首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A mucoidal strain of Rhodococcus rhodochrous was resistant to 10% (vol/vol) n-hexadecane, while its rough derivatives were sensitive. When the extracellular polysaccharide (EPS) produced by the mucoidal strain was added to cultures of the rough strains, the rough strains gained resistance to n-hexadecane. Thus, EPS confer tolerance to n-hexadecane in members of the genus Rhodococcus.  相似文献   

2.
M. SUNAIRI, N. IWABUCHI, K. MURAKAMI, F. WATANABE, Y. OGAWA, H. MUROOKA AND M. NAKAJIMA. 1996. Suitable conditions for the introduction of bacteriophage DNA into cells of Rhodococcus rhodochrous CF222 by electroporation were established, and penicillin G was found to enhance the transfection frequency. When conditions optimal for the parental strain were applied to its colony-morphological mutants, different transfection frequencies were observed. Penicillin G enhanced the transfection frequency of smooth and mucoidal mutants but not of rough mutants.  相似文献   

3.
Comparative study of sulfoxidation activity of free and immobilized Rhodococcus rhodochrous IEGM 66 cells was performed. Free Rhodococcus cells (in the presence of 0.1 vol % n-hexadecane) displayed maximal oxidative activity towards thioanisole (0.5 g/l), a prochiral organic sulfide, added after 48-h cultivation of bacterial cells. Higher sulfide concentrations inhibited sulfoxidation activity of Rhodococcus. Use of immobilized cells allowed the 2-day preparatory stage to be omitted and a complete thioanisole bioconversion to be achieved in 24 h in the case that biocatalyst and 0.5 g/l thioanisole were added simultaneously. The biocatalyst immobilized on gel provides for complete thioanisole transformation into (S)-thioanisole sulfoxide (optical purity of 82.1%) at high (1.0-1.5 g/l) concentrations of sulfide substrate.  相似文献   

4.
Peculiarities of synthesis of surface-active substances (SAS) are studied at periodical cultivation of Rhodococcus erythropolis EK-1 in the AK-210 fermenter on medium containing n-hexadecane. Maximum indicators of SAS synthesis (concentration of extra cellular SAS is 7.2 g/l; factor of emulsification of the cultural liquid 50%; SAS yield from the substrate 50%) have been observed at 60-70% concentration of dissolved oxygen from the saturation level with aerial oxygen (pH 8.0) fractional supply of the substrate by portions each being 0.3-0.4% every 5-6 h to a final volume concentration of 2.4% and with the use of 10% inoculate grown until mid-exponential phase on the medium with 1.0 vol % of n-hexadecane. Implementation of the process of SAS biosynthesis with the fermentation equipment provided the possibility to increase almost two-fold the amount of the synthesized SAS and reduce 3.5-fold the time of cultivation of the producer strain compared with the growth in flasks at shake-flask propagator.  相似文献   

5.
Rhodococcus rhodochrous has been reported to be one of the micro-organisms responsible for the formation of scum which is thick and viscous biological foam in activated sludge plants. The hydrophobicity of mycolic acids present on the cell surface and the long-branched shape of the hyphae have been thought to contribute to the scum formation. Cell surface hydrophobicity and scum formation of four R. rhodochrous strains with different colony morphologies were determined, and the results showed that the two rough strains had strong cell surface hydrophobicity and produced scum, whereas the weakly hydrophobic smooth strain and the hydrophilic mucoidal strain did not. All four strains displayed long, branched hyphae, and their electrophoretic mobilities were similar, between pH 4 and 9. These data suggest that changes in the cell surface hydrophobicity of the R. rhodochrous result in changes in the culture characteristics and the formation of scum.  相似文献   

6.
A mutant Rhodococcus strain lacking the ability to utilize 1-chlorohexadecane was found to cis-desaturate aliphatic compounds, such as 1-chlorohexadecane, n-hexadecane, and heptadecanonitrile, yielding corresponding products with a double bond mainly at the ninth carbon from the terminal methyl groups. A new oxidative pathway involving the cis-desaturation step was suggested for alkane utilization by Rhodococcus spp.  相似文献   

