首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The neurotransmitter glycine is removed from the synaptic cleft by two Na(+)-and Cl(-)-dependent transporters, the glial (GLYT1) and neuronal (GLYT2) glycine transporters. GLYT2 lacks a conserved cysteine in the first hydrophilic loop (EL1) that is reactive to [2-(trimethylammonium)ethyl] methanethiosulfonate (MTSET) in related transporters. A chimeric GLYT2 (GLYT2a-EL1) that contains GLYT1 sequences in this region, including the relevant cysteine, was sensitive to the reagent, and its sensitivity was decreased by co-substrates. We combined cysteine-specific biotinylation to detect transporter-reagent interactions with MTSET inactivation assays and temperature dependence analysis to study the mechanism by which Cl(-), Na(+), and glycine reduce methanethiosulfonate reagent inhibition. We demonstrate a Na(+) protective effect rather than an increased susceptibility to the reagent exerted by Li(+), as reported for the serotonin transporter. The different inhibition, protection, and reactivation properties between GLYT2a-EL1 and serotonin transporter suggest that EL1 is a source of structural heterogeneity involved in the specific effect of lithium on serotonin transport. The protection by Na(+) or Cl(-) on GLYT2a-EL1 was clearly dependent on temperature, suggesting that EL1 is not involved in ion binding but is subjected to ion-induced conformational changes. Na(+) and Cl(-) were required for glycine protection, indicating the necessity of prior ion interaction with the transporter for the binding of glycine. We conclude that EL1 acts as a fluctuating hinge undergoing sequential conformational changes during the transport cycle.  相似文献   

2.
Residues 386-423 of the rat brain serotonin transporter (SERT) are predicted to form a hydrophilic loop connecting transmembrane spans 7 and 8 (extracellular loop 4 or EL4). EL4 has been hypothesized to play a role in conformational changes associated with substrate translocation. To more fully investigate EL4 structure and function, we performed cysteine-scanning mutagenesis and methanethiosulfonate (MTS) accessibility studies on these 38 residues. Four EL4 mutants (M386C, R390C, G402C, and L405C) showed very low transport activities, low cell surface expression, and strong inhibition by MTS reagents, indicating high structural and functional importance. Twelve mutants were sensitive to very low MTS concentrations, indicating positions highly exposed to the aqueous environment. Eleven mutants were MTS-insensitive, indicating positions that were either buried in EL4 structure or functionally unimportant. The patterns of sensitivity to mutation and MTS reagents were used to produce a structural model of EL4. Positions 386-399 and 409-421 are proposed to form alpha-helices, connected by nine consecutive MTS-sensitive positions, within which four positions, 402-405, may form a turn or hinge. The presence of serotonin changed the MTS accessibility of cysteines at nine positions, while cocaine, a non-transportable blocker, did not affect accessibility. Serotonin-induced accessibility changes required both Na(+) and Cl(-), indicating that they were associated with active substrate translocation. With the exception of a single mutant, F407C, neither mutation to cysteine nor treatment with MTS reagents affected SERT affinities for serotonin or the cocaine analog beta-CIT. These studies support the role of EL4 in conformational changes occurring during translocation and show that it does not play a direct role in serotonin binding.  相似文献   

