首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
To determine whether amino acid side-chain substitutions in linear gramicidins after the structure of membrane-spanning channels formed by the modified peptides, we have developed a quantitative measure of structural equivalence of the peptide backbone among gramicidin channels based on functional (single-channel) measurements. The experiments exploit the fact that gramicidin channels are symmetrical dimers, and that channels formed by different gramicidin analogues can be distinguished on the basis of their single-channel current amplitudes or durations. It is thereby possible to determine whether hybrid channels can form between chemically dissimilar peptides, i.e. whether the peptides can adapt to each other. Further, since the relative rates of channel formation as well as the relative concentrations of pure and hybrid channel types can be measured in the same membrane, these experiments provide a quantitative measure of the energetic cost of hybrid channel formation relative to the formation of the pure channels. For a wide variety of different side-chains, we find that substitutions as extreme as glycine to phenylalanine at position 1, at the join between the two monomers in a membrane-spanning dimer, incur no energetic cost for channel formation, which implies that channels formed by each of the modified peptides are structurally equivalent. In addition, the average durations of the hybrid channels (except those having tyrosine or hexafluorovaline at position 1) are intermediate to the average durations of the respective pure channel types, thus providing further evidence for structural equivalence among channels formed by sequence-substituted gramicidins.  相似文献   

2.
Using the linear gramicidins as an example, we have previously shown how the statistical properties of heterodimeric (hybrid) channels (formed between the parent [Val1]gramicidin A (gA) and a sequence-altered analogue) can be used to assess whether the analogue forms channels that are structurally equivalent to the parent channels (Durkin, J. T., R. E. Koeppe II, and O. S. Andersen. 1990. J. Mol. Biol. 211:221-234). Generally, the gramicidins are tolerant of amino acid sequence alterations. We report here an exception. The optically reversed analogue, gramicidin M- (gM-) (Heitz, F., G. Spach, and Y. Trudelle. 1982. Biophys. J. 40:87-89), forms channels that are the mirror-image of [Val1]gA channels; gM- should thus form no hybrid channels with analogues having the same helix sense as [Val1]gA. Surprisingly, however, gM- forms hybrid channels with the shortened analogues des-Val1-[Ala2]gA and des-Val1-gC, but these channels differ fundamentally from the parent channels: (a) the appearance rate of these heterodimers is only approximately 1/10 of that predicted from the random assortment of monomers into conducting dimers, indicating the existence of an energy barrier to their formation (e.g., monomer refolding into a new channel-forming conformation); and (b), once formed, the hybrid channels are stabilized approximately 1,000-fold relative to the parent channels. The increased stability suggests a structure that is joined by many hydrogen bonds, such as one of the double-stranded helical dimers shown to be adopted by gramicidins in organic solvents (Veatch, W. R., E. T. Fossel, and E. R. Blout. 1974. Biochemistry. 13:5249-5256).  相似文献   

3.
Summary The kinetics of formation and dissociation of channels formed by gramicidin A and two analogues in planar lipid membranes was studied using a laser temperature-jump technique developed earlier [Brock, W., Stark, G., Jordan, P.C. (1981),Biophys. Chem. 13:329–348]. The time course of the electric current was found to agree with a single exponential term plus a linear drift. In case of gramicidin A the relaxation time was identical to that reported for V-jump experiments [Bamberg, E., Läuger, P. (1973),J. Membrane Biol. 11:177–194], which were interpreted on the basis of a dimerization reaction. The same results were obtained for gramicidin A and for chemically dimerized malonyl-bis-desformylgramicidin. It is therefore suggested that the dimerization represents a parallel association of two dimers to a tetramer. There is evidence that the tetramer, contrary to the presently favored dimer hypothesis, is the smallest conductance unit of an active gramicidin channel. An additional V-jump-induced relaxation process of considerably larger time constant is interpreted as a further aggregation of gramicidin dimers.Abbreviations GA gramicidin A - OPG O-pyromellitylgramicidin A - MBDG malonyl-bis-desformylgramicidin  相似文献   

