首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The central nervous system (CNS) utilizes anticipatory (APAs) and compensatory (CPAs) postural adjustments to maintain equilibrium while standing. It is known that these postural adjustments involve displacements of the center of mass (COM) and center of pressure (COP). The purpose of the study was to investigate the relationship between APAs and CPAs from a kinetic and kinematic perspective. Eight subjects were exposed to external predictable and unpredictable perturbations induced at the shoulder level while standing. Kinematic and kinetic data were recorded and analyzed during the time duration typical for anticipatory and compensatory postural adjustments. When the perturbations were unpredictable, the COM and COP displacements were larger compared to predictable conditions with APAs. Thus, the peak of COM displacement, after the pendulum impact, in the posterior direction reached 28 ± 9.6 mm in the unpredictable conditions with no APAs whereas it was 1.6 times smaller, reaching 17 ± 5.5 mm during predictable perturbations. Similarly, after the impact, the peak of COP displacement in the posterior direction was 60 ± 14 mm for unpredictable conditions and 28 ± 3.6 mm for predictable conditions. Finally, the times of the peak COM and COP displacements were similar in the predictable and unpredictable conditions. This outcome provides additional knowledge about how body balance is controlled in presence and in absence of information about the forthcoming perturbation. Moreover, it suggests that control of posture could be enhanced by better utilization of APAs and such an approach could be considered as a valuable modality in the rehabilitation of individuals with balance impairment.  相似文献   

2.
It was recently shown that short-term changes in the whole body mass and associated changes in the vertical position of the center of mass (COM) modify anticipatory postural adjustments (APAs) [Li X, Aruin AS. The effect of short-term changes in the body mass on anticipatory postural adjustments. Exp Brain Res 2007;181:333–46]. In this study, we investigated whether changes in the body mass distribution and related changes in the anterior–posterior COM position affect APA generation. Fourteen subjects were instructed to catch a 2.2 kg load with their arms extended while standing with no additional weight or while carrying a 9.08 kg weight. Adding weight to a backpack, front pack or belly pocket was associated with an increase of the whole body mass, but it also involved changes in the anterior–posterior (A/P) and vertical positions of the COM. Electromyographic activity of leg and trunk muscles, body kinematics, and ground reaction forces were recorded and quantified within the typical time intervals of APAs. APAs were modified in conditions with changed body mass distribution: increased magnitude of anticipatory EMG activity in leg and trunk muscles, as well as co-activation of leg muscles and decreased anticipatory displacement of the COM in the vertical direction, were seen in conditions with increased body mass. Changes in the COM position induced in both A/P and vertical directions were associated with increased anticipatory EMG activity. In addition, they were linked to a co-activation of muscles at the ankle joints and significant changes in the center of pressure (COP) position. Modifications of the COM position induced in the A/P direction were related to increased anticipatory EMG activity in the leg and trunk muscles. At the same time, no significant differences in anticipatory EMG activity or displacement of COP were observed when changes of COM position were induced in the vertical direction. The study outcome suggests that the CNS uses different strategies while generating APAs in conditions with changes in the COM position induced in the anterior–posterior and vertical directions.  相似文献   

3.
Anticipatory postural adjustments (APAs) play an important role in the performance of many activities requiring the maintenance of standing posture. However, little is known about if and how children with cerebral palsy (CP) generate APAs. Two groups of children with CP (hemiplegia and diplegia) and a group of children with typical motor development performed arm flexion and extension movements while standing on a force platform. Electromyographic activity of six trunk and leg muscles and displacement of center of pressure (COP) were recorded. Children with CP were able to generate anticipatory postural adjustments and produce directionally specific APAs and COP displacements similar to those described in adults and typically developing children. However, children with diplegia were unable to generate APAs of the same magnitude as children with typical development and hemiplegia and had higher baseline muscle activity prior to movement. In children with diplegia, COP was posteriorly displaced and peak acceleration was smaller during bilateral extension compared to children with hemiplegia. The outcomes of the study highlight the role of APAs in the control of posture of children with CP and point out the similarities and differences in anticipatory control in children with diplegia and hemiplegia. These differences may foster ideas for treatment strategies to enhance APAs in children with CP.  相似文献   

