首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Transformation of 4-thiouridine residues in Escherichia coli transfer ribonucleic acids is achieved under conditions which leave the major bases and the primary structure unaffected. The modifications of 4-thiouridine involve either alteration with N-ethylmaleimide, cyanogen bromide, or hydrogen peroxide, or a photochemical transformation effected by irradiation at 330 nm of tRNA in an organic solvent. These selective modifications were made on unfractionated species (Phe, Leu, fMet, Tyr, and Val) and purified species (Phe, fMet, and Val) of E. coli tRNA with little or no loss in their capacities to be aminoacylated. Of the tRNA species tested, subsequent treatment of 4-thiouridineless-tRNA with sodium borohydride affects only the capacity of tRNAPhe to be aminoacylated. These observations are consistent with the proposal that the cognate ligase recognition site on tRNAPhe is situated in the nonhydrogenbonded dihydrouridine loop area of the molecule.  相似文献   

2.
The specificity of the interaction between phosphoribosyltransferase and partially purified preparations of various species of transfer ribonucleic acid (tRNA) was investigated with the use of a filter binding assay. The enzyme showed a higher affinity for histidyl-tRNA than for arginyl- or glutamyl-tRNA. Competition experiments revealed that the enzyme does not distinguish between the aminoacylated and deacylated forms of arginine tRNA or glutamic acid tRNA, since all the binding of the aminoacylated tRNA could be inhibited by deacylated tRNA. The enzyme does, however, distinguish between the aminoacylated and deacylated forms of histidine tRNA. Approximately 70% of the binding of aminoacylated histidine tRNA is specific, since only 30% of the binding could be inhibited by deacylated tRNA. The possibility that the regulatory role of phosphoribosyltransferase is carried out as a complex with histidyl-tRNA is consistent with these data.  相似文献   

3.
According to the X-ray structure of yeast tRNAPhe at 2.5 A resolution, a hydrogen bond is formed between m7G46 and G22. By removal of this m7G46-residue we demonstrate that this interaction is present in solution as well. Comparison of the 1H 360 MHz NMR spectra of intact yeast tRNAPhe and its m7G-excised derivative locates the position of this tertiary H-bond at 12.5 ppm downfield from DSS. Additional evidence for the presence of this interaction in solution comes from a comparison of 1H NMR spectra of E. coli tRNAf1Met and E. coli tRNAf3Met, which differ only in a single position in the extra arm. In tRNAf3Met residue 47 is a m7G-residue, whereas in tRNAf3Met it is A, resulting in the absence of the m7G47 - G23 - C13 triple interaction, characteristic of tRNAf1Met. The resonance position of this tertiary interaction in tRNAf1Met is located around -13.6 ppm, a chemical shift difference of 1.1 ppm with respect to the position observed for tRNAPhe. The origin of this chemical shift difference is discussed in relation to the structure of their respective augmented D-helices.  相似文献   

4.
The nucleotide sequence of formylmethionine tRNA from an extreme thermophile, Thermus thermophilus HB8, was determined by a combination of classical methods using unlabeled samples to determine the sequences of the oligonucleotides of RNase T1 and RNase A digests and a rapid sequencing gel technique using 5'-32P labeled samples to determine overlapping sequences. Formylmethionine tRNA from T. thermophilus is composed of two species, tRNAf1Met and tRNAf2Met. Their nucleotide sequences are almost identical, and are also almost identical with that of E. coli tRNAfMet, except for slight modifications and replacements. Both species have modifications at three points which do not exist in E. coli tRNAfMet: 2'-O-methylation at G19, N-1-methylation at A59 and 2-thiolation at T55. Moreover U51 in E. coli tRNAfMet is replaced by C51 in both species, so that a G-C pair is formed between this C51 and G65. tRNAf2Met has a reversed G-C pair at positions 52 and 64 compared with those in tRNAf1Met and E. coli tRNAfMet. Other regions are mostly the same as those in all prokaryotic initiator tRNAs so far reported. The thermostability of these thermophile initiator tRNAs is discussed in relation to their unique modifications.  相似文献   

5.
6.
M Kaminska  V Shalak  M Mirande 《Biochemistry》2001,40(47):14309-14316
An ancillary RNA-binding domain is appended to the C-terminus of human methionyl-tRNA synthetase. It comprises a helix-turn-helix (HTH) motif related to the repeated units of the linker region of bifunctional glutamyl-prolyl-tRNA synthetase, and a specific C-terminal KGKKKK lysine-rich cluster (LRC). Here we show by gel retardation and tRNA aminoacylation experiments that these two regions are important for tRNA binding. However, the two pieces of this bipartite RNA-binding domain are functionally distinct. Analysis of MetRS mutant enzymes revealed that the HTH motif is more specifically endowed with a tRNA-sequestering activity and confers on MetRS a rate-limiting dissociation of aminoacylated tRNA. Elongation factor EF-1alpha enhanced the turnover in the aminoacylation reaction. In contrast, the LRC region is most probably involved in accelerating the association step of deacylated tRNA. These two nonredundant RNA-binding motifs strengthen tRNA binding by the synthetase. The native form of MetRS, containing the C-terminal RNA-binding domain, behaves as a processive enzyme; release of the reaction product is not spontaneous, but may be synchronized with the subsequent step of the tRNA cycle through EF-1alpha-assisted dissociation of Met-tRNA(Met). Therefore, the eukaryotic-specific C-domain of human MetRS may have a dual function. It may ensure an efficient capture of tRNA(Met) under conditions of suboptimal deacylated tRNA concentration prevailing in vivo, and may instigate direct transfer of aminoacylated tRNA from the synthetase to elongation factor EF-1alpha.  相似文献   

