首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The restriction fragments polymorphisms of the mitochondrial DNA and the PCR fragment that comprised the internal transcribes spacers and the 5.8S rRNA gene, together with the electrophoretic karyotypes of 40 strains from the 10 species of the genus Zygosaccharomyces, including the new species Z. lentus were examined. The RFLP's of the ITS-5.8S region showed a specific restriction pattern for each species, including the new species Z. lentus. The only exception were the species Z. cidri and Z. fermentati that produced identical restriction profiles. The electrophoretic chromosome patterns confirmed the differences between the species of this genus, including the phylogenetic closest species Z. cidri and Z. fermentati. They present few chromosomes ranging from 3 bands (4 or 5 chromosomes) for Z. florentinus to 7 bands (8 to 10 chromosomes) for Z. cidri and Z. fermentati. The strain level resolution power of RFLP's of mtDNA of this genus enabled the characterisation of strains from the same species, even where they are isolated from the same substrate. However, in the cases of Z. bailii and Z. lentus, electrophoretic karyotyping there was considerable variation.  相似文献   

2.
To date, there are no data available on the population genetics of Trichinella due to the lack of genetic markers and the difficulty of working with such small parasites. In the Arctic region of North America and along the Rocky Mountains, there exist two genotypes of Trichinella, Trichinella nativa and Trichinella T6, respectively, which are well differentiated by biochemical and molecular characters. However, both are resistant to freezing, show other common biological characters (e.g. low or no infectivity to rodents and swine) and produce fertile F1 offspring upon interbreeding. To data, these two genotypes have been considered allopatric. In this study, we detected both genotypes in wolves of the same wolf packs in Alaska, suggesting sympatry. A single GTT trinucleotide present in the ITS-2 sequence of T. nativa but not in Trichinella T6 was used as a genetic marker to study gene flow for this character in both a murine infection model and in larvae from naturally-infected Alaskan wolves. Only F1 larvae originating from a cross between T. nativa male and Trichinella T6 female were able to produce F2 offspring. Larvae (F1) originating from a cross between Trichinella T6 male and T. nativa female were not reproductively viable. As expected, all F1 larvae showed a heterozygote pattern for the GTT character upon heteroduplex analysis; however, within the F2 population, the number of observed heterozygotes (n=52) was substantially higher than expected (n=39.08), as supported by the F(is) index, and was not in the Hardy-Weinberg equilibrium. Larvae from two of the 16 Trichinella positive Alaskan wolves, showed the Trichinella T6 pattern or the T. nativa/Trichinella T6 hybrid pattern. Our data demonstrate that T. nativa and Trichinella T6 live in sympatry at least in Alaskan wolves, where T. nativa occurs more frequently (69%) than Trichinella T6 (31%). One explanation for this phenomenon is that glacial periods may have caused a geographical relocation, colonisation and independent evolution of T. nativa within the Rocky Mountains, resulting in a bifurcation of the freeze-resistant genotype. Additional studies will be required to test this hypothesis.  相似文献   

3.
Electrophoretic analysis of esterase, acid phosphatase, lactate dehydrogenase, glucose-6-phosphate dehydrogenase and alcohol dehydrogenase isoenzymes was performed in 39 strains classified into six species of the yeast genus Zygosaccharomyces. The electrophoretic profiles obtained allowed the clear separation of Z. bailii, Z. bisporus, Z. florentinus, Z. lentus, Z. mellis and Z. rouxii, strains of the latter species clustering into two subgroups. Furthermore, this methodology enabled the detection of misidentified strains, as subsequently confirmed by DNA-DNA reassociation and sequencing of the D1/D2 domain of the 26S rRNA gene. Cluster analysis of the global electrophoretic data and those obtained using only two of the isoenzyme systems, esterase and lactate dehydrogenase, yielded similar grouping of the strains examined, indicating that these enzymes are good markers for the differentiation of Zygosaccharomyces species.  相似文献   