4.
ObjectiveTo provide normative postural stability data in young subjects.MethodsNinety-six healthy participants (58 W, 28 ± 6y) stood on a force plate during 60 s. We measured effects of support width (feet apart, FA; feet together, FT), vision (eyes open, EO; closed, EC), and cognitive load (single task, ST; dual tasking, DT) on anteroposterior (AP) and medio-lateral (ML) ranges, area and planar velocity of center of pressure (COP) trajectory.ResultsAll variables increased with FT (AP range, +15%; ML, +185%; area, +242%; velocity, +50%, p < 0.0002 for all, MANOVA). Visual deprivation increased COP ranges with added constraints (FT or DT, p = 0.002) and increased velocity in all conditions (FA/ST, +16%; DT, +18%; FT/ST, +29%; DT, +23%, p < 0.0002 for all). Dual tasking reduced COP displacements with FT (AP range, EO, −15%; EC, −11%; ML range, EO, −19%; EC, −13%; area, EO, −40%; EC, −28%, p < 0.0002 for all) and increased velocity in most conditions (FA/EO, +15%; FA/EC, +16%; FT/EO, +7%, p < 0.0002 for all).ConclusionIn young healthy adults, base of support reduction increases COP displacements. Vision particularly affects postural stability with feet together or dual tasking. Dual tasking increases velocity but decreases COP displacements in challenging postural tasks, potentially by enhanced lower limb stiffness.  相似文献   

5.
Standing on wedges changes the position in the ankle joints and affects postural stability in the medial-lateral direction. The objective of the study was to investigate the role of wedges and external lateral perturbations on anticipatory (APA) and compensatory postural adjustments (CPA). Ten healthy young participants were exposed to perturbations applied to the lateral part of their right shoulder when standing on a planar surface, on a medial or lateral wedges. Bilateral electromyographic activity of dorsal and ventral postural muscles and the center of pressure (COP) displacement were recorded and analyzed during the APA and CPA phases. When exposed to the lateral perturbation, reciprocal activation of shank muscles was seen on the side of the perturbation while co-contraction of shank muscles was seen on the contralateral side during the APA and CPA phases. Standing on a wedge was associated with decreased magnitudes of co-contraction and reciprocal activation of shank muscles. The COP displacements were smaller in the APA phase and larger in the CPA phase while standing on wedges compared to standing on the planar surface. The outcome of the study provides a basis for future investigations of incorporating wedges in balance re-training paradigms for the elderly or individuals with neurological impairment.  相似文献   

6.
Voluntary movements of the upper body are accompanied by anticipatory postural adjustments to the lower body in a standing subject. The long-standing hypothesis is that these anticipatory adjustments serve to counteract the perturbation to the body's center of gravity caused by the voluntary arm movement. This paper presents model simulations investigating the possible roles of anticipatory postural activity that accompanies a rapid, upward arm swing. The model encorporates two (idealized) antagonistic muscle pairs controlling the movements of a double-joint system, with a shoulder joint between the arm and stiff body links, and an ankle joint between the stiff body-leg segment and the ground. Each muscle is represented by a nonlinear viscoelastic element and also includes proprioceptive feedback. Four inputs to the model define the motor control signals for muscle force generation in both the arm and the postural muscle pairs. The neurological component of the model describes consequences of alternate strategies for cocontractions, stretch reflex activity, and anticipatory and synchronous postural activities (or combinations thereof). Simulations with this model show that: (1) none of the postural maintenance schemes considered in these simulations (including varying anticipation) could suppress the initial backward thrust on the body link; (2) the more important destabilizing perturbation is a subsequent forward sway that, left uncountered by postural activity, would eventually leave the body to fall flat on its face; and (3) anticipatory silencing of the postural extensor followed by a brief period of extensor activation (descending control) and synchronous reflex activity (feedback control) appears to be the most likely postural stabilizing strategy that inhibits the continuous forward sway and is consistent with the experimental evidence.  相似文献   

