首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Northern elephant seals endure prolonged periods of food deprivation at multiple life-history stages and simultaneous with energetically costly activities—including reproduction and development. Most mammals decrease their energy expenditure while fasting, with simultaneous reductions in gluconeogenesis and circulating glucose concentration. Paradoxically, elephant seals maintain high rates of both energy expenditure and gluconeogenesis, and high blood glucose concentrations throughout fasting. We therefore characterized the suite of changes that occur in carbohydrate metabolites during fasting in northern elephant seals. Using a broad-based metabolomics platform we investigated fasting during two states—lactation in adult females and the post-weaning developmental period in pups. A total of 227 metabolites were detected in seal plasma; 31 associated with carbohydrate metabolism were analyzed in the present study. Several compounds showed similar responses during lactation and the post-weaning fast (e.g. glycerol and mesaconate) whereas other compounds displayed quite different abundances between groups (e.g. citrate and pyruvate). This work found that, while the changes that occur with fasting were frequently similar in lactating females and developing pups, the relative abundance of compounds often varied markedly. These differences suggest that the metabolic strategies used to endure prolonged fasts are influenced by life-history or nutrient constraints.  相似文献   

2.
We measured metabolic hormones and several key metabolites in breeding adult male northern elephant seals to examine the regulation of fuel metabolism during extended natural fasts of over 3 months associated with high levels of energy expenditure. Males were sampled twice, early and late in the fast, losing an average of 23% of body mass and 47% of adipose stores between measurements. Males exhibited metabolic homeostasis over the breeding fast with no changes in glucose, non-esterified fatty acids, or blood urea nitrogen. Ketoacids increased over the fast but were very low when compared to other fasting species. Changes within individuals in total triiodothyronine (tT3) were positively related to daily energy expenditure (DEE) and protein catabolism. Differences in levels of thyroid hormones relative to that observed in weaned pups and females suggest a greater deiodination of T4 to support the high DEE of breeding males. Relative levels of leptin and ghrelin were consistent with the suppression of appetite but a significant reduction in growth hormone across the fast was contrary to expectation in fasting mammals. The lack of the increase in cortisol during fasting found in conspecific weaned pups and lactating females may contribute to the ability of breeding males to spare protein despite high levels of energy expenditure. Together these findings reveal significant differences with conspecifics under varying nutrient demands, suggesting metabolic adaptation to extended high energy fasts.  相似文献   

3.
Adult female elephant seals (Mirounga angustirostris) combine long-term fasting with lactation and molting. Glycerol gluconeogenesis has been hypothesized as potentially meeting all of the glucose requirements of the seals during these fasts. To test this hypothesis, a primed constant infusion of [2-(14)C]glycerol was administered to 10 ten adult female elephant seals at 5 and 21-22 days postpartum and to 10 additional adult females immediately after the molt. Glycerol kinetics, rates of lipolysis, and the contribution of glycerol to glucose production were determined for each period. Plasma metabolite levels as well as insulin, glucagon, and cortisol were also measured. Glycerol rate of appearance was not significantly correlated with mass (P = 0.14, r2 = 0.33) but was significantly related to the percentage of glucose derived from glycerol (P < 0.01, r2 = 0.81) during late lactation. The contribution of glycerol to glucose production was <3% during each fasting period, suggesting a lower contribution to gluconeogenesis than is observed in other long-term fasting mammals. Because of a high rate of endogenous glucose production in fasting elephant seals, it is likely that glycerol gluconeogenesis still makes a substantial contribution to the substrate needs of glucose-dependent tissues. The lack of a relationship between glucoregulatory hormones and glycerol kinetics, glycerol gluconeogenesis, and metabolites supports the proposition that fasting elephant seals do not conform to the traditional insulin-glucagon model of substrate metabolism.  相似文献   