4.
In order to understand how aromatic residues modulate the function of membrane-spanning proteins, we examined the role of the four tryptophans in gramicidin A (gA) in determining the average duration and permeability characteristics of membrane-spanning gramicidin channels; the tryptophan residues were replaced by tyrosine (gramicidin T, gT), tyrosine O-benzyl ether [gramicidin T(Bzl), gT(Bzl)], naphthylalanine (gramicidin N, gN), and phenylalanine (gramicidin M enantiomer, gM-). These analogues form channels with durations and conductances that differ some 10- and 16-fold, respectively. The single-channel conductance was invariably decreased by the Trp----Yyy replacement, and the relative conductance alterations were similar in phosphatidylcholine (DPhPC) and monoglyceride (GMO) bilayers. The duration variations exhibited a more complex pattern, which was quite different in the two membrane environments: in DPhPC bilayers, gN channels have an average duration that is approximately 2-fold longer than that of gA channels; in GMO bilayers, the average duration of gN channels is about one-tenth that of gA channels. The sequence-dependent alterations in channel function do not result from alterations in the channels' peptide backbone structure, because heterodimers can form between the different analogues and gramicidine A, and there is no energetic cost associated with heterodimer formation [cf. Durkin, J. T., Koeppe, R. E., II, & Andersen, O. S. (1990) J. Mol. Biol. 211, 221]. The alterations in permeability properties are consistent with the notion that Trp residues alter the energy profile for ion permeation through long-range electrostatic interactions.  相似文献   

5.
Gramicidin A is a linear polypeptide antibiotic that facilitates the diffusion of monovalent cations across lipid bilayer membranes by forming channels. It has been proposed that the conducting channel is a dimer which is in equilibrium with nonconducting monomers in the membrane. To directly test this model in several independent ways, we have prepared and purified a series of gramicidin C derivatives. All of these derivatives are fully active analogs of gramicidin A, and each derivative has a useful chromophore esterified to the phenolic hydroxyl of tyrosine #11. Simultaneous conductance and fluorescence measurements on planar lipid bi-layer membranes containing dansyl gramicidin C yielded four conclusions: (1) A plot of the logarithm of the membrane conductance versus the logarithm of the membrane fluorescence had a slope of 2.0 ± 0.3, over a concentration range for which nearly all the gramicidin was monomeric. Hence, the active channel is a dimer of the nonconducting species. (2) In a membrane in which nearly all of the gramicidin was dimeric, the number of channels was approximately equal to the number of dimers. Thus, most dimers are active channels and so it should be feasible to carry out spectroscopic studies of the conformation of the transmembrane channel. (3) The association constant for dimerization is more than 1,000-fold larger in a glycerolester membrane with 26 Å-hydrocarbon thickness than in a 47 Å-glycerolester membrane. The dimerization constant in a 48 Å-phosphatidyl choline membrane was 200 times larger than in a 47 Å-glycerolester membrane, showing that it depends on the type of lipid as well as on the thickness of the hydrocarbon core. (4) We were readily able to detect 10?14 mole cm?2 of dansyl gramicidin C in a bilayer membrane, which corresponds to 60 fluorescent molecules per square μm. The fluorescent techniques described here should be sufficiently sensitive for fluorescence studies of reconstituted gates and receptors in planar bilayer membranes. An alternative method of determining the number of molecules of gramicidin in the channel is to measure the fraction of hybrid channels present in a mixture of 2 chemically different gramicidins. The single-channel conductance of p-phenylazo-benzene-sulfonyl ester gramicidin C (PABS gramicidin C) was found to be 0.68 that of gramicidin A. In membranes containing a mixture of these 2 gramicidins, a hybrid channel was evident in addition to 2 pure channels. The hybrid channel conductance was 0.82 that of gramicidin A. Fluorescence energy transfer from dansyl gramicidin C to diethylamino-phenylazobenzene-sulfonyl ester gramicidin C (DPBS gramicidin C), provided an independent way to measure the fraction of hybrid channels on liposomes. For both techniques the fraction of hybrid channels was found to be 2ad where a2 and d2 were the fractions of the 2 kinds of pure channels. This result strongly supports a dimer channel and the hybrid data excludes the possibility of a tetramer channel. The study of hybrid species by conductance and fluorescence techniques should be generally useful in elucidating the subunit structure of oligomeric assemblies in membranes. The various models which have been proposed for the conformation of the gramicidin transmembrane channel are briefly discussed.  相似文献   

