphids in Japan were examined. In addition to the two already known species, three more species were confirmed to occur in Japan. A key to these five Japanese species and their hosts (primary parasitoids, aphids and plants) are provided. The modes of hyperparasitism and host associations of tetrastichine aphid hyperparasitoids are discussed.  相似文献   

3.
Community structures of aphids and their parasitoids were studied in fruit crop habitats of eastern Belgium in 2014 and 2015. Quantitative food webs of these insects were constructed separately for each year, and divided into subwebs on three host‐plant categories, fruit crop plants, non‐crop woody and shrub plants and non‐crop herbaceous plants. The webs were analyzed using the standard food web statistics designed for binary data. During the whole study period, 78 plant species were recorded as host plants of 71 aphid species, from which 48 parasitoid species emerged. The community structure, aphid / parasitoid species‐richness ratio and trophic link number varied between the two years, whereas the realized connectance between parasitoids and aphids was relatively constant. A new plant–aphid–parasitoid association for Europe was recorded. Dominant parasitoid species in the study sites were Ephedrus persicae, Binodoxys angelicae and Praon volucre: the first species was frequently observed on non‐crop trees and shrubs, but the other two on non‐crop herbaceous plants. The potential influence, through indirect interactions, of parasitoids on aphid communities was assessed with quantitative parasitoid‐overlap diagrams. Symmetrical links were uncommon, and abundant aphid species seemed to have large indirect effects on less abundant species. These results show that trophic indirect interactions through parasitoids may govern aphid populations in fruit crop habitats with various non‐crop plants, implying the importance for landscape management and biological control of aphid pests in fruit agroecosystems.  相似文献   

4.
Generalist predators and parasitoids are considered to be important regulators of aphids. The former not only feed on these pests, but might also consume parasitoids at all stages of development. This direct or coincidental interference affects the natural control of aphids, the scale of which is largely unknown, and it has rarely been examined under natural conditions. Here, molecular diagnostics were used to track trophic interactions in an aphid-parasitoid-generalist predator community during the build-up of a cereal aphid population. We found that generalist predators, principally carabid and staphylinid beetles as well as linyphiid spiders, had strong trophic links to both parasitoids and aphids. Remarkably, more than 50% of the parasitoid DNA detected in predators stems from direct predation on adult parasitoids. The data also suggest that coincidental intraguild predation is common too. Generalist predators, hence, disrupt parasitoid aphid control, although the levels at which the predators feed on pests and parasitoids seem to vary significantly between predator taxa. Our results suggest that taxon-specific trophic interactions between natural enemies need to be considered to obtain a more complete understanding of the route to effective conservation biological control.  相似文献   

5.
The oviposition behaviour of Dendrocerus carpenteri (Curtis), an ectophagous hyperparasitoid of aphidiine wasps inside mummified aphids was examined. Hyperparasitoids were provided in the laboratory with pea aphids ( Acyrthosiphon pisum ) which had been parasitized by three different species of aphidiine wasps ( Aphidius ervi, Ephedrus californicus and Praon pequodorum ) ranging in physiological age from the late larval stage to the late pupal stage. Females accepted only the hosts inside mummified aphids; they ignored live aphids, and did not accept dead, but not yet mummified aphids, although the latter were sometimes probed with the ovipositor. Female behaviour in handling A. ervi or E. californicus mummies did not change with experience; handling and oviposition times were stereotypic. However, naive females needed experience to locate the cocoon of P. pequodorum and distinguish it from the empty aphid mummy. Host acceptance and specificity were influenced more by the developmental stage than the species of the primary parasitoid. In dichotomous choice tests, hyperparasitoids 'preferred' prepupae over younger pupae of A. ervi , but they did not distinguish between these stages of E. californicus; older pupae were accepted at a low rate. Host preference was not influenced by conditioning on the rearing host. We consider several constraints on the host range of D. carpenteri , and discuss alternative explanations of differential hyperparasitism in the field.  相似文献   

6.
Binodoxys communis (Gahan) (Hymenoptera:Braconidae), a parasitoid of aphids originally from China, was introduced into Hawaii and evaluated in the laboratory for its ability to detect, accept, oviposit and develop in Aphis gossypii reared on two host plants, plus five other common aphid species. The parasitoid was able to detect all six aphid species and to successfully sting five species, with highest preference for those in the genus Aphis. Aphis species were highly suitable for parasitoid development. Other species were only marginally suitable. Parasitoids spent less time searching on plants of less acceptable aphids. Aphid defensive behaviors did not affect oviposition success, but did lengthen the parasitoid’s handling time of several aphid species. Host acceptance was positively correlated with host suitability, yet one unsuitable host was readily accepted for oviposition.  相似文献   