3.
To explore aqueous accessibility and functional contributions of transmembrane domain (TM) 1 in human serotonin transporter (hSERT) proteins, we utilized the largely methanethiosulfonate (MTS) insensitive hSERT C109A mutant and mutated individual residues of hSERT TM1 to Cys followed by tests of MTS inactivation of 5-hydroxytryptamine (5-HT) transport. Residues in TM1 cytoplasmic to Gly-94 were largely unaffected by Cys substitution, whereas the mutation of residues extracellular to Ile-93 variably diminished transport activity. TM1 Cys substitutions displayed differential sensitivity to MTS reagents, with residues more cytoplasmic to Asp-98 being largely insensitive to MTS inactivation. Aminoethylmethanethiosulfonate (MTSEA), [2-(trimethylammonium) ethyl]methanethiosulfonate bromide (MTSET), and sodium (2-sulfonatoethyl)-methanethiosulfonate (MTSES) similarly and profoundly inactivated 5-HT transport by SERT mutants D98C, G100C, W103C, and Y107C. MTSEA uniquely inactivated transport activity of S91C, G94C, Y95C but increased activity at I108C. MTSEA and MTSET, but not MTSES, inactivated transport function at N101C. Notably, 5-HT provided partial to complete protection from MTSET inactivation for D98C, G100C, N101C, and Y107C. Equivalent blockade of MTSET inactivation at N101C was observed with 5-HT at both room temperature and at 4 degrees C, inconsistent with major conformational changes leading to protection. Notably, cocaine also protected MTSET inactivation of G100C and N101C, although MTS incubations with N101C that eliminate 5-HT transport do not preclude cocaine analog binding nor its inhibition by 5-HT. 5-HT modestly enhanced the inactivation by MTSET at I93C and Y95C, whereas cocaine significantly enhanced MTSET sensitivity at Y107C and I108C. In summary, our studies reveal physical differences in TM1 accessibility to externally applied MTS reagents and reveal sites supporting substrate and antagonist modulation of MTS inactivation. Moreover, we identify a limit to accessibility for membrane-impermeant MTS reagents that may reflect aspects of an occluded permeation pathway.  相似文献   

4.
Residues Tyr-110 through Gly-115 of serotonin transporter were replaced, one at a time, with cysteine. Of these mutants, only G113C retained full activity for transport, Q111C and N112C retained partial activity, but Y110C, G114C and G115C were inactive. Poor surface expression was at least partly responsible for the lack of transport by G114C and G115C. In membrane preparations, Y110C through G113C all bound a high affinity cocaine analog similarly to the wild type. Treatment with methanethiosulfonate reagents increased the transport activity of Q111C and N112C to essentially wild-type levels but had no measurable effect on the other mutants. The decreased activity of Q111C and N112C resulted from an increase in the K(M) for serotonin that was not accompanied by a decrease in serotonin binding affinity. Superfusion experiments indicated a defect in 5-HT exchange. Modification of the inserted cysteine residues reversed the increase in K(M) and the poor exchange, also with no effect on serotonin affinity. The results suggest that Gln-111 and Asn-112 are not required for substrate binding but participate in subsequent steps in the transport cycle.  相似文献   

5.
The second transmembrane domain (TM2) of neurotransmitter transporters has been invoked to control oligomerization and surface expression. This transmembrane domain lies between TM1 and TM3, which have both been proposed to contain residues that contribute to the substrate binding site. Rat serotonin transporter (SERT) TM2 was investigated by cysteine scanning mutagenesis. Six mutants in which cysteine replaced an endogenous TM2 residue had low transport activity, and two were inactive. Most of the reduction in transport activity was due to decreased surface expression. In contrast, M124C and G128C showed increased activity and surface expression. Random mutagenesis at positions 124 and 128 revealed that hydrophobic residues at these positions also increased activity. When modeled as an alpha-helix, positions where mutation to cysteine strongly affects expression levels clustered on the face of TM2 surrounding the leucine heptad repeat conserved within this transporter family. 2-(Aminoethyl)-methanethiosulfonate hydrobromide (MTSEA)-biotin labeled A116C and Y136C but not F117C, M135C, or Y134C, suggesting that these residues may delimit the transmembrane domain. None of the cysteine substitution mutants from 117 through 135 were sensitive to [2-(trimethylammonium)ethyl]methanethiosulfonate bromide (MTSET) or MTSEA. However, treatment with MTSEA increased 5-hydroxytryptamine transport by A116C. Activation of A116C by MTSEA was observed only in mutants containing Cys to Ile mutation at position 357, suggesting that modification of Cys-116 activated transport by compensating for a disruption in transport in response to Cys-357 replacement. The reactivity of A116C toward MTSEA was substantially increased in the presence of substrates but not inhibitors. This increase required Na+ and Cl-, and was likely to result from conformational changes during the transport process.  相似文献   