7.
Anticipatory (APAs) and compensatory (CPAs) postural adjustments are the two principal mechanisms that the central nervous system uses to maintain equilibrium while standing. We studied the role of APAs in compensatory postural adjustments. Eight subjects were exposed to external predictable and unpredictable perturbations induced at the shoulder level, while standing with eyes open and closed. Electrical activity of leg and trunk muscles was recorded and analyzed during four epochs representing the time duration typical for anticipatory and compensatory postural control. No anticipatory activity of the trunk and leg muscles was seen in the case of unpredictable perturbations; instead, significant compensatory activation of muscles was observed. When the perturbations were predictable, strong anticipatory activation was seen in all the muscles: such APAs were associated with significantly smaller compensatory activity of muscles and COP displacements after the perturbations.The outcome of the study highlights the importance of APAs in control of posture and points out the existence of a relationship between the anticipatory and the compensatory components of postural control. It also suggests a possibility to enhance balance control by improving the APAs responses during external perturbations.  相似文献   

8.
There is still conflicting evidence about the influence of fatigue on trunk reflex activity. The aim of this study was to measure response latency and amplitude changes of lumbar and abdominal muscles after heavy external force perturbation applied to the trunk in the sagittal plane before and after back muscle fatigue, in expected and unexpected conditions. Ten healthy subjects in a semi-seated position, torso upright in a specific apparatus performed an intermittent back muscle fatigue protocol. EMG reflex activity of erector spinae (ES) and external oblique muscles were recorded in unexpected and in expected (self pre-activation) conditions. After fatigue, the normalized reflex amplitude of ES increased in expected and unexpected conditions (P < 0.05) while ES response latency was slightly decreased. Reflexes latencies for ES were systematically shorter (P < 0.05) of 25% in expected compared to unexpected conditions. These findings suggest that a large external force perturbation would elicit higher paraspinal magnitude responses and possible earlier activation in order to compensate the loss of muscular force after fatigue. Because of the seated position the postural adjustments were probably not triggered and thus explain the lack of abdominal activation. The self-anticipated pre-activation in order to counteract perturbations was not affected by fatigue illustrating the natural muscular activation to maintain trunk stability.  相似文献   

9.
The study investigates the role of lateral muscles and changing stance conditions in anticipatory postural adjustments (APAs). Subjects stood laterally to an aluminum pendulum released by an experimenter and were required to stop it with their right or left hand. Stance conditions were manipulated by having the subjects stand in the following positions: on a single limb (SS), with feet together (narrow base of support, NB), and with feet shoulder width apart (regular base of support, RB). Bilateral EMG activity of dorsal, ventral, and lateral trunk and leg muscles and ground reaction forces were recorded and quantified within the time intervals typical of APAs. Anticipatory postural adjustments were seen in all experimental conditions, and their magnitudes depended on the stance and the side of perturbation. Accordingly, APAs in lateral muscles increased on the side of perturbation in SS condition, while simultaneous activation of dorsal muscles occurred on the contralateral side. Smaller APAs were seen in lateral muscles in conditions with a wider base of support (NB, RB) and APAs in dorsal muscles were smaller in NB – in comparison to RB – stance. The results of the present study provide new data on the role of lateral, ventral, and dorsal muscles in anticipatory postural control when dealing with lateral perturbations in conditions of postural instability.  相似文献   

10.
Disturbances to balance arising from forces applied to the upper limb have received relatively little attention compared to disturbances arising from support surface perturbations. In this study we applied fast ramp perturbations to the hand in anterior, posterior, medial and lateral directions. The effects of perturbation predictability and amplitude on the postural response of upper limb, trunk and lower limb muscles were investigated. Perturbations were applied either in blocks of constant amplitude and direction (predictable) or with direction and amplitude varying randomly (random) from trial to trial. The spatial-temporal patterns of anticipatory muscle activation under the predictable condition and the reactionary responses following the perturbation under both conditions were similarly organized. The size of the response increased systematically with the perturbation magnitude for both anticipatory and reactionary changes in muscle activation. However, the slope of the relation between perturbation amplitude and the magnitude of the change in muscle activation was greater when perturbations were predictable than when they were randomly selected. The timing of both the anticipatory and reactionary increases in muscle activation was invariant across perturbation amplitudes. The characteristics of the reactionary responses have a similar organization to the long latency muscle responses to support surface perturbations.  相似文献   