7.
The influence of aphid size on the host quality assessment and progeny performance of aphidiine parasitoids was examined using the mealy plum aphid parasitoid, Aphidius transcaspicus Telenga (Hymenoptera: Braconidae) and the black bean aphid, Aphis fabae Scopoli (Homoptera: Aphididae), as a readily acceptable alternate host. Aphid size in relation to stage of development was manipulated by rearing synchronous aphid cohorts at either 15 or 30 °C. At 15 °C, 2nd instar aphids were approximately the same size as 4th instar aphids reared at 30 °C. Cohorts of 30 aphids from each instar, reared at each temperature, were exposed to parasitism by a single parasitoid female for a period of 5 h. Overall susceptibility to parasitism did not vary between aphid cohorts, but the parasitoid response to aphid size differed significantly between rearing temperatures for both progeny sex ratio (parent female assessment of host quality) and larval growth and development (host suitability for parasitoid development). For aphids reared at 15 °C, the proportion of female progeny and emerging adult size for the parasitoid increased linearly with aphid size at the time of attack, while development time remained constant. In contrast, for aphids reared at 30 °C, the proportion of female progeny, emerging adult size, and the development time of the parasitoid all declined with aphid size at the time of attack. The contrasting responses of the parasitoid to host size for aphids reared at the two temperatures suggest that host quality is only indirectly related to aphid size among aphidiine parasitoids. The possible effects of higher temperatures on nutritional stress, obligate endosymbionts, and future growth potential of the aphids are discussed as explanations for the variation in host quality for parasitoid development.  相似文献   

8.
Bt-transgenic cotton has proven to be highly efficient in controlling key lepidopteran pests. One concern with the deployment of Bt cotton varieties is the potential proliferation of non-target pests. We previously showed that Bt cotton contained lower concentrations of insecticidal terpenoids as a result of reduced caterpillar damage, which benefited the aphid Aphis gossypii. It is thus important that non-target herbivores are under biological control in Bt cotton fields. The induction or lack of induction of terpenoids could also influence the quality of aphid honeydew, an important food source for beneficial insects. We therefore screened A. gossypii honeydew for cotton terpenoids, that are induced by caterpillars but not the aphids. We then tested the influence of induced insect-resistance of cotton on honeydew nutritional quality for the aphid parasitoid Lysiphlebus testaceipes and the whitefly parasitoid Eretmocerus eremicus. We detected the cotton terpenoids gossypol and hemigossypolone in A. gossypii honeydew. Although a feeding assay demonstrated that gossypol reduced the longevity of both parasitoid species in a non-linear, dose-dependent manner, the honeydew was capable of sustaining parasitoid longevity and reproduction. The level of caterpillar damage to Bt and non-Bt cotton had no impact on the quality of honeydew for the parasitoids.These results indicate that the nutritional quality of honeydew is maintained in Bt cotton and is not influenced by induced insect resistance.  相似文献   

9.
We describe the allometry of body mass and body size as measured by hind-tibia length in males of Monoctonus paulensis (Ashmead) (Hymenoptera: Braconidae, Aphidiinae), a solitary parasitoid of aphids. To assess the influence of host quality on allometric relationships, we reared parasitoids on second and fourth nymphal instars of four different aphid species, Acyrthosiphon pisum (Harris), Macrosiphum creelii Davis, Myzus persicae (Sulzer) and Sitobion avenae (F.), under controlled conditions in the laboratory. Dry mass was positively correlated with hind-tibia length, and could be predicted from it, in unparasitized aphids, in aphid mummies containing parasitoid pupae, and in the parasitoid. The reduced-major-axis scaling exponents for the regression of dry mass on hind-tibia length were species-specific in aphids, reflecting differences in volume and shape between species. In mummified aphids, the stage at death influenced the size/mass relationship. In males of M. paulensis, the allometric exponent varied between parasitoids developing in different kinds of host. Individuals developing in pea aphid were absolutely larger in dry mass as well as proportionately larger relative to their hind-tibia length. We discuss the allometry of body size and body mass in relation to parasitoid fitness.  相似文献   