7.
Peculiarities of synthesis of surface-active substances (SAS) are studied at periodical cultivation of Rhodococcus erythropolis EK-1 in the AK-210 fermenter on medium containing n-hexadecane. Maximum indicators of SAS synthesis (concentration of extra cellular SAS is 7.2 g/l; factor of emulsification of the cultural liquid 50%; SAS yield from the substrate 50%) have been observed at 60–70% concentration of dissolved oxygen from the saturation level with aerial oxygen (pH 8.0) fractional supply of the substrate by portions each being 0.3–0.4% every 5–6 h to a final volume concentration of 2.4% and with the use of 10% inoculate grown until mid-exponential phase on the medium with 1.0 vol % of n-hexadecane. Implementation of the process of SAS biosynthesis with the fermentation equipment provided the possibility to increase almost two-fold the amount of the synthesized SAS and reduce 3.5-fold the time of cultivation of the producer strain compared with the growth in flasks at shake-flask propagator.  相似文献   

8.
The ability of pure cultures of Rhodococcus actinobacteria from the Ural specialized collection of alkanotrophic microorganisms (World Federation for Culture Collections accession number 768; http://www.ecology.psu.ru/iegmcol) to convert beta-sitosterol (BSS) and its 3beta-acylated derivatives was studied. Rhodococcus strains with pronounced cholesterol oxidase activity, capable of converting BSS to stigmat-4-ene-3-one in the reaction of cooxidation with n-hexadecane, were selected. The dependence of the activity of cholesterol oxidase of rhodococci on the length of the acyl group in BSS esters was studied. Conditions under which Rhodococcus cells convert BSS to 17beta-hydroxyandrost-4-ene-3-one (testosterone), commonly used in pharmacology, were determined.  相似文献   

9.
Halomonas eurihalina strain H-28 is a moderately halophilic bacterium that produces an extracellular polysaccharide not only in media with glucose but also in media supplemented with hydrocarbons (n-tetradecane, n-hexadecane, n-octane, xylene, mineral light oil, mineral heavy oil, petrol, or crude oil). In this study we investigated yield production, chemical composition, viscosity, and emulsifying activity of exopolysaccharides (EPS) extracted from the different media used. The largest amounts of biopolymer were synthesized in media with glucose and n-hexadecane. Chemical composition varied with culture conditions; thus EPS from cultures grown in the presence of hydrocarbons had lower contents of carbohydrates and proteins than EPS from media with glucose. However, the percentages of uronic acids, acetyls, and sulfates were always higher than glucose EPS. Crude oil was the substrate most effectively emulsified. All EPS were capable of emulsifying crude oil more efficiently than the three control surfactants tested (Tween 20, Tween 80, and Triton X-100). All polymers gave low viscosity solutions. EPS H28 could be attractive for application in the oil industry and/or in bioremediation processes, bearing in mind not only its functional properties, but also the capacity of producer strain H-28 to grow in the presence of high salt concentrations and oil substrates.  相似文献   

10.
Linear (n-hexadecane) and branched (pristane) alkanes were degraded by a mixed culture isolated from an oil-contaminated field. The degradation was accompanied by formation of biofloccules. The culture was composed of Rhodococcus strain NTU-1, Bacillus fusiformis L-1, and Ochrobactrum sp. Rhodococcus strain NTU-1 carried out the degradation of the alkane via a hydroxylase. Bacillus fusiformis L-1 and Ochrobactrum sp. did not degrade the alkanes but aided the flocculation by forming more rigid bacterial aggregates that enhanced the trapping of alkanes. In batch cultures, transformation and removal of the linear and branched alkanes was achieved within 66 h with more than 95% efficiency.  相似文献   

11.
The production of biosurfactant from Rhodococcus spp. MTCC 2574 was effectively enhanced by response surface methodology (RSM). Rhodococcus spp. MTCC 2574 was selected through screening of seven different Rhodococcus strains. The preliminary screening experiments (one-factor at a time) suggested that carbon source: mannitol, nitrogen source: yeast extract and meat peptone and inducer: n-hexadecane are the critical medium components. The concentrations of these four media components were optimized by using central composite rotatable design (CCRD) of RSM. The adequately high R2 value (0.947) and F score 19.11 indicated the statistical significance of the model. The optimum medium composition for biosurfactant production was found to contain mannitol (1.6 g/L), yeast extract (6.92 g/L), meat peptone (19.65 g/L), n-hexadecane (63.8 g/L). The crude biosurfactant was obtained from methyl tert-butyl ether extraction. The yield of biosurfactant before and after optimization was 3.2 g/L of and 10.9 g/L, respectively. Thus, RSM has increased the yield of biosurfactant to 3.4-fold. The crude biosurfactant decreased the surface tension of water from 72 mN/m to 30.8 mN/m (at 120 mg L(-1)) and achieved a critical micelle concentration (CMC) value of 120 mg L(-1).  相似文献   