4.
Rare and threatened subarctic willow scrub communities in the UK are the subject of ongoing conservation programmes, yet little is known about the diversity of fungal taxa that they support. Isolates of the rust genus Melampsora were sampled from 112 leaves of eight subarctic willow (Salix) taxa and their hybrids from twelve sites in the UK. In order to determine the number of Melampsora taxa present in the samples, isolates were sequenced for the Internal Transcribed Spacer (ITS) region of rDNA and data were subject to phylogenetic analysis. Maximum likelihood and Bayesian analysis indicated that the isolates fell into three strongly supported host-associated clades. Clade I contained only isolates from Salix herbacea and was distinguished morphologically by dense urediniospore echinulation and thin cell walls. Clade II contained isolates from Salix arbuscula and Salix reticulata only. These could not be distinguished morphologically from isolates in Clade III which were found on Salix lapponum, Salix myrsinites, Salix myrsinifolia, Salix aurita, Salix lanata, and their hybrids. Clade II was most distinct in ITS sequence, differing by 50 bases from Clades I and III, while the latter clades differed in sequence by only 24 bases on average. Clades I and III are likely to represent the previously recognised taxa Melampsora alpina Juel 1894 and Melampsora epitea Thüm. 1879 respectively, but Clade II has not apparently been described before. Significant differences in the intensity of infection by isolates of Clade III were found among different Salix species at a single site, suggesting either differences in resistance among Salix taxa, or the presence of further cryptic taxa within Clade III. The study illustrates the power of molecular phylogenetic analysis to reveal cryptic biodiversity within Melampsora, and suggests that conserving Salix host diversity within subarctic willow communities will ensure that a diversity of associated Melampsora taxa is maintained.  相似文献   

5.
The genomes of Trypanosoma brucei, Trypanosoma cruzi and Leishmania major have been sequenced, but the phylogenetic relationships of these three protozoa remain uncertain. We have constructed trypanosomatid phylogenies based on genes for glycosomal glyceraldehyde phosphate dehydrogenase (gGAPDH) and small subunit ribosomal RNA (SSU rRNA). Trees based on gGAPDH nucleotide and amino acid sequences (51 taxa) robustly support monophyly of genus Trypanosoma, which is revealed to be a relatively late-evolving lineage of the family Trypanosomatidae. Other trypanosomatids, including genus Leishmania, branch paraphyletically at the base of the trypanosome clade. On the other hand, analysis of the SSU rRNA gene data produced equivocal results, as trees either robustly support or reject monophyly depending on the range of taxa included in the alignment. We conclude that the SSU rRNA gene is not a reliable marker for inferring deep level trypanosome phylogeny. The gGAPDH results support the hypothesis that trypanosomes evolved from an ancestral insect parasite, which adapted to a vertebrate/insect transmission cycle. This implies that the switch from terrestrial insect to aquatic leech vectors for fish and some amphibian trypanosomes was secondary. We conclude that the three sequenced pathogens, T. brucei, T. cruzi and L. major, are only distantly related and have distinct evolutionary histories.  相似文献   

6.
Molecular phylogenetic evidence indicates that the octocoral family Alcyoniidae is highly polyphyletic, with genera distributed across Octocorallia in more than 10 separate clades. Most alcyoniid taxa belong to the large and poorly resolved Holaxonia–Alcyoniina clade of octocorals, but members of at least four genera of Alcyoniidae fall outside of that group. As a first step towards revision of the family, we describe a new genus, Parasphaerasclera gen. n., and family, Parasphaerascleridae fam. n., of Alcyonacea to accommodate species of Eleutherobia Pütter, 1900 and Alcyonium Linnaeus, 1758 that have digitiform to digitate or lobate growth forms, completely lack sclerites in the polyps, and have radiates or spheroidal sclerites in the colony surface and interior. Parasphaerascleridae fam. n. constitutes a well-supported clade that is phylogenetically distinct from all other octocoral taxa. We also describe a new genus of Alcyoniidae, Sphaerasclera gen. n., for a species of Eleutherobia with a unique capitate growth form. Sphaerasclera gen. n. is a member of the Anthomastus–Corallium clade of octocorals, but is morphologically and genetically distinct from Anthomastus Verrill, 1878 and Paraminabea Williams & Alderslade, 1999, two similar but dimorphic genera of Alcyoniidae that are its sister taxa. In addition, we have re-assigned two species of Eleutherobia that have clavate to capitate growth forms, polyp sclerites arranged to form a collaret and points, and spindles in the colony interior to Alcyonium, a move that is supported by both morphological and molecular phylogenetic evidence.  相似文献   