6.
The membrane structure of the naturally occurring gramicidins A, B, and C was investigated using circular dichroism (CD) spectroscopy and single-channel recording techniques. All three gramicidins form channels with fairly similar properties (Bamberg, E., K. Noda, E. Gross, and P. L?uger. 1976. Biochim. Biophys. Acta. 419:223-228.). When incorporated into lysophosphatidylcholine micelles, however, the CD spectrum of gramicidin B is different from that of gramicidin A or C (cf. Prasad, K. U., T. L. Trapane, D. Busath, G. Szabo, and D. W. Urry. 1983. Int. J. Pept. Protein Res. 22:341-347.). The structural identity of the channels formed by gramicidin B has, therefore, been uncertain. We find that when gramicidins A and B are incorporated into dipalmitoylphosphatidylcholine vesicles, their CD spectra are fairly similar, suggesting that the two channel structures could be similar. In planar bilayers, gramicidins A, B, and C all form hybrid channels with each other. The properties of the hybrid channels are intermediate to those of the symmetric channels, and the appearance rates of the hybrid channels (relative to the symmetric channels) corresponds to what would be predicted if all three gramicidin molecules were to form structurally equivalent channels. These results allow us to interpret the different behavior of channels formed by the three gramicidins solely on the basis of the amino acid substitution at position 11.  相似文献   

7.
Induction of conductance heterogeneity in gramicidin channels   总被引:8,自引:0,他引:8  
In previous work from our laboratory, 5-10% of the channels formed by [Val1]gramicidin A have conductances that fall outside the narrow range that conventionally has defined the standard gramicidin channel [e.g., see Russell et al. (1986) Biophys. J. 49, 673]. Reports from other laboratories, however, show that up to 50% of [Val1]gramicidin channels have conductances that fall outside the range for standard channels [e.g., see Prasad et al. (1986) Biochemistry 25, 456]. This laboratory-to-laboratory variation in the distribution of gramicidin single-channel conductances suggests that the conductance variants are induced by some environmental factor(s) [Busath et al. (1987) Biophys. J. 51, 79]. In order to test whether extrinsic agents can induce such conductance heterogeneity, we examined the effects of nonionic or zwitterionic detergents upon gramicidin channel behavior. In phospholipid bilayers, detergent addition induces many changes in gramicidin channel behavior: all detergents tested increase the channel appearance rate and average duration; most detergents decrease the conductance of the standard channel; and all but one of the detergents increase the conductance heterogeneity. These results show that the conductance heterogeneity can result from environmental perturbations, thus providing a possible explanation for the laboratory-to-laboratory variation in the heterogeneity of gramicidin channels. In addition, the differential detergent effects suggest possible mechanisms by which detergents can induce the conformational perturbations that result in gramicidin single-channel conductance variations.  相似文献   

8.
The covalent coupling of two gramicidin A monomers proved to be a useful tool for the rational design of ion channels with predictable electrophysiological properties (Stankovic, C.J., Heinemann, S.H., Delfino, J.M., Sigworth, F.J. and Schreiber, S.L. (1989) Science 244, 813-817; Stankovic, C.J., Heinemann, S.H. and Schreiber, S.L. (1990) J. Am. Chem. Soc. 112, 3702-3704). Herein we report on our first efforts to equip such channels with an artificial gating mechanism. Gramicidin monomers were covalently linked with 3,3'-azobis(benzeneacetic acid). Based on computer modeling of the beta-helix channel motif, this linker in its dark-adapted (trans) form does not allow for the formation of unimolecular ion channels, while the photo-activated (cis) form was expected to provide this possibility. The electrophysiological assays showed that (A) the trans-isomer does form characteristic ion channels, and (B) irradiation transforms these channels into a new distinct, flickering channel type in a reversible manner. The results are discussed in the framework of intermolecular gramicidin aggregates.  相似文献   