6.
Residues Tyr-110 through Gly-115 of serotonin transporter were replaced, one at a time, with cysteine. Of these mutants, only G113C retained full activity for transport, Q111C and N112C retained partial activity, but Y110C, G114C and G115C were inactive. Poor surface expression was at least partly responsible for the lack of transport by G114C and G115C. In membrane preparations, Y110C through G113C all bound a high affinity cocaine analog similarly to the wild type. Treatment with methanethiosulfonate reagents increased the transport activity of Q111C and N112C to essentially wild-type levels but had no measurable effect on the other mutants. The decreased activity of Q111C and N112C resulted from an increase in the KM for serotonin that was not accompanied by a decrease in serotonin binding affinity. Superfusion experiments indicated a defect in 5-HT exchange. Modification of the inserted cysteine residues reversed the increase in KM and the poor exchange, also with no effect on serotonin affinity. The results suggest that Gln-111 and Asn-112 are not required for substrate binding but participate in subsequent steps in the transport cycle.  相似文献   

7.
Twenty-two amino acid residues from transmembrane domain 3 of the creatine transporter were replaced, one at a time, with cysteine. The background for mutagenesis was a C144S mutant retaining approximately 75% of wild-type transport activity but resistant to methanethiosulfonate (MTS) reagents. Each substitution mutant was tested for creatine transport activity and sensitivity to the following MTS reagents: 2-aminoethyl methanethiosulfonate (MTSEA), 2-(trimethylammonium) ethyl methanethiosulfonate (MTSET), and 2-sulfonatoethyl methanethiosulfonate (MTSES). Two mutants (G134C and Y148C) were inactive, but most mutants showed significant levels of creatine transport. Treatment with MTSEA inhibited the activity of the W154C, Y147C, and I140C mutants. Creatine partially protected I140C from inactivation, and this residue, like Cys-144 in the wild-type CreaT, is predicted to be close to a creatine binding site. MTSEA inactivation of Y147C was dependent on Na+ and Cl- suggesting that solvent accessibility was ion-dependent. Helical wheel and helical net projections indicate that the three MTSEA-sensitive mutants (W154C, Y147C, and I140C) and two inactive mutants (V151C and Y148C) are aligned on a face of an alpha-helix, suggesting that they form part of a substrate pathway. The W154C mutant, located near the external face of the membrane, was accessible to the larger MTS reagents, whereas those implicated in creatine binding were only accessible to the smaller MTSEA. Consideration of our data, together with a study on the serotonin transporter (Chen, J. G., Sachpatzidis, A., and Rudnick, G. (1997) J. Biol. Chem. 272, 28321-28327), suggests that involvement of residues from transmembrane domain 3 is a common feature of the substrate pathway of Na+- and Cl- -dependent neurotransmitter transporters.  相似文献   

8.
Serotonin transporter (SERT) contains a single reactive external cysteine residue at position 109 (Chen, J. G., Liu-Chen, S., and Rudnick, G. (1997) Biochemistry 36, 1479-1486) and seven predicted cytoplasmic cysteines. A mutant of rat SERT (X8C) in which those eight cysteine residues were replaced by other amino acids retained approximately 32% of wild type transport activity and approximately 56% of wild type binding activity. In contrast to wild-type SERT or the C109A mutant, X8C was resistant to inhibition of high affinity cocaine analog binding by the cysteine reagent 2-(aminoethyl)methanethiosulfonate hydrobromide (MTSEA) in membrane preparations from transfected cells. Each predicted cytoplasmic cysteine residue was reintroduced, one at a time, into the X8C template. Reintroduction of Cys-357, located in the third intracellular loop, restored MTSEA sensitivity similar to that of C109A. Replacement of only Cys-109 and Cys-357 was sufficient to prevent MTSEA sensitivity. Thus, Cys-357 was the sole cytoplasmic determinant of MTSEA sensitivity in SERT. Both serotonin and cocaine protected SERT from inactivation by MTSEA at Cys-357. This protection was apparently mediated through a conformational change following ligand binding. Although both ligands bind in the absence of Na(+) and at 4 degrees C, their ability to protect Cys-357 required Na(+) and was prevented at 4 degrees C. The accessibility of Cys-357 to MTSEA inactivation was increased by monovalent cations. The K(+) ion, which is believed to serve as a countertransport substrate for SERT, was the most effective ion for increasing Cys-357 reactivity.  相似文献   