10.
Coincidental intraguild predation is expected to be less disruptive to biological control than omnivorous intraguild predation, and strong intraguild predation is not expected to occur in natural systems. Coincidental intraguild predation in a foodweb involving introduced pest and natural enemy species was examined to determine whether intraguild predation would be disruptive of biological control services in soybean agroecosystems. Introduced natural enemies are important regulators of soybean aphid, Aphis glycines Matsumura (Hemiptera: Aphididae), populations in North America. Seven-spotted lady beetles, Coccinella septempunctata L., and multicolored Asian lady beetles, Harmonia axyridis Pallas (Coleoptera: Coccinellidae), are key predators of soybean aphid in North America while the chalcidoid wasp, Aphelinus certus Yasnosh (Hymenoptera: Aphelinidae), is the most common parasitoid of soybean aphid in Ontario, Canada. Predation of parasitized soybean aphids at two stages (newly parasitized aphids and mummified aphids) by adults and third instar larvae of both C. septempunctata and H. axyridis was examined in laboratory experiments. In choice experiments, all stages of lady beetles preferred non-parasitized aphids over mummified aphids. In cage experiments, third instar larvae and male and female adults of both lady beetles did not discriminate between newly parasitized and non-parasitized aphids. The influence of coincidental intraguild predation on the efficacy of parasitoids as biological control agents, and implications for soybean aphid management decisions based on natural enemies, are discussed.  相似文献   

11.
The epichloae are ascomycetous fungi in the genera Epichloë and Neotyphodium that live within grasses. Some of these fungi produce alkaloids that can help protect the host from herbivores. The alkaloids may also travel up the food web and affect members of the third trophic level. In this way they can produce trophic cascades which are rippling effects when a trophic level impacts those above or below it. We briefly summarize the general patterns of multitrophic effects of endophytes and highlight the most recent studies on this topic. Further, we report on our study in which we tested if different fungal strains in tall fescue (cultivar Jesup) affect multitrophic interactions involving aphids and their parasitoid natural enemies. Using both the common strain of N. coenophialum and a novel isolate (AR577), we allowed potted plants to be colonized by aphids and parasitoids in a semi-natural setting. We found that endophyte infection of tall fescue resulted in greater vegetative growth of the plant. We also found that N. coenophialum modified bottom-up cascades by depressing both aphid and parasitoid densities. Finally, we found that multitrophic effects were modified by fungal isolate: the common strain had stronger negative impacts on aphid and parasitoid densities than did the novel isolate.  相似文献   

12.
The broad-spectrum insecticides greatly influence the control of cotton aphids; however, due to frequent chemical control, Aphis gossypii (Hemiptera: Aphididae) has developed resistance against several classes of synthetic insecticides. In this study, we explored the sub-lethal effects of imidacloprid and pirimicarb, two commonly used insecticides for aphid control, on a parasitoid wasp, Lysiphlebus fabarum (Marshall) (Braconidae: Aphidiinae), when simultaneously used to control melon aphid on cucumber plants, as part of a comprehensive study for integrated pest management. Bioassays of imidacloprid and pirimicarb were performed to calculate LC50 with third instars of A. gossypii. The LC50 of these insecticides (110.55 and 250.89 μg/lit, respectively) were used to expose the wasp larvae, pupae, and adult parasitoids on a cucumber leaf. The percent mortality, percent adult emergence, and sex ratio were calculated during each exposure test. Moreover, the body size, egg load, and mature egg size of wasps surviving the insecticide treatments, as well as the sex ratio of the second generation was evaluated. Regardless of the host aphid mortality, none of the insecticides caused mortality of larval stage of the parasitoid. The insecticide application on pupal stage revealed that the percentage of mortality, sex ratio, body size, and egg load of surviving wasps, as well as the sex ratio of their offspring was adversely affected by imidacloprid, but not by pirimicarb. The present study suggests pirimicarb as a preferred insecticide, with less harmful effects on the fitness components of L. fabarum, for integrated pest management of cotton aphids.  相似文献   

13.
Soybean varieties that exhibit resistance to the soybean aphid Aphis glycines have been developed for use in North America. In principle, host-plant resistance to soybean aphid can influence the interactions between the soybean aphid and its natural enemies. Resistance could change the quality of soybean aphids as a food source, the availability of soybean aphids, or resistance traits could directly affect aphid predators and parasitoids. Here, we focus on the effect of soybean aphid resistance on the interactions between soybean aphids, the parasitoid Binodoxys communis (Hymenoptera: Braconidae), and predators of these two species. We determined whether host-plant resistance affected within-season persistence of B. communis by releasing parasitoids into resistant and susceptible soybean plots. We observed higher B. communis densities in susceptible soybean plots than in resistant plots. There were also higher overall levels of intraguild predation of B. communis in susceptible plots, although the per-capita risk of intraguild predation of B. communis was affected neither by plant genotype nor by aphid density. We discuss these effects and whether they were caused by direct effects of the resistant plants on B. communis or indirect effects through soybean aphid or predators.  相似文献   