9.
In order to resolve whether gramicidin A channels are formed by right- or left-handed beta-helices, we synthesized an optically reversed (or mirror image) analogue of gramicidin A, called gramicidin A-, to test whether it forms channels that have the same handedness as channels formed by gramicidin M- (F. Heitz et al., Biophys. J. 40:87-89, 1982). In gramicidin M- the four tryptophan residues have been replaced with phenylalanine, and the circular dichroism (CD) spectrum therefore reflects almost exclusively contributions from the polypeptide backbone. The CD spectrum of gramicidin M- in dimyristoylphosphatidylcholine vesicles is consistent with a left-handed helical backbone folding motif (F. Heitz et al., Biophys. Chem. 24:149-160, 1986), and the CD spectra of gramicidins A and A- are essentially mirror images of each other. Based on hybrid channel experiments, gramicidin A- and M- channels are structurally equivalent, while gramicidin A and A- channels are nonequivalent, being of opposite helix sense. Gramicidin A- channels are therefore left-handed, and natural gramicidin A channels in phospholipid bilayers are right-handed beta 6.3-helical dimers.  相似文献   

10.
Gramicidin A (gA) molecules were covalently linked with a dioxolane ring. Dioxolane-linked gA dimers formed ion channels, selective for monovalent cations, in planar lipid bilayers. The main goal of this study was to compare the functional single ion channel properties of natural gA and its covalently linked dimer in two different lipid bilayers and HCl concentrations (10-8000 mM). Two ion channels with different gating and conductance properties were identified in bilayers from the product of dimerization reaction. The most commonly observed and most stable gramicidin A dimer is the main object of this study. This gramicidin dimer remained in the open state most of the time, with brief closing flickers (tau(closed) approximately 30 micros). The frequency of closing flickers increased with transmembrane potential, making the mean open time moderately voltage dependent (tau(open) changed approximately 1.43-fold/100 mV). Such gating behavior is markedly different from what is seen in natural gA channels. In PEPC (phosphatidylethanolamine-phosphatidylcholine) bilayers, single-channel current-voltage relationships had an ohmic behavior at low voltages, and a marked sublinearity at relatively higher voltages. This behavior contrasts with what was previously described in GMO (glycerylmonooleate) bilayers. In PEPC bilayers, the linear conductance of single-channel proton currents at different proton concentrations was essentially the same for both natural and gA dimers. g(max) and K(D), obtained from fitting experimental points to a Langmuir adsorption isotherm, were approximately 1500 pS and 300 mM, respectively, for both the natural gA and its dimer. In GMO bilayers, however, proton affinities of gA and the dioxolane-dimer were significantly lower (K(D) of approximately 1 and 1.5 M, respectively), and the g(max) higher (approximately 1750 and 2150 pS, respectively) than in PEPC bilayers. Furthermore, the relationship between single-channel conductance and proton concentration was linear at low bulk concentrations of H+ (0.01-2 M) and saturated at concentrations of more than 3 M. It is concluded that 1) The mobility of protons in gramicidin A channels in different lipid bilayers is remarkably similar to proton mobilities in aqueous solutions. In particular, at high concentrations of HCl, proton mobilities in gramicidin A channel and in solution differ by only 25%. 2) Differences between proton conductances in gramicidin A channels in GMO and PEPC cannot be explained by surface charge effects on PEPC membranes. It is proposed that protonated phospholipids adjacent to the mouth of the pore act as an additional source of protons for conduction through gA channels in relation to GMO bilayers. 3) Some experimental results cannot be reconciled with simple alterations in access resistance to proton flow in gA channels. Said differences could be explained if the structure and/or dynamics of water molecules inside gramicidin A channels is modulated by the lipid environment and by modifications in the structure of gA channels. 4) The dioxolane ring is probably responsible for the closing flickers seen in the dimer channel. However, other factors can also influence closing flickers.  相似文献   