11.
The purpose of this study was to determine whether changes in the amplitude of a motor action triggering the same perturbation affect anticipatory postural adjustments (APAs). Healthy subjects performed releases of the same load with shoulder abduction movements of different amplitudes. Changes in the electrical activity of trunk and leg muscles, as well as displacements of the center of pressure were recorded. Generally, there were no differences in anticipatory activity of muscles and displacements of the center of pressure between series of load releases induced by motor actions of different amplitudes. We suggest that the CNS arranges APAs based on the magnitude of the perturbation if the same muscle groups generate motor actions of different amplitudes.  相似文献   

12.
Technical advancements in instrumentation and analytical methods have improved the ability of assessing balance control. This study investigated the effects of early stages of aging on postural sway using traditional and contemporary postural indices from different domains. Eleven healthy young adults and fourteen healthy non-faller older adults performed two postural tasks: (a) functional limits of stability and (b) unperturbed bipedal stance for 120 s. Postural indices from spatial, temporal, frequency, and structural domains were extracted from the body’s center of pressure (COP) signals and its Rambling and Trembling components. Results revealed a preservation of functional limits of upright stability in older adults accompanied by larger, faster, and shakier body sway in both anterior-posterior and medio-lateral directions; increased medio-lateral sway frequency; increased irregularity of body sway pattern in time in both directions; and increased area, variability, velocity, and jerkiness of both rambling and trembling components of the COP displacement in the anterior-posterior direction (p < 0.02). Such changes might be interpreted as compensatory adjustments to the age-related decline of sensory, neural, and motor functions. In conclusion, balance assessment using postural indices from different domains extracted from the COP displacement was able to capture subtle effects of the natural process of aging on the mechanisms of postural control. Our findings suggest the use of such indices as potential markers for postural instability and fall risk in older adults.  相似文献   

13.
Walking in even the most familiar environment posesses a challenge to humans due to continuously changing surface conditions such as compliance, slip, or level. These changes can be visible or invisible due to camouflage. In order to prevent falling, camouflaged changes in the ground level in particular require a quick response of the locomotor system. For ten subjects we investigated kinematics and ground reaction forces of two consecutive contacts while they were walking across visible (drops of 0, −5 and −10 cm at second contact) and camouflaged (drops of 0 or −5 cm, and drops of 0 or −10 cm at second contact) changes in the ground level. For both situations we found significant kinetic and kinematic adjustments during the perturbed second contact but also one step earlier, in the preparatory first contact. During walking across visible changes in the ground level, second peak ground reaction force at first contact decreased whereas the drop height increased at the second contact. In addition, at the end of this first contact the ankle and knee were more flexed and the trunk was more erect compared to level walking. During the perturbed second contact, first peak ground reaction force increased with drop height, whereas kinematic adjustments at touchdown were less. The visual perception of the perturbation facilitated prior adaptations. During walking across camouflaged changes in ground level such a visually guided preadaptation was not possible and the adaptations prior to the perturbation were less than those observed during walking across visible changes in the ground. However, when stepping into a camouflaged drop, the kinetic and kinematic adjustments became more obvious and they increased with increasing camouflaged drop height.  相似文献   