4.
Grey seals among other phacoids represent a good model to study the mobilisation, transfer and deposition of fat-soluble components such as vitamins in lactating females and suckling pups because during the lactation period mothers may fast completely while secreting large quantities of high fat milks, and pups deposit large amounts of fat as blubber. The level of vitamins A and E in different tissues (liver, adipose tissue, kidney, heart, skeletal muscle, testis) and blood plasma of adult grey seal females and males changed as a result of fasting and lactation; changes were also observed in pups. The most obvious effects were a significant increase of retinol and a decrease of vitamin E levels in plasma of females with the onset of lactation as well as a substantial decrease in liver vitamin E. In suckling pups both retinol and vitamin E levels in plasma increased with the onset of suckling; after weaning no changes in retinol but a significant decrease in plasma vitamin E was observed. While liver vitamin A levels tended to be unaffected by suckling or post-weaning fast, liver vitamin E levels increased with the uptake of milk substantially (P<0.01) and returned at weaning to low levels similar to that in fetuses. Adipose tissue levels of vitamin A and E in both females and pups were only marginally affected by lactation, suckling or post-weaning fast. Results indicate that both plasma and liver levels of vitamin A and E are affected by the mobilisation, absorption and deposition of these components during lactation in seals to a much greater extent than adipose tissue, from which fat-soluble vitamins are mobilized at rates similar to that of lipids.  相似文献   

5.
Long-term fasting is a component of northern elephant seal (Mirounga angustirostris) life history requiring physiological adaptations to nitrogen conservation. Plasma free amino acids (FAAs) were determined for five elephant seal pups during the second and eighth weeks of the postweaning fast, six lactating female seals at 4-6 and 25 d postpartum, and seven sexually competitive adult male seals taken midway through the breeding season. Total FAAs declined in lactating females (11%) and pups (30%) with time fasting, but cystine concentration more than doubled in pups while decreasing by approximately 43% in lactating females. Methionine concentration significantly increased (approximately 68%) across lactation in adult females but was low for all classes of seal. Alanine was the most abundant FAA in adult males, and glycine became the dominant FAA in adult females late in lactation. Glutamine dominated the FAAs of weaned pups across the fast. Reductions in total FAAs of weanlings mirrored reductions in protein catabolism, but reductions in total FAAs also occurred in lactating females concomitant with an increase in protein catabolism. Observed variation in FAA concentrations may reflect ontogenetic requirements for certain amino acids in fasting weanlings. Similarly, increases in specific FAA concentrations across lactation may reflect variations in FAA flux resulting from the nutrient demands of lactogenesis.  相似文献   

6.
Animals that endure prolonged periods of food deprivation preserve vital organ function by sparing protein from catabolism. Much of this protein sparing is achieved by reducing metabolic rate and suppressing gluconeogenesis while fasting. Northern elephant seals (Mirounga angustirostris) endure prolonged fasts of up to 3 mo at multiple life stages. During these fasts, elephant seals maintain high levels of activity and energy expenditure associated with breeding, reproduction, lactation, and development while maintaining rates of glucose production typical of a postabsorptive mammal. Therefore, we investigated how fasting elephant seals meet the requirements of glucose-dependent tissues while suppressing protein catabolism by measuring the contribution of glycogenolysis, glycerol, and phosphoenolpyruvate (PEP) to endogenous glucose production (EGP) during their natural 2-mo postweaning fast. Additionally, pathway flux rates associated with the tricarboxylic acid (TCA) cycle were measured specifically, flux through phosphoenolpyruvate carboxykinase (PEPCK) and pyruvate cycling. The rate of glucose production decreased during the fast (F(1,13) = 5.7, P = 0.04) but remained similar to that of postabsorptive mammals. The fractional contributions of glycogen, glycerol, and PEP did not change with fasting; PEP was the primary gluconeogenic precursor and accounted for ~95% of EGP. This large contribution of PEP to glucose production occurred without substantial protein loss. Fluxes through the TCA cycle, PEPCK, and pyruvate cycling were higher than reported in other species and were the most energetically costly component of hepatic carbohydrate metabolism. The active pyruvate recycling fluxes detected in elephant seals may serve to rectify gluconeogeneic PEP production during restricted anaplerotic inflow in these fasting-adapted animals.  相似文献   