11.
Gramicidin A, a linear peptide antibiotic, makes membranes permeable to alkali cations and hydrogen ions by forming transmembrane channels. We report here conductance and fluorescence energy transfer studies of channels containing two kinds of gramicidin. These studies of hybrid channels were designed to determine the number of molecules in a channel. The gramicidins studied were gramicidin A, dansyl gramicidin C, the p-phenylazobenzene sulfonyl derivative of gramicidin C (PABS4 gramicidin C), and the 4-(diethylamino)-phenylazobenzene-4-sulfonyl chloride derivative of gramicidin C (DPBS gramicidin C). The dansyl, PABS and DPBS groups were linked to the hydroxyl group of tyrosine 11 in gramicidin C. The single-channel conductance of PABS gramicidin C in planar bilayer membranes is 0.68 that of gramicidin A. Membranes containing both PABS gramicidin C and gramicidin A exhibit three kinds of channels: a pure gramicidin A, a pure PABS gramicidin C channel, and a hybrid channel with an intermediate conductance (0.82 that of gramicidin A). The dependence of the frequencies of these three kinds of channels on the mole fractions of gramicidin A and PABS gramicidin C in the membrane-forming solution fits a dimer model. Fluorescence energy transfer was used as a complementary means of ascertaining the frequency of hybrid channels. Dansyl gramicidin C was the fluorescent energy donor and DPBS gramicidin C was the energy acceptor. The efficiency of energy transfer between these chromophores in hybrid channels in liposomes was 75%. The relative quantum yield of the dansyl fluorescence was measured as a function of the mole fraction of DPBS gramicidin C. These fluorescence studies, like the single-channel conductance measurements, showed that there are two molecules of gramicidin in a channel. The study of hybrid species by conductance and fluorescence techniques should be generally useful in elucidating the subunit structure of oligomeric assemblies in membranes.  相似文献   

12.
Functional reconstitution of the isolated erythrocyte water channel CHIP28.   总被引:26,自引:0,他引:26  
Measurements of water permeability indicate the existence of a facilitated water transporting pathway in erythrocytes, kidney tubules and amphibian urinary bladder. Two lines of evidence suggest that one type of water channel is an approximately 30-kDa protein: the approximately 30-kDa target size determined by radiation inactivation (van Hoek, A. N., Hom, M. L., Luthjens, L. H., de Jong, M. D., Dempster, J. A., and van Os, C. H. (1991) J. Biol. Chem. 266, 16633-16635) and the increased water permeability in oocytes that express mRNA encoding a 28-kDa erythrocyte protein (CHIP28, Preston, B. M., Carroll, T. P., Guggino, W. B., and Agre, P. (1992) Science 256, 385-387). We report direct evidence that CHIP28 is the erythrocyte water channel. Osmotic water permeability (Pf) remained high (0.029 cm/s, 37 degrees C) when erythrocyte membranes were stripped of nearly all proteins except for CHIP28. N-terminal sequence analysis confirmed that the 28-kDa protein was CHIP28. Pf in proteoliposomes reconstituted with solubilized CHIP28 was high (Pf = 0.03 cm/s, 37 degrees C), the activation energy was low (2.2 kcal/mol), and Pf was decreased by greater than 50-fold by mercurial sulfhydryl reagents and Me2SO. The single-channel water permeability was approximately 10(-13) cm3/s, slightly higher than that of the gramicidin A channel. The water channel excluded the small solute urea. These data establish a procedure to reconstitute functional water channels into liposomes and demonstrate that CHIP28 is the erythrocyte water channel.  相似文献   