14.
Gait initiation is the task commonly used to investigate the anticipatory postural adjustments necessary to begin a new gait cycle from the standing position. In this study, we analyzed whether and how foot-floor interface characteristics influence the gait initiation process. For this purpose, 25 undergraduate students were evaluated while performing a gait initiation task in three experimental conditions: barefoot on a hard surface (barefoot condition), barefoot on a soft surface (foam condition), and shod on a hard surface (shod condition). Two force plates were used to acquire ground reaction forces and moments for each foot separately. A statistical parametric mapping (SPM) analysis was performed in COP time series. We compared the anterior-posterior (AP) and medial-lateral (ML) resultant center of pressure (COP) paths and average velocities, the force peaks under the right and left foot, and the COP integral x force impulse for three different phases: the anticipatory postural adjustment (APA) phase (Phase 1), the swing-foot unloading phase (Phase 2), and the support-foot unloading phase (Phase 3). In Phase 1, significantly smaller ML COP paths and velocities were found for the shod condition compared to the barefoot and foam conditions. Significantly smaller ML COP paths were also found in Phase 2 for the shod condition compared to the barefoot and foam conditions. In Phase 3, increased AP COP velocities were found for the shod condition compared to the barefoot and foam conditions. SPM analysis revealed significant differences for vector COP time series in the shod condition compared to the barefoot and foam conditions. The foam condition limited the impulse-generating capacity of COP shift and produced smaller ML force peaks, resulting in limitations to body-weight transfer from the swing to the support foot. The results suggest that footwear and a soft surface affect COP and impose certain features of gait initiation, especially in the ML direction of Phase 1.  相似文献   

15.
This study compared the effect of local and general fatiguing exercise on disturbed and static postural control performances. Surface electromyography and center of pressure signals were respectively recorded during self-initiated perturbation test and static postural stability test from 7 young male subjects. Local fatiguing exercise was performed using intermittent isometric knee extensions at the level of 40% of maximal voluntary torques. General fatiguing exercise was implemented with rowing ergometer at a speed of 200 ± 5 m/min. Results of disturbed postural tests showed no significant change of anticipatory postural adjustment (APAs) organizations in individual muscles following both fatiguing exercises, but observed larger APAs coactivations in trunk and dorsal muscle pairs following local than general fatiguing exercise, and larger compensatory postural adjustments (CPAs) coactivation in dorsal muscle pair after both fatiguing exercises. In addition, the results of static postural tests indicated efficient static postural stability accompanying the down-weighting of visual input and the up-weighting of vestibular/somatosensory component following both fatiguing exercises. These findings evidenced a general compensation in the central nervous system in response to the neuromuscular deficiencies induced by local fatiguing exercise and put forward the function of sensory recalibration in maintaining postural stability under fatigue conditions.  相似文献   

16.
Anticipation of the actions of others is often used as a measure of action understanding in infancy. In contrast to studies of action understanding which set infants up as observers of actions directed elsewhere, in the present study we explored anticipatory postural adjustments made by infants to one of the most common adult actions directed to them – picking them up. We observed infant behavioural changes and recorded their postural shifts on a pressure mat in three phases: (i) a prior Chat phase, (ii) from the onset of Approach of the mother’s arms, and (iii) from the onset of Contact. In Study 1, eighteen 3-month-old infants showed systematic global postural changes during Approach and Contact, but not during Chat. There was an increase in specific adjustments of the arms (widening or raising) and legs (stiffening and extending or tucking up) during Approach and a decrease in thrashing/general movements during Contact. Shifts in postural stability were evident immediately after onset of Approach and more slowly after Contact, with no regular shifts during Chat. In Study 2 we followed ten infants at 2, 3 and 4 months of age. Anticipatory behavioural adjustments during Approach were present at all ages, but with greater differentiation from a prior Chat phase only at 3 and 4 months. Global postural shifts were also more phase differentiated in older infants. Moreover, there was significantly greater gaze to the mother’s hands during Approach at 4 months. Early anticipatory adjustments to being picked up suggest that infants’ awareness of actions directed to the self may occur earlier than of those directed elsewhere, and thus enable infants’ active participation in joint actions from early in life.  相似文献   