7.
8.
A broad multilocus phylogenetic analysis (MLPA) of the representative diversity of a genus offers the opportunity to incorporate concatenated inter-species phylogenies into bacterial systematics. Recent analyses based on single housekeeping genes have provided coherent phylogenies of Aeromonas. However, to date, a multi-gene phylogenetic analysis has never been tackled. In the present study, the intra- and inter-species phylogenetic relationships of 115 strains representing all Aeromonas species described to date were investigated by MLPA. The study included the independent analysis of seven single gene fragments (gyrB, rpoD, recA, dnaJ, gyrA, dnaX, and atpD), and the tree resulting from the concatenated 4705 bp sequence. The phylogenies obtained were consistent with each other, and clustering agreed with the Aeromonas taxonomy recognized to date. The highest clustering robustness was found for the concatenated tree (i.e. all Aeromonas species split into 100% bootstrap clusters). Both possible chronometric distortions and poor resolution encountered when using single-gene analysis were buffered in the concatenated MLPA tree. However, reliable phylogenetic species delineation required an MLPA including several “bona fide” strains representing all described species.  相似文献   

9.
A close genetic relationship among strains of Oerskovia turbata, O. xanthineolytica and various coryneforms is indicated by DNA-DNA reassociation studies. O. xanthineolytica shares high homology values (over 60%) with Cellulomonas cartae, Nocardia cellulans, Brevibacterium fermentans and Corynebacterium manihot. O. turbata and other cellulomonads show lower DNA homology values (20–25%) which are still high enough, however, to indicate a relationship at the genus level. Based on these data and supported by comparative analysis of the ribosomal 16 S RNA and the similarity of peptidoglycan types, the transfer of Oerskovia species into the genus Cellulomonas is justified.This paper is respectively dedicated to our teacher and mentor, Professor Dr. O. Kandler, on the occasion of his 60th birthday.  相似文献   

10.
Although the deserts of North America are of very recent origin, their characteristic arid-adapted endemic plant lineages have been suggested to be much older. Earlier researchers have hypothesized that the ancestors of many of these modern desert lineages first adapted to aridity in highly localized arid or semi-arid sites as early as the late Cretaceous or early Tertiary, and that these lineages subsequently spread and diversified as global climate became increasingly arid during the Cenozoic. No study has explicitly examined these hypotheses for any North American arid-adapted plant group. The current paper tests these hypotheses using the genus Tiquilia (Boraginaceae), a diverse North American desert plant group. A strongly supported phylogeny of the genus is estimated using combined sequence data from three chloroplast markers (matK, ndhF, and rps16) and two nuclear markers (ITS and waxy). Ages of divergence events within the genus are estimated using penalized likelihood and a molecular clock approach on the ndhF tree for Tiquilia and representative outgroups, including most of the major lineages of Boraginales. The dating analysis suggests that the stem lineage of Tiquilia split from its nearest extant relative in the Paleocene or Eocene ( approximately 59-48 Ma). This was followed by a relatively long period before the first divergence in the crown group near the Eocene/Oligocene boundary ( approximately 33-29 Ma), shortly after the greatest Cenozoic episode of rapid aridification. Divergence of seven major lineages of Tiquilia is dated to the early-to-mid Miocene ( approximately 23-13 Ma). Several major lineages show a marked increase in diversification concomitant with the onset of more widespread semi-arid and then arid conditions beginning in the late Miocene ( approximately 7 Ma). This sequence of divergence events in Tiquilia agrees well with earlier researchers' ideas concerning North American desert flora assembly.  相似文献   