7.
The effect of exclusion of individual water-soluble (thiamine, riboflavin, pyridoxine, cyanocobalamin, pantothenic acid, folic acid, niacin, biotin, choline, inositol, ascorbic acid) and fat-soluble vitamins (vit. A, D, K and E) in semi-purified diets on growth and survival of juvenile shrimp, P. monodon was studied in the laboratory for 8 weeks. Diets lacking riboflavin and vitamin K did not affect growth and survival of shrimp. However, deletion of inositol and choline resulted in poor growth. Maximum growth was observed in the control diet (C1) which was supplemented with all vitamins. Diet deficient in ascorbic acid, biotin, folic acid, niacin, thiamine and alpha-tocopherol resulted in poor appetite and poorer feed conversion efficiency. All treatments except the control (C1) resulted in histological changes in the digestive gland cells. Detachment or destruction of the epithelial cells was observed in all treatments lacking individual vitamins but more severely in the treatment without a vitamin supplement followed by inositol, choline and ascorbic acid deficient diets.  相似文献   

8.
Roje S 《Phytochemistry》2007,68(14):1904-1921
The vitamin B complex comprises water-soluble enzyme cofactors and their derivatives that are essential contributors to diverse metabolic processes in plants as well as in animals and microorganisms. Seven vitamins form this complex: B1 (thiamin (1)), B2 (riboflavin (2)), B3 (niacin (3)), B5 (pantothenic acid (4)), B6 (pyridoxine, pyridoxal (5), and pyridoxamine), B8 (biotin (6)), and B9 (folate (7)). All seven B vitamins are required in the human diet for proper nutrition because humans lack enzymes to synthesize these compounds de novo. This review aims to summarize the present knowledge of vitamin B biosynthesis in plants.  相似文献   

9.
The intra- and extracellular contents of vitamins were studied in the course of submerged cultivation of the higher basidial mushroom Pleurotus ostreatus (Jacq.: Fr.) Kummer st. IMBF-1300 on liquid nutrient media. This strain was found to be autotrophic in respect of thiamin (vitamin B1), riboflavin (vitamin B2), niacin (vitamin B5), pyridoxine (vitamin B6) and biotin (vitamin B7), but it failed to synthesize cyanocobalamin (vitamin B12). The composition and pH of the culture medium, containing such complex biostimulating supplements as maize extract and concentrated potato sap noticeably influence the contents of vitamins B1, B5 and B7 in the mycelium, and to a less degree they change the level of the intracellular biosynthesis of vitamins B2 and B6. Higher excretion of vitamins B5, B7 and especially B6 was observed on the semisynthetic media during the postexponential growth. Under experimental conditions vitamins B1 and B2 were accumulated only in the cells. The dry mycelium of P. ostreatus obtained by submerged cultivation on liquid media is a valuable source of B vitamins and, especially, of niacin. Thus the oyster mushroom and other edible mushrooms can be put at one of the top places among food-stuffs by the content of niacin.  相似文献   

10.
Summary The root exudates from seedlings of ten plant species grown under conditions of controlled environment and nutrition were biassayed for six vitamins of the B-group. Biotin was consistently present in the exudates in amounts sufficient to influence the growth of rhizosphere micro-organisms. Pantothenate and niacin were generally present, but usually at low levels unlikely to influence the microflora; riboflavin and thiamine were occasionally found in traces; pyridoxine was not detected in any root exudate.The vitamin content of the exudate varied with plant species. Field pea released large quantities of biotin, pantothenate, and niacin, but other plants including legumes, produced exudates medium to low in vitamin content and varying in relative amounts of each. Subterranean clover produced moderate amounts of vitamins, and from seed samples of graded size exuded vitamins in quantities unrelated to seed size. A comparison of five species of clover showed distinct differences in patterns of exudation in closely related plant species.Raising temperature and reducing light intensity by shading, produced only small effects upon vitamin exudation. Improved nutrient status produced marked increases in plant growth, but only small increases in amount of vitamin exuded, with pantothenate an exception tending to be released in greater amounts under unfavourable growing conditions. The presence of a root microflora caused sharp reduction in vitamin concentration of the culture solution.  相似文献   