9.
Zhang X  Qu S 《PloS one》2012,7(1):e30961

Background

Excitatory amino acid transporter 1 (EAAT1) is a glutamate transporter which is a key element in the termination of the synaptic actions of glutamate. It serves to keep the extracellular glutamate concentration below neurotoxic level. However the functional significance and the change of accessibility of residues in transmembrane domain (TM) 5 of the EAAT1 are not clear yet.

Methodology/Principal Findings

We used cysteine mutagenesis with treatments with membrane-impermeable sulfhydryl reagent MTSET [(2-trimethylammonium) methanethiosulfonate] to investigate the change of accessibility of TM5. Cysteine mutants were introduced from position 291 to 300 of the cysteine-less version of EAAT1. We checked the activity and kinetic parameters of the mutants before and after treatments with MTSET, furthermore we analyzed the effect of the substrate and blocker on the inhibition of the cysteine mutants by MTSET. Inhibition of transport by MTSET was observed in the mutants L296C, I297C and G299C, while the activity of K300C got higher after exposure to MTSET. Vmax of L296C and G299C got lower while that of K300C got higher after treated by MTSET. The L296C, G299C, K300C single cysteine mutants showed a conformationally sensitive reactivity pattern. The sensitivity of L296C to MTSET was potentiated by glutamate and TBOA,but the sensitivity of G299C to MTSET was potentiated only by TBOA.

Conclusions/Significance

All these facts suggest that the accessibility of some positions of the external part of the TM5 is conformationally sensitive during the transport cycle. Our results indicate that some residues of TM5 take part in the transport pathway during the transport cycle.  相似文献   

10.
In Kv1.5, protonation of histidine 463 in the S5-P linker (turret) increases the rate of depolarization-induced inactivation and decreases the peak current amplitude. In this study, we examined how amino acid substitutions that altered the physico-chemical properties of the side chain at position 463 affected slow inactivation and then used the substituted cysteine accessibility method (SCAM) to probe the turret region (E456-P468) to determine whether residue 463 was unique in its ability to modulate the macroscopic current. Substitutions at position 463 of small, neutral (H463G and H463A) or large, charged (H463R, H463K, and H463E) side groups accelerated inactivation and induced a dependency of the current amplitude on the external potassium concentration. When cysteine substitutions were made in the distal turret (T462C-P468C), modification with either the positively charged [2-(trimethylammonium)ethyl] methanethiosulfonate bromide (MTSET) or negatively charged sodium (2-sulfonatoethyl) methanethiosulfonate reagent irreversibly inhibited current. This inhibition could be antagonized either by the R487V mutation (homologous to T449V in Shaker) or by raising the external potassium concentration, suggesting that current inhibition by MTS reagents resulted from an enhancement of inactivation. These results imply that protonation of residue 463 does not modulate inactivation solely by an electrostatic interaction with residues near the pore mouth, as proposed by others, and that residue 463 is part of a group of residues within the Kv1.5 turret that can modulate P/C-type inactivation. electrophysiology; voltage-gated potassium channels; substituted cysteine accessibility method  相似文献   