7.
Distance measurements in cardiac troponin C   总被引:2,自引:0,他引:2  
Intramolecular distance measurements were made in cardiac troponin C (cTnC) by fluorescence energy transfer using Eu3+ or Tb3+ as energy donors and Nd3+ or an organic chromophore as acceptors. The laser-induced luminescence of bound Eu3+ is quenched in Eu1Nd1cTnC with a lifetime of 0.328 ms, compared with 0.43 ms for Eu2cTnC. The enhanced decay corresponds to an energy transfer efficiency of 0.25, or a distance of 1.1 nm between the two high affinity sites. We have also labeled cTnC with 4-dimethylaminophenylazophenyl-4'-maleimide (DAB-Mal) at the two cysteine residues (Cys-35 and Cys-84). Energy transfer measurements were carried out between Tb3+ bound to the high affinity sites and the labels attached to the domain containing the low affinity site. Upon uv irradiation at pH 6.7, Tb1cTnCDAB emits tyrosine-sensitized Tb3+ luminescence that decays bioexponentially with lifetimes of 1.29 and 0.76 ms. The shorter lifetime is ascribed to energy transfer from Tb3+ to the DAB labels, yielding an average distance of 3.4 nm between the donor and the acceptors. At pH 5.0, however, the luminescence decays exclusively with a single lifetime of 1.31 ms, suggesting that under these conditions all Tb3+ ions are more than 5.2 nm away from the label. Thus cTnC, like skeletal TnC, undergoes a pH-dependent conformational transition which converts an elongated structure at lower pH's to a rather compact conformation in a more physiological medium.  相似文献   

8.
Direct binding assay and fluorescence studies revealed that S-100a protein binds 2 mol of Tb3+/mol of protein at pH 6.6. The protein binds Tb3+ much more tightly than Ca2+, and the upper limit of the observed Kd value for Tb3+ is 3.5 x 10(-6) M. The Tb3+-binding site on the protein must be close to a tyrosine residue, as indicated by fluorescence excitation and emission spectra, where energy transfer from tyrosine is noted. Addition of Tb3+ resulted in a conformational change in the protein, as revealed by u.v.-difference spectroscopy and c.d. studies. Far-u.v. c.d. studies indicated the helical content to decrease from approx. 39% to 35% in the presence of Tb3+. From u.v.-difference-spectroscopy results the single tryptophan and the tyrosine chromophores in S-100a protein are blue-shifted (i.e. exposed to the solvent) in the presence of Tb3+ and the observed conformational changes are similar to those induced by Ca2+, suggesting that Tb3+ can be employed as a Ca2+ analogue in spectral studies with S-100a protein.  相似文献   

9.
Incubation of abbreviated tRNA's (tRNA-C-COH's) with (chemically) preaminoacylated P1, P2-di(adenosine 5'-)diphosphates in the presence of purified RNA ligase effected transfer of an aminoacyladenylate moiety to the 3'-terminus of the abbreviated tRNA's in good yield. Aminoacylated (or misacylated) tRNA's may thus be prepared from fractionated or unfractionated tRNA-C-COH's; each of the five aminoacylated dinucleoside diphosphates tested was utilized as a substrate by RNA ligase. That the resulting "chemically aminoacylated" tRNA's were identical with those prepared by enzymatic aminoacylation was judged by comparison of 1) chromatographic properties on benzolated diethylaminoethyl-cellulose, 2) rates of chemical deacylation, and 3) affinities for elongation factor Tu, as well as 4) the ability of misacylated tRNA's so derived to be deacylated chemically and then reactivated enzymatically with their cognate amino acids.  相似文献   

10.
Calmodulin, spin labeled at Tyr-99, has been titrated with the lanthanides La3+, Nd3+, Eu3+, Tb3+, Er3+ and Lu3+ as well as Ca2+ and Cd2+. The titration was monitored by EPR and changes in mobility of the spin label, due to binding into the labeled site and protein conformational change, were observed. Comparison of these titration curves with theoretical binding curves for the various calmodulin-metal species, show that different lanthanides have different high affinity sites. Three basic categories were observed, with Lu3+ and Er3+ behaving like Ca2+, Eu3+ and Tb3+ binding in the opposite order from Ca2+, and La3+ and Nd3+ different from either Ca2+ or Tb3+.  相似文献   