11.
Plasma leptin levels were determined in 8 lactating female and 20 pup Antarctic fur seals (Arctocephalus gazella) during fasting periods of normal duration. Plasma leptin levels ranged from 1.35 3.19 ng x ml(-1) in lactating females and 1.79-4.80 ng x ml(-1) in pups and were not positively correlated with body mass or condition. A negative trend, however, was observed between plasma leptin levels and body condition in lactating females upon their arrival at the colony following a foraging trip (beginning of fast). In accordance with findings in other species, plasma leptin levels dropped significantly (P < 0.02) in response to the 17-19% drop in body mass experienced by pups during fasting. In contrast, plasma leptin levels in lactating females increased during the first 24 h of fasting before decreasing throughout the remaining 48 h of the fast. This unexpected result could be due to the high level of energy expenditure by seals as they swim back to the colony (i.e. post-exercise response) or may be influenced by the intense suckling activity experienced by females during the onshore fasting periods. The results of this study support recent findings in other carnivore species which suggest the primary physiological role of leptin in these species may not necessarily be as a signal of the magnitude of body energy reserves.  相似文献   

12.
Intestinal absorption of water-soluble vitamins in health and disease   总被引:1,自引:0,他引:1  
  相似文献   

13.
Postprandial cellular glucose uptake is dependent on an insulin-signaling cascade in muscle and adipose tissue, resulting in the translocation of the insulin-dependent glucose transporter 4 (Glut4) into the plasma membrane. Additionally, extended food deprivation is characterized by suppressed insulin signaling and decreased Glut4 expression. Northern elephant seals are adapted to prolonged fasts characterized by high levels of plasma glucose. To address the hypothesis that the fasting-induced decrease in insulin is associated with reduced insulin signaling in prolonged fasted seals, we compared the adipose protein levels of the cellular insulin-signaling pathway, Glut4 and plasma glucose, insulin, cortisol, and adiponectin concentrations between Early (n = 9; 2-3 wks postweaning) and Late (n = 8; 6-8 wks postweaning) fasted seals. Plasma adiponectin (230 ± 13 vs. 177 ± 11 ng/ml), insulin (2.7 ± 0.4 vs. 1.0 ± 0.1 μU/ml), and glucose (9.8 ± 0.5 vs. 8.0 ± 0.3 mM) decreased, while cortisol (124 ± 6 vs. 257 ± 30 nM) doubled with fasting. Glut4 increased (31%) with fasting despite the significant decreases in the cellular content of phosphatidylinositol 3-kinase as well as phosphorylated insulin receptor, insulin receptor substrate-1, and Akt2. Increased Glut4 may have contributed to the decrease in plasma glucose, but the decrease in insulin and insulin signaling suggests that Glut4 is not insulin-dependent in adipose tissue during prolonged fasting in elephant seals. The reduction of plasma glucose independent of insulin may make these animals an ideal model for the study of insulin resistance.  相似文献   

14.
Although most vitamins are present in a variety of foods, human vitamin deficiencies still occur in many countries, mainly because of malnutrition not only as a result of insufficient food intake but also because of unbalanced diets. Even though most lactic acid bacteria (LAB) are auxotrophic for several vitamins, it is now known that certain strains have the capability to synthesize water-soluble vitamins such as those included in the B-group (folates, riboflavin and vitamin B(12) amongst others). This review article will show the current knowledge of vitamin biosynthesis by LAB and show how the proper selection of starter cultures and probiotic strains could be useful in preventing clinical and subclinical vitamin deficiencies. Here, several examples will be presented where vitamin-producing LAB led to the elaboration of novel fermented foods with increased and bioavailable vitamins. In addition, the use of genetic engineering strategies to increase vitamin production or to create novel vitamin-producing strains will also be discussed. This review will show that the use of vitamin-producing LAB could be a cost-effective alternative to current vitamin fortification programmes and be useful in the elaboration of novel vitamin-enriched products.  相似文献   