11.
All creatine transporters contain a cysteine residue (Cys(144)) in the third transmembrane domain that is not present in other members of the Na+,Cl(-)-dependent family of neurotransmitter transporters. Site-directed mutagenesis and reaction with methane thiosulfonates were used to investigate the importance of Cys(144) for transporter function. Replacement of Cys(144) with Ser did not significantly affect the kinetics or activity of the transporter, whereas a C144A mutant had a higher K(m) (0.33 compared with 0.18 mm). Substitution of Cys(144) with Leu gave a mutant with a 5-fold higher K(m) and a reduced specificity for substrate. Low concentrations of 2-aminoethyl methanethiosulfonate (MTSEA) resulted in rapid inactivation of the creatine transporter. The C144S mutant was resistant to inactivation, indicating that modification of Cys(144) was responsible for the loss of transport activity. Creatine and analogues that function as substrates of the creatine transporter were able to protect from MTSEA inactivation. Na+ and Cl(-) ions were not necessary for MTSEA inactivation, but Na+ was found to be important for creatine protection from inactivation. Our results indicate that cysteine 144 is close to the binding site or part of a permeation channel for creatine.  相似文献   

12.
The transport function of the rat type IIa Na(+)/P(i) cotransporter is inhibited after binding the cysteine modifying reagent 2-aminoethyl methanethiosulfonate hydrobromide (MTSEA) to a cysteine residue substituted for a serine at position 460 (S460C) in the predicted third extracellular loop. This suggests that Ser-460 lies in a functionally important region of the protein. To establish a "structure-function" profile for the regions that flank Ser-460, the substituted cysteine accessibility method was employed. 18 mutants were constructed in which selected amino acids from Arg-437 through Leu-465 were substituted one by one for a cysteine. Mutants were expressed in Xenopus oocytes and transport function (cotransport and slippage) and kinetics were assayed by electrophysiology with or without prior treatment with cysteine modifying (methanethiosulfonate, MTS) reagents. Except for mutant I447C, mutants with cysteines at sites from Arg-437 through Thr-449, as well as Pro-461, were inactive. Cotransport function of mutants with Cys substitutions at sites Arg-462 through Leu-465 showed low sensitivity to MTS reagents. The preceding mutants (Cys substitution at Thr-451 to Ser-460) showed a periodic accessibility pattern that would be expected for an alpha-helix motif. Apart from loss of transport function, exposure of mutants A453C and A455C to MTSEA or 2-(triethylammonium)ethyl MTS bromide (MTSET) increased the uncoupled slippage current, which implicated the mutated sites in the leak pathway. Mutants from Ala-453 through Ala-459 showed less pH dependency, but generally stronger voltage dependency compared with the wild type, whereas those flanking this group were more sensitive to pH and showed weaker voltage dependence of cotransport mode kinetics. Our data indicate that parts of the third extracellular loop are involved in the translocation of the fully loaded carrier and show a membrane-associated alpha-helical structure.  相似文献   

13.
Loo TW  Bartlett MC  Clarke DM 《Biochemistry》2004,43(38):12081-12089
P-Glycoprotein (P-gp) is an ATP-dependent drug pump that transports a broad range of compounds out of the cell. Cross-linking studies have shown that the drug-binding pocket is at the interface between the transmembrane (TM) domains and can simultaneously bind two different drug substrates. Here, we determined whether cysteine residues within the drug-binding pocket were accessible to the aqueous medium. Cysteine mutants were tested for their reactivity with the charged thiol-reactive compounds sodium (2-sulfonatoethyl)methanethiosulfonate (MTSES) and [2-(trimethylammonium)ethyl)]methanethiosulfonate (MTSET). Residue Ile-306(TM5) is close to the verapamil-binding site. It was changed to cysteine, reacted with MTSES or MTSET, and assayed for verapamil-stimulated ATPase activity. Reaction of mutant I306C(TM5) with either compound reduced its affinity for verapamil. We confirmed that the reduced affinity for verapamil was indeed due to introduction of a charge at position 306 by demonstrating that similar effects were observed when Ile-306 was replaced with arginine or glutamic acid. Mutant I306R showed a 50-fold reduction in affinity for verapamil and very little change in the affinity for rhodamine B or colchicine. MTSES or MTSET modification also affected the cross-linking pattern between pairs of cysteines in the drug-binding pocket. For example, both MTSES and MTSET inhibited cross-linking between I306C(TM5) and I868C(TM10). Inhibition was enhanced by ATP hydrolysis. By contrast, cross-linking of cysteine residues located outside the drug-binding pocket (such as G300C(TM5)/F770C(TM8)) was not affected by MTSES or MTSET. These results indicate that the drug-binding pocket is accessible to water.  相似文献   