13.
Membrane protein functioning basically depends on the supramolecular structure of the proteins which can be modulated by specific interactions with external ligands. The effect of a water-soluble protein bearing specific binding sites on the kinetics of ionic channels formed by gramicidin A (gA) in planar bilayer lipid membranes (BLM) has been studied using three independent approaches: (1) sensitized photoinactivation, (2) single-channel, and (3) autocorrelation measurements of current fluctuations. As shown previously [Rokitskaya, T. I., et al. (1996) Biochim. Biophys. Acta 1275, 221], the time course of the flash-induced current decrease in most cases follows a single-exponential decay with an exponential factor (tau) that corresponds to the gA single-channel lifetime. Addition of avidin does not affect tau for gA channels, but causes a dramatic increase in tau for channels formed by gA5XB, a biotinylated analogue of gA. This effect is reversed by addition of an excess of biotin to the bathing solution. The average single-channel duration of gA5XB was about 3.6 s as revealed by single-channel recording of the BLM current. After prolonged incubation with avidin, a long-lasting open state of the gA5XB channel appeared which did not close for more than 10 min. The data on gA5XB photoinactivation kinetics and single-channel measurements were confirmed by analysis of the corresponding power spectra of the current fluctuations obtained in the control, in the presence of avidin, and after the addition of biotin. We infer that avidin produces a deceleration of gA5XB channel kinetics by motional restriction of gA5XB monomers and dimers upon the formation of avidin and gA5XB complexes, which would stabilize the channel state and thus increase the single-channel lifetime.  相似文献   

14.
S Oiki  R E Koeppe  nd    O S Andersen 《Biophysical journal》1994,66(6):1823-1832
Substitution of Val1 by 4,4,4,4',4',4'-F6Val in [Val1]gramicidin A ([Val1]gA) produces channels in which the effects of amino acid replacements on dimer stability and ion permeation are nonadditive. If only one Val1 (in a symmetric [Val1]gA channel) is substituted by F6Val, the resulting heterodimeric channels are destabilized relative to both homodimeric parent channels and the single-channel conductance of the heterodimeric channels is reduced relative to the parent channels (Russell, E. W. B., L. B. Weiss, F. I. Navetta, R. E. Koeppe II, and O. S. Andersen. 1986. Single-channel studies on linear gramicidins with altered amino acid side chains. Effects of altering the polarity of the side chain at position #1 in gramicidin A. Biophys. J. 49:673; Durkin, J. T., R. E. Koeppe II, and O. S. Andersen. 1990. Energetics of gramicidin hybrid channel formation as a test for structural equivalence. Side-chain substitutions in the native sequence. J. Mol. Biol. 211:221-234). To understand the basis for this destabilization, we have examined further the characteristics of [F6Val1]/[Xxx1]gA heterodimers, where Xxx = Gly, Val, and Ala. These heterodimeric channels show rapid current transitions between (at least) two current levels and display asymmetric i-V characteristics. The orientation of the heterodimers relative to the applied potential was determined by asymmetric addition of the gramicidin analogs, one to each side of a preformed bilayer. The current transitions are most clearly illustrated for [F6Val1]/[Gly1]gA heterodimers, which possess two finite and well defined current levels. Based on the existence of these two conductance states and the analysis of duration and interval distributions, we conclude that the transitions between the two current levels correspond to conformational transitions in "stable" heterodimers. In the case of [F6Val1]/[Val1]gA and [F6Val1]/[Ala1]gA heterodimers, the low-conductance state is indistinguishable from zero. The two (or more) conductance states presumably correspond to different orientations of the dipolar F6Val1 side chain. The distribution between the high- and the low-conductance states varies as a function of potential in [F6Val1]/[Gly1]gA channels. These characteristics cause the [F6Val1]/nonpolar (Val, Ala, Gly)gA hybrid channels to serve as a "simple" model for understanding gating transitions in membrane-spanning channels.  相似文献   