14.
Agricultural intensification (AI) is currently a major driver of biodiversity loss and related ecosystem functioning decline. However, spatio-temporal changes in community structure induced by AI, and their relation to ecosystem functioning, remain largely unexplored. Here, we analysed 16 quantitative cereal aphid–parasitoid and parasitoid–hyperparasitoid food webs, replicated four times during the season, under contrasting AI regimes (organic farming in complex landscapes vs. conventional farming in simple landscapes). High AI increased food web complexity but also temporal variability in aphid–parasitoid food webs and in the dominant parasitoid species identity. Enhanced complexity and variability appeared to be controlled bottom-up by changes in aphid dominance structure and evenness. Contrary to the common expectations of positive biodiversity–ecosystem functioning relationships, community complexity (food-web complexity, species richness and evenness) was negatively related to primary parasitism rates. However, this relationship was positive for secondary parasitoids. Despite differences in community structures among different trophic levels, ecosystem services (parasitism rates) and disservices (aphid abundances and hyperparasitism rates) were always higher in fields with low AI. Hence, community structure and ecosystem functioning appear to be differently influenced by AI, and change differently over time and among trophic levels. In conclusion, intensified agriculture can support diverse albeit highly variable parasitoid–host communities, but ecosystem functioning might not be easy to predict from observed changes in community structure and composition.  相似文献   

15.
1. In solitary parasitoids, only one individual can complete development in a given host. Therefore, solitary parasitoids tend to prefer unparasitised hosts for oviposition, yet under high parasitoid densities, superparasitism is frequent and results in fierce competition for the host's limited resources. This may lead to selection for the best intra‐host competitors. 2. Increased intra‐host competitive ability may evolve under a high risk of superparasitism if this trait exhibits genetic variation, and if competitive differences among parasitoid genotypes are consistent across environments, e.g. different host genotypes. 3. These assumptions were addressed in the aphid parasitoid Lysiphlebus fabarum (Hymenoptera: Braconidae: Aphidiinae) and its main host, the black bean aphid, Aphis fabae (Scopoli) (Hemiptera: Aphididae). Three parthenogenetic lines of L. fabarum were allowed to parasitise three aphid clones singly and in all pairwise combinations (superparasitism). The winning parasitoid in superparasitised aphids was determined by microsatellite analysis. 4. The proportions of singly parasitised aphids that were mummified were similar for the three parasitoid lines and did not differ significantly among host clones. 5. Under superparasitism, significant biases in favour of one parasitoid line were observed for some combinations, indicating that there is genetic variation for intra‐host competitive ability. However, the outcome of superparasitism was inconsistent across aphid clones and thus influenced significantly by the host clone in which parasitoids competed. 6. Overall, this study shows that the fitness of aphid parasitoids under superparasitism is determined by complex interactions with competitors as well as hosts, possibly hampering the evolution of improved intra‐host competitive ability.  相似文献   

16.
Agricultural intensification has been shown to result in a decline in biodiversity across many taxa, but the changes in community structure and species interactions remain little understood. We have analysed and compared the structure of feeding interactions for cereal aphids and their primary and secondary parasitoids in organically and conventionally managed winter wheat fields using quantitative food web metrics (interaction evenness, generality, vulnerability, link density). Despite little variation in the richness of each trophic group, food web structures between the two farming systems differed remarkably. In contrast to common expectations, aphids and primary parasitoids were characterized by (1) a higher evenness of interaction frequencies (interaction evenness) in conventional fields, which cascaded to interactions at the next trophic level, with (2) a higher interaction evenness, (3) a higher ratio of primary parasitoid taxa per secondary parasitoid (generality) and (4) a higher link density. Aphid communities in the organically managed fields almost exclusively consisted of a single ear-colonizing species, Sitobion avenae, while highly fertilized conventional fields were mainly infested by leaf-colonizing aphids that benefit from the nutritional status of winter wheat. In conclusion, agricultural intensification appears to foster the complexity of aphid–parasitoid food webs, thereby not supporting the general expectation on the importance of organic farming practices for species richness and food web complexity.  相似文献   