14.
The neuronal (GlyT2) and glial (GlyT1) glycine transporters, two members of the Na(+)/Cl(-)-dependent neurotransmitter transporter superfamily, differ by many aspects, such as substrate specificity and Na(+) coupling. We have characterized under voltage clamp their reactivity toward the membrane impermeant sulfhydryl reagent [2-(trimethylammonium)-ethyl]-methanethiosulfonate (MTSET). In Xenopus oocytes expressing GlyT1b, application of MTSET reduced to the same extent the Na(+)-dependent charge movement, the glycine-evoked current, and the glycine uptake, indicating a complete inactivation of the transporters following cysteine modification. In contrast, this compound had no detectable effect on the glycine uptake and the glycine-evoked current of GlyT2a. The sensitivities to MTSET of the two transporters can be permutated by suppressing a cysteine (C62A) in the first extracellular loop (EL1) of GlyT1b and introducing one at the equivalent position in GlyT2a, either by point mutation (A223C) or by swapping the EL1 sequence (GlyT1b-EL1 and GlyT2a-EL1) resulting in AFQ <--> CYR modification. Inactivation by MTSET was five times faster in GlyT2a-A223C than in GlyT2a-EL1 or GlyT1b, suggesting that the arginine in position +2 reduced the cysteine reactivity. Protection assays indicate that EL1 cysteines are less accessible in the presence of all co-transported substrates: Na(+), Cl(-), and glycine. Application of dithioerythritol reverses the inactivation by MTSET of the sensitive transporters. Together, these results indicate that EL1 conformation differs between GlyT1b and GlyT2a and is modified by substrate binding and translocation.  相似文献   

15.
The sodium- and chloride-dependent gamma-aminobutyric acid (GABA) transporter GAT-1 is the first identified member of a family of transporters, which maintain low synaptic neurotransmitter levels and thereby enable efficient synaptic transmission. To obtain evidence for the idea that the highly conserved transmembrane domain I (TMD I) participates in the permeation pathway, we have determined the impact of impermeant methanethiosulfonate (MTS) reagents on cysteine residues engineered into this domain. As a background the essentially insensitive but fully active C74A mutant has been used. Transport activity of mutants with a cysteine introduced cytoplasmic to glycine 63 is largely unaffected and is resistant to the impermeant MTS reagents. Conversely, transport activity in mutants extracellular to glycine 63 is strongly impacted. Nevertheless, transport activity could be measured in all but three mutants: G65C, N66C, and R69C. In each of the six active cysteine mutants the activity is highly sensitive to the impermeant MTS reagents. This sensitivity is potentiated by sodium in L64C, F70C, and Y72C, but is protected in V67C and P71C. GABA protects in L64C, W68C, F70C, and P71C. The non-transportable GABA analogue SKF100330A also protects in L64C, W68C, and P71C as well as V67C, but strikingly potentiates inhibition in F70C. Although cysteine substitution in this region may have perturbed the native structure of GAT-1, our observations, taken together with the recently published accessibility study on the related serotonin transporter (Henry, L. K., Adkins, E. M., Han, Q., and Blakely, R. D. (2003) J. Biol. Chem. 278, 37052-37063), suggest that the extracellular part of TMD I is conformationally sensitive, lines the permeation pathway, and forms a more extended structure than expected from a membrane-embedded alpha-helix.  相似文献   