11.
Twenty-seven strains of Leishmania infantum from north and central Tunisia belonging to the three main MON zymodemes (the MON-typing system is based on multilocus enzyme electrophoresis (MLEE) of 15 enzymes) found in this country (MON-1, MON-24 and MON-80) and representing different pathologies (visceral, cutaneous and canine leishmaniasis) have been studied to understand the genetic polymorphism within this species. Intraspecific variation could be detected in L. infantum by the use of 14 hypervariable microsatellite markers. In addition to microsatellite repeat length variation, a high degree of allelic heterozygosity has been observed among the strains investigated, suggestive of sexual recombination within L. infantum groups. The two major clusters found by using Bayesian statistics as well as distance analysis are consistent with the classification based on isoenzymes, dividing Tunisian L. infantum into MON-1 and MON-24/MON-80. Moreover, the existence of hybrid strains between the MON-1 and the non-MON-1 populations has been shown and verified by analysis of clones of one of these strains. Substructure analysis discriminated four groups of L. infantum. The major MON-1 cluster split into two groups, one comprising only Tunisian strains and the second both Tunisian and European strains. The major MON-24 cluster was subdivided into two groups with geographical and clinical feature correlations: a dermotropic group of strains mainly from the north, and a viscerotropic group of strains from the centre of Tunisia. The four viscerotropic hybrid strains all originated from central Tunisia and were typed by MLEE as MON-24 or MON-80. To our knowledge, this is the first report describing relationships between clinical picture and population substructure of L. infantum MON-24 based on genotype data, as well as the existence of hybrids between zymodemes MON-1 and MON-24/MON-80, and proving one of these hybrid strains by molecular analysis of the parent strain and its clones.  相似文献   

12.
In a previous report (Luyo-Acero et al., 2004), we demonstrated that cytochrome b (Cyt b) gene analysis is an effective method for classifying several isolates of the genus Leishmania; hence, we have further applied this method to other Leishmania species in an effort to enhance the accuracy of the procedure and to construct a new phylogenic tree. In this study, a total of 30 Leishmania and Endotrypanum WHO reference strains, clinical isolates from our patients assigned to 28 strains (human and non-human pathogenic species) and two species of the genus Endotrypanum were analyzed. The Cyt b gene in each sample was amplified by PCR, and was then sequenced by several primers, as reported previously. The phylogenic tree was constructed based on the results obtained by the computer software MEGA v3.1 and PAUP* v4.0 Beta. The present phylogenic tree was almost identical to the traditional method of classification proposed by Lainson and Shaw (1987). However, it produces the following suggestions: (1) exclusion of L. (Leishmania) major from the L. (L.) tropica complex; (2) placement of L.tarentolae in the genus Sauroleishmania; (3) L. (L.) hertigi complex and L. (V.) equatorensis close to the genus Endotrypanum; (4) L. (L.) enrietti, defined as L. (L.) mexicana complex, placed in another position; and (5) L. (L.) turanica and L. (L.) arabica are located in an area far from human pathogenic Leishmania strains. Cyt b gene analysis is thus applicable to the analyzing phylogeny of the genus Leishmania and may be useful for separating non-human pathogenic species from human pathogenic species.  相似文献   

13.

Background and Aims

Pteris (Pteridaceae), comprising over 250 species, had been thought to be a monophyletic genus until the three monotypic genera Neurocallis, Ochropteris and Platyzoma were included. However, the relationships between the type species of the genus Pteris, P. longifolia, and other species are still unknown. Furthermore, several infrageneric morphological classifications have been proposed, but are debated. To date, no worldwide phylogenetic hypothesis has been proposed for the genus, and no comprehensive biogeographical history of Pteris, crucial to understanding its cosmopolitan distribution, has been presented.

Methods

A molecular phylogeny of Pteris is presented for 135 species, based on cpDNA rbcL and matK and using maximum parsimony, maximum likelihood and Bayesian inference approaches. The inferred phylogeny was used to assess the biogeographical history of Pteris and to reconstruct the evolution of one ecological and four morphological characters commonly used for infrageneric classifications.

Key Results

The monophyly of Pteris remains uncertain, especially regarding the relationship of Pteris with Actiniopteris + Onychium and Platyzoma. Pteris comprises 11 clades supported by combinations of ecological and morphological character states, but none of the characters used in previous classifications were found to be exclusive synapomorphies. The results indicate that Pteris diversified around 47 million years ago, and when species colonized new geographical areas they generated new lineages, which are associated with morphological character transitions.