15.
The foraging success, and thus the survival and reproductive success, of deep-diving pinnipeds such as the northern elephant seal, Mirounga angustirostris, depends on the ability to withstand repetitive breath-hold dives. Health parameters can be incorporated as potential explanatory variables for differences observed in diving and migratory performance of individual seals. Furthermore, biomedical samples from apparently healthy individuals can provide valuable baseline data for evaluating effects of natural or anthropogenic threats to individuals and populations. We evaluated 42 blood parameters in 134 northern elephant seals during the breeding and molting seasons (1992-1999) to test for age, sex, and seasonal differences and to develop reference ranges. Adult males sampled during the breeding season differed from all other adult groups for a suite of parameters often associated with inflammation, infection, or other stressors: lower hematocrit, higher white blood cell count, higher band neutrophils, higher neutrophil count, lower albumin, and lower serum iron. Adult females during the breeding season differed from all other adult categories for two parameters (lower platelet counts, lower alanine aminotransferase activity). Molting males had higher blood urea nitrogen than all other classes; creatinine did not differ between breeding and molting adult males, but was higher in males than in females in both seasons. We found significant differences among age classes for 24 of 42 parameters measured, including higher levels of triglycerides, total protein, calcium, and iron in pups than we found in juveniles or adults. Unlike other mammals which undergo substantial decreases in energy expenditure during prolonged fasting (e.g., hibernation), northern elephant seals defend territories, give birth and suckle large offspring, mate, and molt during their bi-annual fasts. Nonetheless, many studies have described physiologic homeostasis during fasting in elephant seals. The genus Mirounga is superbly adapted to going without feeding for extended periods, and this is reflected in our hematologic and serum biochemical profiles.  相似文献   

16.
Lipid metabolism is central to understanding whole‐animal energetics. Reptiles store most excess energy in lipid form, mobilise those lipids when needed to meet energetic demands, and invest lipids in eggs to provide the primary source of energy to developing embryos. Here, I review the mechanisms by which non‐avian reptiles store, transport, and use lipids. Many aspects of lipid absorption, transport, and storage appear to be similar to birds, including the hepatic synthesis of lipids from glucose substrates, the transport of triglycerides in lipoproteins, and the storage of lipids in adipose tissue, although adipose tissue in non‐avian reptiles is usually concentrated in abdominal fat bodies or the tail. Seasonal changes in fat stores suggest that lipid storage is primarily for reproduction in most species, rather than for maintenance during aphagic periods. The effects of fasting on plasma lipid metabolites can differ from mammals and birds due to the ability of non‐avian reptiles to reduce their metabolism drastically during extended fasts. The effect of fasting on levels of plasma ketones is species specific: β‐hydroxybutyrate concentration may rise or fall during fasting. I also describe the process by which the bulk of lipids are deposited into oocytes during vitellogenesis. Although this process is sometimes ascribed to vitellogenin‐based transport in reptiles, the majority of lipid deposition occurs via triglycerides packaged in very‐low‐density lipoproteins (VLDLs), based on physiological, histological, biochemical, comparative, and genomic evidence. I also discuss the evidence for non‐avian reptiles using ‘yolk‐targeted’ VLDLs during vitellogenesis. The major physiological states – feeding, fasting, and vitellogenesis – have different effects on plasma lipid metabolites, and I discuss the possibilities and potential problems of using plasma metabolites to diagnose feeding condition in non‐avian reptiles.  相似文献   

17.
The B vitamins are water-soluble vitamins required as coenzymes for enzymes essential for cell function. This review focuses on their essential role in maintaining mitochondrial function and on how mitochondria are compromised by a deficiency of any B vitamin. Thiamin (B1) is essential for the oxidative decarboxylation of the multienzyme branched-chain ketoacid dehydrogenase complexes of the citric acid cycle. Riboflavin (B2) is required for the flavoenzymes of the respiratory chain, while NADH is synthesized from niacin (B3) and is required to supply protons for oxidative phosphorylation. Pantothenic acid (B5) is required for coenzyme A formation and is also essential for alpha-ketoglutarate and pyruvate dehydrogenase complexes as well as fatty acid oxidation. Biotin (B7) is the coenzyme of decarboxylases required for gluconeogenesis and fatty acid oxidation. Pyridoxal (B6), folate and cobalamin (B12) properties are reviewed elsewhere in this issue. The experimental animal and clinical evidence that vitamin B therapy alleviates B deficiency symptoms and prevents mitochondrial toxicity is also reviewed. The effectiveness of B vitamins as antioxidants preventing oxidative stress toxicity is also reviewed.  相似文献   