15.
Compared to the N-formyl gramicidin A (GA), the N-acetyl gramicidin A (NAG) channel has unchanged conductance in 1 M NH4+ (gamma NN/gamma GG = 1, conductance ratio) but reduced conductance in 1 M K+ (gamma NN/gamma GG = 0.6) methylammonium (gamma NN/gamma GG = 0.3), and formamidinium (gamma NN/gamma GG = 0.1) solutions. Except with formamidinium, "flicker blocks" are evident even at low cutoff frequencies. For all cations studied, channel lifetimes of N-acetyl homodimers (NN) are approximately 50-fold shorter than those of the GA homodimer (GG). The novel properties of GA channels in formamidinium solution (supralinear current-voltage relations and dimer stabilization (Seoh and Busath, 1993)) also appear in NN channels. The average single channel lifetime in 1 M formamidinium solution at 100 mV is 6-7-fold longer than in K+ and methylammonium solutions and, like in the GA channel, significantly decreases with increasing membrane potential. Experiments with mixtures of the two peptides, GA and NAG, showed three main conductance peaks. Oriented hybrids were formed utilizing the principle that monomers remain in one leaflet of the bilayer (O'Connell et al., 1990). With GA at the polarized side and NAG at the grounded side, at positive potentials (in which case hybrids were designated GN) and at negative potentials (in which case hybrids were designated NG), channels had the same conductances and channel properties at all potentials studied. Flicker blocks were not evident in the hybrid channels, which suggests that both N-acetyl methyl groups at the junction of the dimer are required to cause flickers. Channel lifetimes in hybrids are only approximately threefold shorter than those of the GG channels, and channel conductances are similar to those of GG rather than NN channels. We suggest that acetyl-acetyl crowding at the dimeric junction in NN channels cause dimer destabilization, flickers, and increased selectivity in N-acetyl gramicidin channels.  相似文献   

16.
Previous amino acid substitutions at the M4 domain of the Torpedo californica and mouse acetylcholine receptor suggested that the location of the substitution relative to the membrane-lipid interface and perhaps to the ion pore can be critical to the channel gating mechanism [Lasalde, J. A., Tamamizu, S., Butler, D. H., Vibat, C. R. T., Hung, B., and McNamee, M. G. (1996) Biochemistry 35, 14139-14148; Ortiz-Miranda, S. I., Lasalde, J. A., Pappone, P. A., and McNamee, M. G. (1997) J. Membr. Biol. 158, 17-30; Tamamizu, S., Lee, Y. H., Hung, B., McNamee, M. G., and Lasalde-Dominicci, J. A. (1999) J. Membr. Biol. 170, 157-164]. In this study, we introduce tryptophan substitutions at 12 positions (C412W, M415W, L416W, I417W, C418W, I419W, I420W, G421W, T422W, V423W, S424W, and V425W) along this postulated lipid-exposed segment M4 so that we can examine functional consequences on channel gating. The expression levels of mutants C412W, G421W, S424W, and V425W were almost the same as that of the wild type, whereas other mutants (M415W, L416W, C418W, I419W, I420W, T422W, and V423W) had relatively lower expression levels compared to that of the wild type as measured by iodinated alpha-bungarotoxin binding ([(125)I]-alpha-BgTx). Two positions (L416W and I419W) had less than 20% of the wild type expression level. I417W gave no detectable [(125)I]BgTx binding on the surface of oocyte, suggesting that this position might be involved in the AChR assembly, oligomerization, or transport to the cell membrane. The alphaV425W mutant exhibited a significant increase in the open channel probability with a moderate increase in the macroscopic response at higher ACh concentrations very likely due to channel block. The periodicity for the alteration of receptor assembly and ion channel function seems to favor a potential alpha-helical structure. Mutants that have lower levels of expression are clustered on one side of the postulated alpha-helical structure. Mutations that display normal expression and functional activity have been shown previously to face the membrane lipids by independent labeling studies. The functional analysis of these mutations will be presented and discussed in terms of possible structural models.  相似文献   

17.
Ondrias et al. ((1986) Stud. Biophys. 115, 17-22) found that dibucaine, butacaine, and tetracaine reduce the conductance of membranes containing multiple (greater than 10(6)) gramicidin channels. Similar experiments with local anesthetics (LA's) added to the bath while gently stirring showed that the inhibition developed slowly over a time course of 5-10 min. We developed a many (10-20) channel membrane technique which demonstrated that when LA's were added to the bath and the membrane was repeatedly broken and reformed, the channel occurrence frequency declined promptly. In standard single-channel membrane experiments at lower gramicidin densities, the mean single channel conductance and lifetime distributions with LA's present in the bath did not differ from the controls. The predominant channel conductance amplitude was lower by 9.1% than those of controls, but channel amplitude distributions were also modified so that the net reduction in overall population channel conductance was only about 2.0%. Channel currents showed no evidence of flicker blocks. The lifetime histograms of control and LA-exposed channel populations were both satisfactorily fit by a single-exponential function with the same mean. Thus, inhibition is due primarily to a reduction in the frequency of occurrence of conducting channels, implying a reduced concentration of active monomers in the membrane.  相似文献   