Conclusions

This first phylogeny of Pteris on a global scale and including more than half of the diversity of the genus should contribute to a new, more reliable infrageneric classification of Pteris, based not only on a few morphological characters but also on ecological traits and geographical distribution. The inferred biogeographical history highlights long-distance dispersal as a major process shaping the worldwide distribution of the species. Colonization of different niches was followed by subsequent morphological diversification. Dispersal events followed by allopatric and parapatric speciation contribute to the species diversity of Pteris.  相似文献   

14.
The trends of body temperatures in the field (Tb) and preferred body temperatures in the laboratory (Tpref) of the genus Liolaemus relative to reproductive mode, air temperature (Tair), precipitation, latitude, and elevation were studied using phylogenetic comparative analysis. Results were discussed in the framework of the evolution of thermal physiology and vulnerability to global climate change. Reproductive mode affects Tb but not Tpref. Whereas Tb and Tpref showed a significant association with Tair, there was no relationship with latitude or elevation.  相似文献   

15.

Background

The genus Liposcelis (Psocoptera: Troctomorpha) has more than 120 species with a worldwide distribution and they pose a risk for global food security. The organization of mitochondrial (mt) genomes varies between the two species of booklice investigated in the genus Liposcelis. Liposcelis decolor has its mt genes on a single chromosome, like most other insects; L. bostrychophila, however, has a multipartite mt genome with genes on two chromosomes.

Results

To understand how multipartite mt genome organization evolved in the genus Liposcelis, we sequenced the mt genomes of L. entomophila and L. paeta in this study. We found that these two species of booklice also have multipartite mt genomes, like L. bostrychophila, with the mt genes we identified on two chromosomes. Numerous pseudo mt genes and non-coding regions were found in the mt genomes of these two booklice, and account for 30% and 10% respectively of the entire length we sequenced. In L. bostrychophila, the mt genes are distributed approximately equally between the two chromosomes. In L. entomophila and L. paeta, however, one mt chromosome has most of the genes we identified whereas the other chromosome has largely pseudogenes and non-coding regions. L. entomophila and L. paeta differ substantially from each other and from L. bostrychophila in gene content and gene arrangement in their mt chromosomes.

Conclusions

Our results indicate unusually fast evolution in mt genome organization in the booklice of the genus Liposcelis, and reveal different patterns of mt genome fragmentation among L. bostrychophila, L. entomophila and L. paeta.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-861) contains supplementary material, which is available to authorized users.  相似文献   

16.
17.
The nonmarine ostracod genus Cypridea s.l., characterized by an antero-ventral “beak” (rostrum and alveolus) in both valves, achieved high diversity and global distribution in the Early Cretaceous but declined in the Late Cretaceous and became extinct during the Paleogene. Although it clearly belongs to the Superfamily Cypridoidea (Order Podocopida, Suborder Cypridocopina), the precise affinities of Cypridea s.l. have been controversial, different authors variously suggesting it to be most closely related to the cypridoidean families Ilyocyprididae, Cyprididae or Notodromadidae. Since Cypridea s.l. was responsible for much of the explosive radiation of nonmarine cypridoidean taxa during the Mesozoic, a clear understanding of its affinities is crucial to the elucidation of nonmarine ostracod phylogeny. We evaluate some of the key morphological features of cypridoidean carapaces as indicators of phylogenetic affinity, paying special attention to adductor muscle scar patterns and the structure of the anterior marginal zone. The morphology of Cypridea s.l. is compared with certain cypridoideans that bear similar beak-like or lip-like antero-ventral marginal structures, notably genera of the Family Cyprididae such as Bennelongia, Chlamydotheca, Cypris and Talicypridea, and consider whether these similarities represent close phylogenetic relationships or homeomorphy.  相似文献   