18.
This study investigates the potential effects of moulting, and the concomitant period of fasting undertaken by ringed seals, on hormone, vitamin and contaminant status in adult animals in a population from Svalbard, Norway, which has relatively low contaminant levels. Concentrations of circulating total and free thyroxine and triiodothyronine, circulating and hepatic vitamin A, hepatic persistent organic pollutants and their circulating hydroxyl metabolites were higher in moulting seals compared to pre-moulting seals. The opposite trend was observed for body condition, circulating calcitriol levels and hepatic mRNA expression of thyroid hormone receptor β. No differences were observed for circulating or hepatic vitamin E levels or hepatic mRNA expressions for deioidinase 1 or 2, or retinoic acid receptor α between the two seal groups. The observed differences are likely the result of increased metabolic rates required during moulting to maintain thermal balance and replace the pelage, in combination with mobilization of lipid soluble compounds from blubber stores during the fasting period that is associated with moulting. The present study shows that contaminant levels and their relationships with physiological or endogenous variables can be highly confounded by moulting/fasting status. Thus, moulting status and body condition should be taken into consideration when using variables related to thyroid, calcium or vitamin A homeostasis as biomarkers for contaminant effects.  相似文献   

19.
Twenty-eight strains of Rhizobium spp. were tested for their ability to grow in chemically-defined medium lacking growth factors. Two strains, R. meliloti GR4B and Rhizobium spp. ( Acacia ) GRH28, were selected, on the basis of their good growth under the conditions imposed, for further quantification of the production of water-soluble vitamins (thiamine, niacin, riboflavin, pantothenic acid and biotin) in chemically defined media amended with different compounds (mannitol, glucose or sodium succinate) as sole carbon sources. Qualitative and quantitative production of vitamins in chemically-defined media was significantly affected by the use of C sources of a different nature and the age of the cultures. Strain GRH28 produced all the vitamins analysed, and high biological levels of biotin (14 ng ml–1 culture) were detected after 6 d of culture in mineral medium amended with mannitol. Pantothenic acid was the vitamin detected in the highest amounts (up to 1 μg ml–1 of culture) in culture supernatant fluids of strain GR4B grown for 6 d with succinate as sole carbon source.  相似文献   

20.
Methionine is an effective antidote in the treatment of paracetamol-induced toxicity but at large doses it has been reported to induce or aggravate a number of pathological conditions. It also alters plasma levels of many vital elements and molecules. This study was designed to identify if the alteration observed for antioxidant vitamins and minerals especially at sub-toxic and toxic levels of exposure in our earlier study of 24-hour exposure period may warrant trace elements supplementation. This was investigated by carrying out a 48-hour study to test the ability of a living organism to restore homeostasis of these vital molecules and elements. The levels of antioxidant minerals and vitamins were estimated in the serum samples obtained from adult male Wistar rats exposed to paracetamol tablets. At 100 mg\kg BW (body weight) vitamin A, niacin, riboflavin, selenium and manganese were not significantly different from the control group. Moreover at 350 mg\kg, all these indices except zinc were not significantly different in the exposed group compared with controls whereas at 1000 mg\kg level of exposure manganese, selenium and vitamin E were not significantly decreased at the end of 48 hours of exposure but copper, niacin and vitamin A were significantly increased in the exposed group compared with the controls. These results suggest that with time the body may be capable of bringing about restoration of the levels of some of these elements\vitamins. This was more evident at 350 mg\kg level of exposure than a higher dose of 1000 mg\kg level.Keywords: Paracetamol formulation, Vitamins, Trace elements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号