17.
Process of enzyme assisted extraction (EAE) of polysaccharides from Cornus officinalis was optimized by response surface methodology (RSM). The influence of four different factors on the yield of C. officinalis polysaccharides (COP) was studied. Results showed that the optimal conditions were compound enzyme amount of 2.15%, extraction pH of 4.2, extraction temperature of 55 °C and extraction time of 97 min. Under these conditions, the COP yield was 9.29 ± 0.31%, which was well in agreement with the value predicted by the model. The three methods, EAE, hot water extraction (HWE), ultrasound-assisted extraction (UAE) for extracting COP by RSM were further compared. Results showed that EAE had the largest yield of polysaccharides with lower equipment cost.  相似文献   

18.
Several endocrine parameters commonly measured in plasma, such as steroid hormones, can be measured in the oral fluid. However, there are several technical aspects of saliva sampling and processing that can potentially bias the validity of salivary testosterone measurement. The aim of this study was to evaluate the effects caused by repeated sampling; 5 min centrifugation (at 2000, 6000 or 10,000g); the stimulation of saliva flow by a cotton swab soaked in 2% citric acid touching the tongue; different storage times and conditions as well as the impact of blood contamination on salivary testosterone concentration measured using a commercially available ELISA kit. Fresh, unprocessed, unstimulated saliva samples served as a control. Salivary testosterone concentrations were influenced neither by repeated sampling nor by stimulation of salivary flow. Testosterone levels determined in samples stored in various laboratory conditions for time periods up to 1 month did not differ in comparison with controls. For both genders, salivary testosterone levels were substantially reduced after centrifugation (men F = 29.1; women F = 56.17, p < 0.0001). Blood contamination decreased salivary testosterone levels in a dose-dependent manner (men F = 6.54, p < 0.01, F = 5.01, p < 0.05). Salivary testosterone can be considered A robust and stable marker. However, saliva processing and blood leakage can introduce bias into measurements of salivary testoterone using ELISA. Our observations should be considered in studies focusing on salivary testosterone.  相似文献   

19.
The study investigated relations between effects of repeated ankle plantar-flexion movements exercise on the soleus Hoffmann (H) reflex and on postural body sway when maintaining upright stance. Ten young volunteers performed five sets of ankle plantar-flexions of both lower limbs. Assessment of the feet centre-of-pressure (COP) displacement and H-reflex tests were carried out in quiet stance before, during and after the exercise. H-max and M-max responses were obtained in 8 subjects and reported as the peak-to-peak amplitudes of the right soleus muscle electromyographic waves. Mean dispersion of COP along the antero-posterior direction increased significantly during the exercise; whilst the overall H-reflex response indicated a reduction without a concomitant modification in the M-max response. H-reflex responses, however, varied between participants during the first sets of exercise, showing two main trends of modulation: either depression or early facilitation followed by reduction of the H-reflex amplitude. The extent of reflex modulation in standing position was correlated to the concentric work performed during the exercise (r = 0.85; p < 0.01), but not to the antero-posterior COP dispersion. These results suggest that during a repeated ankle plantar-flexions exercise, modulation of the H-reflex measured in upright stance differs across individuals and is not related to changes of postural sway.  相似文献   

20.

Introduction

Frequent falls are one of the most important health problems in the elderly population. The unipedal stance test (UPST), asses postural stability and is used in fall risk measures. Despite this, there is little information about its relationship with posturographic parameters (PP) that characterizes postural stability. Center of pressure velocity (CoPV) is one of the best PP that describes postural stability. The aim of this study was to analyze the relation between UST score and CoPV in elderly population.

Materials and methods

A sample of 38 healthy elderly subjects where divided in two groups according to their UPST score, low performance (LP, n = 11) and high performance (HP, n = 27). The correlation between UPST score and COP mean velocity (CoPmV), recorded from a posturographic test, was analyzed between both groups.

Results

An inverse correlation between UPST score and CoPmV was found in both groups. However, this was higher in the LP group (r = −0.69, P = .02) compared to the HP (r = −0.39, P = .04).

Conclusions

Based on the results of this investigation, it may be concluded that the achievement on UPST has an inverse relationship with CoPmV, especially in subjects with low performance in the UPST.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号