18.
Centrosema is an American indigenous legume that can be used in agroecosystems for recovery of acidic and degraded soils. In this study, a Centrosema-nodulating rhizobial collection of strains isolated in a poor acid savanna soil from Venezuela was characterized, and the members of the collection were compared to other Centrosema strains from America. The analysis of the rrs gene showed that the strains nodulating Centrosema in American countries were closely related to different species of the genus Bradyrhizobium. However, the analysis of the atpD and recA genes, as well as the 16S–23S ITS region, showed that they formed several new phylogenetic lineages within this genus. The Venezuela strains formed three lineages that were divergent among themselves and with respect to those formed by Centrosema strains isolated in other countries, as well as to the currently described species and genospecies of Bradyrhizobium. In addition, the symbiotic genes nodC and nifH carried by Centrosema-nodulating strains were analyzed for the first time, and it was shown that they belonged to three new phylogenetic lineages within Bradyrhizobium. The nodC genes of the Centrosema strains were divergent among themselves and with respect to the genistearum and glycinearum symbiovars, indicating that Centrosema is a promiscuous legume. According to these results, the currently known Centrosema-nodulating strains represent several new putative species and symbiovars of the genus Bradyrhizobium.  相似文献   

19.
Wolbachia pipientis is a bacterial endosymbiont associated with arthropods and filarial nematodes. In filarial nematodes, W. pipientis has been shown to play an important role in the biology of the host and in the immuno-pathology of filariasis. Several species of filariae, including the most important parasites of humans and animals (e.g. Onchocerca volvulus, Wuchereria bancrofti and Dirofilaria immitis) have been shown to harbour these bacteria. Other filarial species, including an important rodent species (Acanthocheilonema viteae), which has been used as a model for the study of filariasis, do not appear to harbour these symbionts. There are still several open questions about the distribution of W. pipientis in filarial nematodes. Firstly the number of species examined is still limited. Secondly, it is not clear whether the absence of W. pipientis in negative species could represent an ancestral characteristic or the result of a secondary loss. Thirdly, several aspects of the phylogeny of filarial nematodes are still unclear and it is thus difficult to overlay the presence/absence of W. pipientis on a tree representing filarial evolution. Here we present the results of a PCR screening for W. pipientis in 16 species of filariae and related nematodes, representing different families/subfamilies. Evidence for the presence of W. pipientis is reported for five species examined for the first time (representing the genera Litomosoides, Litomosa and Dipetalonema); original results on the absence of this bacterium are reported for nine species; for the remaining two species, we have confirmed the absence of W. pipientis recently reported by other authors. In the positive species, the infecting W. pipientis bacteria have been identified through 16S rDNA gene sequence analysis. In addition to the screening for W. pipientis in 16 species, we have generated phylogenetic reconstructions based on mitochondrial gene sequences (12S rDNA; COI), including a total of 28 filarial species and related spirurid nematodes. The mapping of the presence/absence of W. pipientis on the trees generated indicates that these bacteria have possibly been lost during evolution along some lineages of filarial nematodes.  相似文献   

20.
Kengyilia is a perennial genus distributing in central and western Asia. Here, the levels of nucleotide diversity for COXII intron were obtained. The estimates of nucleotide diversity for different genome constitution ranged from θ = 0.00082 and π = 0.00082 for St genome species to π = 0.01227 and θ = 0.01229 for P genome species. Employing COXII intron sequences, the phylogenetic relationships within Kengyilia and between Kengyilia genus and its closely related genera were examined. The Maximum Parsimony analysis demonstrated that Kengyilia species were positioned into two clades corresponding to different maternal genomic donor. Kengyilia stenachyra, Kengyilia grandiglumis, Kengyilia hirsuta, Kengyilia melanthera, Kengyilia thoroldiana, Kengyilia alatavica and Kengyilia zhaosuensis were related to species of Agropyron, while Kengyilia kokonorica, Kengyilia rigidula, Kengyilia nana, Kengyilia mutica, Kengyilia longiglumis, Kengyilia laxiflora and Kengyilia gobicola were close to species of Roegneria and Pseudoroegneria. In addition, other three species of Kengyilia, such as Kengyilia batalinii, Kengyilia tahelacana and Kengyilia kaschgarica, were related to Douglasdeweya deweyi, Pseudoroegneria strigosa and Roegneria tibetica. This result indicated that there had been two phylogenetically divergent maternal donors within Kengyilia. Our new finding will help to understand the evolutionary history of the genus Kengyilia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号