17.
Abstract.  1. A mother's environment frequently affects her offspring's phenotype. Such maternal effects may be adaptive, in particular with respect to pathogens or parasites, for example if maternal exposure increases offspring resistance.
2. In aphids, maternal effects are likely to occur as a result of their telescoping generations. This study investigated whether maternal effects influence the susceptibility of the peach-potato aphid, Myzus persicae (Sulzer) (Hemiptera: Aphididae), to its parasitoid Diaeretiella rapae (M'Intosh) (Hymenoptera: Braconidae: Aphidiinae).
3. In a first experiment, susceptibility was compared among offspring of aphid mothers that had either no contact to parasitoids, had contact but were not attacked, or were attacked but not mummified. Mothers from the last group had successfully resisted the parasitoid.
4. In a second experiment using two different clones, maternal and progeny environment were manipulated by rearing each generation either on a benign (radish) or a more stressful host plant (silver beet) before progeny exposure to parasitoids.
5. The first experiment revealed no significant effect of the maternal treatment on offspring susceptibility to parasitoids and thus no evidence for trans-generational defence. In the second experiment, maternal environment effects were also weak, yet with a trend towards less susceptible offspring of aphid mothers reared on the more stressful plant. However, there was a significant difference among clones and a strong clone × progeny host plant interaction, illustrating that the outcome of a parasitoid attack may be determined by a complex interplay of genetic and environmental factors.
6. Overall, the results suggest that there is limited scope for maternal effects in aphid defence against parasitoids.  相似文献   

18.
Cotton produces insecticidal terpenoids that are induced by tissue-feeding herbivores. Damage by Heliothis virescens caterpillars increases the terpenoid content, which reduces the abundance of aphids. This effect is not evident in Bt-transgenic cotton, which is resistant to H. virescens. We determined whether induction of terpenoids by caterpillars influences the host quality of Aphis gossypii for the parasitoid Lysiphlebus testaceipes and whether this interaction is influenced by Bt cotton. The exposure of parasitoids to terpenoids was determined by quantifying terpenoids in the aphids. We detected several terpenoids in aphids and found a positive relationship between their concentrations in plants and aphids. When L. testaceipes was allowed to parasitize aphids on Bt and non-Bt cotton that was infested or uninfested with H. virescens, fewer parasitoid mummies were found on infested non-Bt than on Bt cotton. Important parasitoid life-table parameters, however, were not influenced by induced resistance following H. virescens infestation, or the Bt trait. Our study provides an example of a tritrophic indirect interaction web, where organisms are indirectly linked through changes in plant metabolites.  相似文献   

19.
Impact of a parasitoid on the bacterial symbiosis of its aphid host   总被引:2,自引:0,他引:2  
Embryo production in aphids is absolutely dependent on the function of symbiotic bacteria, mainly Buchnera, and the growth and development of koinobiont parasitoids in aphids requires the diversion of nutrients from aphid embryo production to the parasitoid. The implication that the bacterial symbiosis may be promoted in parasitized aphids to support the growing parasitoid was explored by analysis of the number and biomass of mycetocytes, and the aphid cells bearing Buchnera, in the pea aphid Acyrthosiphon pisum Harris (Hemiptera: Aphididae) parasitized by the wasp Aphidius ervi Haliday (Hymenoptera: Braconidae). Aphids hosting a young larval parasitoid bore more mycetocytes of greater total biomass, and embryos of lower biomass than unparasitized aphids. Furthermore, one of the three aphid clones tested, which limited teratocyte growth (giant cells of parasitoid origin having a trophic role), bore smaller mycetocytes and larger embryos, than one or both of the two aphid clones with greater susceptibility to the parasitoid. These data suggest that susceptibility of the aphid‐Buchnera symbiosis to parasitoid‐mediated manipulation may, directly or indirectly, contribute to aphid susceptibility to parasitoid exploitation.  相似文献   

20.
The effect of Bt maize on aphid parasitism and the aphid–parasitoid complex was measured in field conditions on three transgenic varieties, two derived from Event MON810 and one from Bt176, and their near-isogenics in a two-year study. No differences in aphid abundance were found between Bt maize varieties and their near-isogenics. Differences within Bt and within near-isogenic varieties were found, but only in one year. Differences in aphid abundance were probably better accounted for the variety background and year conditions than by the transgenesis or Event. Lysiphlebus testaceipes (Cresson), Lipolexis gracilis Förster (Hymenoptera, Braconidae, Aphidiinae) and Aphelinus sp. (Hymenoptera, Aphelinidae) were the prevalent parasitoids. Bt maize did not alter the aphid–parasitoid associations and had no effect on the aphid parasitism and hyperparasitism rates. The results suggest that Bt maize has no negative impact on second, third and fourth levels of the trophic relationships studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号