16.
The hASBT (human apical Na(+)-dependent bile acid transporter) constitutes a key target of anti-hypercholesterolaemic therapies and pro-drug approaches; physiologically, hASBT actively reclaims bile acids along the terminal ileum via Na(+) co-transport. Previously, TM (transmembrane segment) 7 was identified as part of the putative substrate permeation pathway using SCAM (substitute cysteine accessibility mutagenesis). In the present study, SCAM was extended through EL3 (extracellular loop 3; residues Arg(254)-Val(286)) that leads into TM7 from the exofacial matrix. Activity of most EL3 mutants was significantly hampered upon cysteine substitution, whereas ten (out of 31) were functionally inactive (<10% activity). Since only E282C lacked plasma membrane expression, EL3 amino acids predominantly fulfill critical functional roles during transport. Oppositely charged membrane-impermeant MTS (methanethiosulfonate) reagents {MTSET [(2-trimethylammonium) ethyl MTS] and MTSES [(2-sulfonatoethyl) MTS]} produced mostly similar inhibition profiles wherein only middle and descending loop segments (residues Thr(267)-Val(286)) displayed significant MTS sensitivity. The presence of bile acid substrate significantly reduced the rates of MTS modification for all MTS-sensitive mutants, suggesting a functional association between EL3 residues and bile acids. Activity assessments at equilibrative [Na(+)] revealed numerous Na(+)-sensitive residues, possibly performing auxiliary functions during transport such as transduction of protein conformational changes during translocation. Integration of these data suggests ligand interaction points along EL3 via electrostatic interactions with Arg(256), Glu(261) and probably Glu(282) and a potential cation-pi interaction with Phe(278). We conclude that EL3 amino acids are essential for hASBT activity, probably as primary substrate interaction points using long-range electrostatic attractive forces.  相似文献   

17.
Anion exchanger 1 (AE1) is the chloride/bicarbonate exchange protein of the erythrocyte membrane. By using a combination of introduced cysteine mutants and sulfhydryl-specific chemistry, we have mapped the topology of the human AE1 membrane domain. Twenty-seven single cysteines were introduced throughout the Leu708-Val911 region of human AE1, and these mutants were expressed by transient transfection of human embryonic kidney cells. On the basis of cysteine accessibility to membrane-permeant biotin maleimide and to membrane-impermeant lucifer yellow iodoacetamide, we have proposed a model for the topology of AE1 membrane domain. In this model, AE1 is composed of 13 typical transmembrane segments, and the Asp807-His834 region is membrane-embedded but does not have the usual alpha-helical conformation. To identify amino acids that are important for anion transport, we analyzed the anion exchange activity for all introduced cysteine mutants, using a whole cell fluorescence assay. We found that mutants G714C, S725C, and S731C have very low transport activity, implying that this region has a structurally and/or catalytically important role. We measured the residual anion transport activity after mutant treatment with the membrane-impermeant, cysteine-directed compound, sodium (2-sulfonatoethyl)methanethiosulfonate) (MTSES). Only two mutants, S852C and A858C, were inhibited by MTSES, indicating that these residues may be located in a pore-lining region.  相似文献   