12.
The bioemulsifier V2-7 is an exopolysaccharide (EPS) synthesized by strain F2-7 of Halomonas eurihalina and it has the property of emulsifying a wide range of hydrocarbons i.e. n-tetradecane, n-hexadecane, n-octane, xylene mineral light and heavy oils, petrol and crude oil. Characteristics of exopolysaccharide V2-7 produced in media supplemented with various hydrocarbons (n-tetradecane, n-hexadecane, n-octane, xylene, mineral light oil, mineral heavy oil, petrol or crude oil) were studied. Yield production varied from 0.54 to 1.45 g L(-1) according to the hydrocarbon added, in the same way chemical composition, viscosity and emulsifying activity of EPS varied with the culture conditions. Respect to chemical composition, percentage of uronic acids found in exopolymers produced in hydrocarbon media was always higher than that described for V2-7 EPS (1.32%) obtained with glucose. This large amount of uronic acid present could be useful in biodetoxification and waste water treatment. On the other hand, the highest amount of biopolymer was synthesized with mineral light oil, while the most active emulsifiers were those obtained from media added with petrol and n-octane. Furthermore, all EPS were capable of emulsifying crude oil more efficiently than the three chemical surfactants tested as control (Tween 20, Tween 80 and Triton X-100). The capacity of strain F2-7 to grow and produce bioemulsifier in presence of oil hydrocarbons together with the high emulsifying activity and low viscosity power of the biopolymers synthesized in hydrocarbons media could be considered highly beneficial for application of both bioemulsifier and producing strain in bioremediation of oil pollutants.  相似文献   

13.
Comparison of a “smooth” and a “rough” isolate of Pseudomonas syringae pv. phaseolicola The “smooth” (S) wild strain of Pseudomonas syringae pv. phaseolicola was compared with a “rough” (R) variant of low virulence. Both strains grew nearly equally well on a sucrose containing medium with yeast extract and casamino acids, and the strains did not differ markedly in the quantity of produced EPS (= extracellular polysaccharides). Principally the same results were obtained for high and medium concentrations of sucrose, or when sucrose was replaced by glucose or fructose. However, on glucose and fructose considerably lower quantities of EPS were produced. The biological activity of S-EPS was higher than that of R-EPS. This difference between the EPS preparations was not as marked as leaf inoculation with both bacterial isolates. After prolonged bacterial culture the EPS-production increased further, so that the differences between both strains decreased. A different EPS type was produced on the glycerol containing medium of KING B. Variations in the composition of this medium resulted in different morphology of the agar grown cultures, and the relative differences between S and R bacteria changed. When 62 different physiological tests for both bacterial strains were compared, the “rough” bacteria revealed a lowered range of positive reactions, with a few exceptions. However, it appeared unlikely that the reduced virulence of the “rough” bacteria was due to these differences. Obviously, defects in the extracellular products, but not in levan, were responsible for the reduction of virulence.  相似文献   

14.
15.
Rhodococcus erythropolis PR4 is a marine bacterium that can degrade various alkanes including pristane, a C(19) branched alkane. This strain produces a large quantity of extracellular polysaccharides (EPS), which are assumed to play an important role in the hydrocarbon tolerance of R. erythropolis PR4. The strain produced an acidic EPS, mucoidan, together with a fatty acid-containing EPS, PR4 FACEPS. The chemical structure of the mucoidan was determined using (1)H and (13)C NMR spectroscopy and by conducting 2D DQF-COSY, TOCSY, HMQC, HMBC, and NOESY experiments. The mucoidan was shown to consist of a pentasaccharide repeating unit with the following structure: [structure: see text].  相似文献   

16.
The composition of the Pseudomonas solanacearum lipolysaccharide (LPS) was found to be similar to that described for the LPS of enterobacteria. The lipid A contained fatty acids and glucosamine in a molar ratio of 5:2. The LPS fraction contained 2-keto-3-deoxyoctulosonic acid, L-glycero-D-mannoheptose, hexoses (glucose, rhamnose, and glucosamine), and a pentose (xylose). The LPSs from the wild-type strain (GMI1000), from the spontaneous rough mutant (GMI2000), and from their respective acridine orange-resistant (Acrr) mutants (GMI1178 and GMI2179) contained the same component sugars in their polysaccharide moieties, but the relative amounts of each sugar varied greatly. Spontaneous mutation to the rough type was characterized by a decrease in the ratio of rhamnose to glucose, whereas a reverse effect was seen for the acridine orange resistance mutation from the parent strains (GMI1000 and GMI2000) to the respective mutant strains (GMI1178 and GMI2179). The exopolysaccharide (EPS) from GMI1000 was found to be composed of two fractions: a heteropolysaccharide (galactosamine, glucose, and rhamnose) excluded from Sephadex G-50 and an additional glucan with a lower molecular weight. Strains GMI1000 and GMI1178 produced comparable amounts of EPS, GMI2179 synthesized less EPS, and GMI2000 produced no detectable EPS. High-pressure liquid chromatography and 13C nuclear magnetic resonance analyses revealed some differences between these EPSs. The glucan fraction seemed to be the major component of the EPS from GMI2179, whereas GMI1000 and GMI1178 EPSs contained both fractions and appeared to differ in the structures of their heteropolysaccharide fractions. Viscosity measurements confirmed differences between whole EPSs produced by the three strains.  相似文献   