18.
O-pyromellitylgramicidin is a derivative of gramicidin in which three carboxyl groups are introduced at the terminal hydroxyl end of the peptide. Experiments with artificial lipid membranes indicate that this negatively charged analog forms ion-permeable channels in a way similar to that of gramicidin. If O-pyromellitylgramicidin is added to only one aqueous solution, the membrane conductance remains small, but increases by several orders of magnitude if the same amount is also added to the other side. In accordance with the dimer model of the channel, the membrane conductance under symmetrical conditions is proportional to the square of the aqueous concentration of O-pyromellitylgramicidin over a wide range. The ratio lambdaPG/lambdaG of the single-channel conductance of O-pyromellitylgramicidin to that of gramicidin is close to unity at high ionic strength, but increases more than fivefold at smaller ionic strength (0.01 M). This observation is explained in terms of an electrostatic effect of the fixed negative charges localized near the mouth of the channel. In a mixture of O-pyromellitylgramicidin and gramicidin, unit conductance steps of intermediate size are observed in addition to the conductance steps corresponding to the pure compounds, indicating the formation of hybrid channels. Hybrid channels with preferred orientation may be formed if small amounts of gramicicin and O-pyromellitylgramicidin are added to opposite sides of the membrane. These hybrid channels show a distinct asymmetry in the current-voltage characteristic.  相似文献   

19.
A shortened analog of the gramicidin A transmembrane channel has been synthesized and its transport characterized in planar lipid bilayer membranes. General considerations of a shorter diffusional length and a shorter distance over which the voltage drop occurs (i.e., an increased electric field) would contribute to an increase in single-channel conductance. The finding of a decreased single-channel conductance supports the perspective that the dominant conducting state is the doubly occupied channel wherein distance-dependent repulsion due to the first ion in the channel impedes entry of the second ion in the shorter channel.  相似文献   

20.
In organic solvents gramicidin A (gA) occurs as a mixture of slowly interconverting double-stranded dimers. Membrane-spanning gA channels, in contrast, are almost exclusively single-stranded beta(6,3)-helical dimers. Based on spectroscopic evidence, it has previously been concluded that the conformational preference of gA in phospholipid bilayers varies as a function of the degree of unsaturation of the acyl chains. Double-stranded pi pi(5,6)-helical dimers predominate (over single-stranded beta(6,3)-helical dimers) in lipid bilayer membranes with polyunsaturated acyl chains. We therefore examined the characteristics of channels formed by gA in 1-palmitoyl-2-oleoylphosphatidylcholine/n-decane, 1,2-dioleoylphosphatidylcholine/n-decane, and 1,2-dilinoleoylphosphatidylcholine/n-decane bilayers. We did not observe long-lived channels that could be conducting double-stranded pi pi(5,6)-helical dimers in any of these different membrane environments. We conclude that the single-stranded beta(6,3)-helical dimer is the only conducting species in these bilayers. Somewhat surprisingly, the average channel duration and channel-forming potency of gA are increased in dilinoleoylphosphatidylcholine/n-decane bilayers compared to 1-palmitoyl-2-oleoylphosphatidylcholine/n-decane and dioleoylphosphatidylcholine/n-decane bilayers. To test for specific interactions between the aromatic side chains of gA and the acyl chains of the bilayer, we examined the properties of channels formed by gramicidin analogues in which the four tryptophan residues were replaced with naphthylalanine (gN), tyrosine (gT), and phenylalanine (gM). The results show that all of these analogue channels experience the same relative stabilization when going from dioleoylphosphatidylcholine to dilinoleoylphosphatidylcholine bilayers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号