18.
The secretory Na(+)-K(+)-2Cl(-) cotransporter (NKCC1) is a member of a small gene family of electroneutral salt transporters that play essential roles in salt and water homeostasis in many mammalian tissues. We have identified a highly conserved residue (Ala-483) in the sixth membrane-spanning segment of rat NKCC1 that when mutated to cysteine renders the transporter sensitive to inhibition by the sulfhydryl reagents 2-aminoethyl methanethiosulfonate (MTSEA) and 2-(trimethylammonium)ethyl methanethiosulfonate (MTSET). The mutation of Ala-483 to cysteine (A483C) results in little or no change in the affinities of NKCC1 for substrate ions but produces a 6-fold increase in sensitivity to the inhibitor bumetanide, suggesting a specific modification of the bumetanide binding site. When residues surrounding Ala-483 were mutated to cysteine, only I484C was sensitive to inhibition by MTSEA and MTSET. Surprisingly I484C showed increased transport activity in the presence of low concentrations of mercury (1-10 microm), whereas A483C showed inhibition. The inhibition of A483C by MTSEA was unaffected by the presence or absence of sodium and potassium but required the presence of extracellular chloride. Taken together, our results indicate that Ala-483 lies at or near an important functional site of NKCC1 and that the exposure of this site to the extracellular medium is dependent on the conformation of the transporter. Specifically, our results indicate that the cysteine introduced at residue 483 is only available for interaction with MTSEA when chloride is bound to NKCC1 at the extracellular surface.  相似文献   

19.
Mutations at critical residue positions in transmembrane span 7 (TM7) of the serotonin transporter affect the Na(+) dependence of transport. It was possible that these residues, which form a stripe along one side of the predicted alpha-helix, formed part of a water-filled pore for Na(+). We tested whether cysteine substitutions in TM7 were accessible to hydrophilic, membrane-impermeant methanethiosulfonate (MTS) reagents. Although all five cysteine-containing mutants tested were sensitive to these reagents, noncysteine control mutants at the same positions were in most cases equally sensitive. In all cases, MTS sensitivity could be traced to changes in accessibility of a native cysteine residue in extracellular loop 1, Cys-109. Moreover, none of the TM7 cysteines reacted with the biotinylating reagent MTSEA-biotin when tested in the C109A background. It is thus unlikely that the critical stripe forms part of a water-filled pore. Instead, studies of the ion dependence of the reaction between Cys-109 and MTS reagents lead to the conclusion that TM7 is involved in propagating conformational changes caused by ion binding, perhaps as part of the translocation mechanism. The critical stripe residues on TM7 probably represent a close contact region between TM7 and one or more other TMs in the transporter's three-dimensional structure.  相似文献   

20.
In Escherichia coli, the GlpT transporter, a member of the major facilitator superfamily, moves external glycerol 3-phosphate (G3P) into the cytoplasm in exchange for cytoplasmic phosphate. Study of intact cells showed that both GlpT and HisGlpT, a variant with an N-terminal six-histidine tag, are inhibited (50% inhibitory concentration approximately 35 microM) by the hydrophilic thiol-specific agent p-mercurichlorobenzosulfonate (PCMBS) in a substrate-protectable fashion; by contrast, two other thiol-directed probes, N-maleimidylpropionylbiocytin (MPB) and [2-(trimethylammonium)ethyl]methanethiosulfonate (MTSET), have no effect. Use of variants in which the HisGlpT native cysteines are replaced individually by serine or glycine implicates Cys-176, on transmembrane helix 5 (TM5), as the major target for PCMBS. The inhibitor sensitivity of purified and reconstituted HisGlpT or its cysteine substitution derivatives was found to be consistent with the findings with intact cells, except that a partial response to PCMBS was found for the C176G mutant, suggesting the presence of a mixed population of both right-side-out (RSO) (resistant) and inside-out (ISO) (sensitive) orientations after reconstitution. To clarify this issue, we studied a derivative (P290C) in which the RSO molecules can be blocked independently due to an MPB-responsive cysteine in an extracellular loop. In this derivative, comparisons of variants with (P290C) and without (P290C/C176G) Cys-176 indicated that this residue shows substrate-protectable inhibition by PCMBS in the ISO orientation in proteoliposomes. Since PCMBS gains access to Cys-176 from both periplasmic and cytoplasmic surfaces of the protein (in intact cells and in a reconstituted ISO orientation, respectively) and since access is unavailable when the substrate is present, we propose that Cys-176 is located on the transport pathway and that TM5 has a role in lining this pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号