17.
N-acylhomoserine lactones (AHLs) are conserved signal molecules that control diverse biological activities in quorum sensing system of Gram-negative bacteria. Recently, several soil bacteria were found to degrade AHLs, thereby interfering with the quorum sensing system. Previously, Rhodococcus erythropolis W2 was reported to degrade AHLs by both oxido-reductase and AHL-acylase. In the present study, two AHL-utilizing bacteria, strains LS31 and PI33, were isolated and identified as the genus Rhodococcus. They exhibited different AHL-utilization abilities: Rhodococcus sp. strain LS31 rapidly degraded a wide range of AHLs, including N-3-oxo-hexanoyl-l-homoserine lactone (OHHL), whereas Rhodococcus sp. strain PI33 showed relatively less activity towards 3-oxo substituents. Coculture of strain LS31 with Erwinia carotovora effectively reduced the amount of OHHL and pectate lyase activity, compared with coculture of strain PI33 with E. carotovora. A mass spectrometry analysis indicated that both strains hydrolyzed the lactone ring of AHL to generate acylhomoserine, suggesting that AHL-lactonases (AHLases) from the two Rhodococcus strains are involved in the degradation of AHL, in contrast to R. erythropolis W2. To the best of our knowledge, this is the first report on AHLases of Rhodococcus spp.  相似文献   

18.
Rhodococcus sp. 33 can tolerate and efficiently degrade various concentrations of benzene, one of the most toxic and prevailing environmental pollutants. This strain produces a large quantity of extracellular polysaccharide (33 EPS), which plays an important role in the benzene tolerance in Rhodococcus sp. 33, especially by helping the cells to survive an initial challenge with benzene. This EPS has been reported to be composed of D-galactose, D-glucose, D-mannose, D-glucuronic acid, and pyruvic acid at a molar ratio of 1:1:1:1:1. To understand the protective effect of 33 EPS, we determined its chemical structure by using 1H and 13C NMR spectroscopy including 2D DQF-COSY, TOCSY, HMQC, HMBC, and NOESY experiments. The polysaccharide was shown to consist of tetrasaccharide repeating units with the following structure: [structure: see text].  相似文献   

19.
The degradation of the herbicides EPTC (S-ethyl dipropylthiocarbamate) and atrazine (2-chloro-4-ethyl-amino-6-isopropylamino-1,3,5-triazine) is associated with an indigenous plasmid in Rhodococcus sp. strain TE1. Plasmid DNA libraries of Rhodococcus sp. strain TE1 were constructed in a Rhodococcus-Escherichia coli shuttle vector, pBS305, and transferred into Rhodococcus sp. strain TE3, a derivative of Rhodococcus sp. strain TE1 lacking herbicide degradation activity, to select transformants capable of growing on EPTC as the sole source of carbon (EPTC+). Analysis of plasmids from the EPTC+ transformants indicated that the eptA gene, which codes for the enzyme required for EPTC degradation, residues on a 6.2-kb KpnI fragment. The cloned fragment also harbored the gene required for atrazine N dealkylation (atrA). The plasmid carrying the cloned fragment could be electroporated into a number of other Rhodococcus strains in which both eptA and atrA were fully expressed. No expression of the cloned genes was evident in E. coli strains. Subcloning of the 6.2-kb fragment to distinguish between EPTC- and atrazine-degrading genes was not successful.  相似文献   

20.
Thirty-one lactic acid bacterial strains from different species were evaluated for exopolysaccharide (EPS) production in milk. Thermophilic strains produced more EPS than mesophilic ones, but EPS yields were generally low. Ropiness or capsular polysaccharide formation was strain dependent. Six strains produced high-molecular-mass EPS. Polymers were classified into nine groups on the basis of their monomer composition. EPS from Enterococcus strains were isolated and characterized.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号