11.
Two methionine tRNAs from yeast mitochondria have been purified. The mitochondrial initiator tRNA has been identified by formylation using a mitochondrial enzyme extract. E. coli transformylase however, does not formylate the yeast mitochondrial initiator tRNA. The sequence was determined using both 32P-in vivo labeled and 32P-end labeled mt tRNAf(Met). This tRNA, unlike N. crassa mitochondrial tRNAf(Met), has two structural features typical of procaryotic initiator tRNAs: (i) it lacks a Watson-Crick base-pair at the end of the acceptor stem and (ii) has a T-psi-C-A sequence in loop IV. However, both yeast and N. crassa mitochondrial initiator tRNAs have a U11:A24 base-pair in the D-stem unlike procaryotic initiator tRNAs which have A11:U24. Interestingly, both mitochondrial initiator tRNAs, as well as bean chloroplast tRNAf(Met), have only two G:C pairs next to the anticodon loop, unlike any other initiator tRNA whatever its origin. In terms of overall sequence homology, yeast mitochondrial tRNA(Met)f differs from both procaryotic or eucaryotic initiator tRNAs, showing the highest homology with N. crassa mitochondrial initiator tRNA.  相似文献   

12.
O W Odom  B Hardesty 《Biochimie》1987,69(9):925-938
Fluorescence techniques were used to detect changes in the conformation of tRNA(Phe) that may occur during the peptidyl transferase reaction in which the tRNA appears to move between binding sites on ribosomes. Such a conformational change may be a fundamental part of the translocation mechanism by which tRNA and mRNA are moved through ribosomes. E. coli tRNA(Phe) was specifically labeled on acp3U47 and s4U8 or at the D positions 16 and 20. The labeled tRNAs were bound to ribosomes as deacylated tRNA(Phe) or AcPhe-tRNA. Changes in fluorescence quantum yield and anisotropy were measured upon binding to the ribosomes and during the peptidyl transferase reaction. In one set of experiments non-radiative energy transfer was measured between a coumarin probe at position 16 or 20 and a fluorescein attached to acp3U47 on the same tRNA(Phe) molecule. The results indicate that the apparent distance between the probes increases during deacylation of AcPhe-tRNA as a result of peptide bond formation. All of the results are consistent with but in themselves do not conclusively establish that tRNA undergoes a conformational change as well as movement during the peptidyl transferase reaction.  相似文献   

13.
Laser-excited luminescence lifetimes of lanthanide ions bound to bacteriorhodopsin have been measured in deionized membranes. The luminescence titration curve, as well as the binding curve of apomembrane (retinal-free) with Eu3+, has shown that the removal of the retinal does not significantly affect the affinity of Eu3+ for the two high affinity sites of bacteriorhodopsin. The D2O effects on decay rate constants indicate that Eu3+ bound to the high affinity sites of native membrane or apomembrane is coordinated by about six ligands in the first coordination sphere. Tb3+ is shown to be coordinated by four ligands. The data indicate that metal ions bind to the protein with a specific geometry. From intermetal energy transfer experiments using Eu3+-Pr3+, Tb3+-Ho3+, and Tb3+-Er3+, the distance between the two high affinity sites is estimated to be 7-8 A.  相似文献   

14.
The interactions of Tb3+ with the quadruplex-forming oligonucleotide bearing human telomeric repeat sequence d(G(3)T(2)AG(3)T(2)AG(3)T(2)AG(3)), (htel21), have been studied using luminescence spectroscopy and circular dichroism (CD). Enhanced luminescence of Tb3+, resulting from energy transfer from guanines, indicated encapsulation of Tb3+ ion in the central cavity of quadruplex core. The ability of lanthanide ions (Eu3+ and Tb3+) to mediate formation of quadruplex structure has been further evidenced by the fluorescence energy transfer measurements with the use of oligonucleotide probe labeled with fluorescein and rhodamine FRET partners, FAM-htel21-TAMRA. The CD spectra revealed that Tb3+/htel21 quadruplex possesses antiparallel strand orientation, similarly as sodium quadruplex. Tb3+ binding equilibria have been investigated in the absence and the presence of competing metal cations. At low Tb3+ concentration (8 microM) Tb3+/htel21 quadruplex stability is very high (5 x 10(6) M(-1)) and stoichiometry of 5-7 Tb3+ ions per one quadruplex molecule is observed. Luminescence and CD titration experiments suggested that the cavity of quadruplex accommodates two Tb3+ ions and the remaining Tb3+ ions bind probably to TTA loops of quadruplex. Higher concentration of Tb3+ (above 10 microM) results in the excessive binding of Tb3+ ions that finally destabilizes quadruplex, which undergoes transformation into differently organized assemblies. Such assemblies (probably possessing multiple positive charge) exhibit kinetic stability, which is manifested by a very slow kinetics of displacement of Tb3+ ion by competing cations (Li+, Na+, K+).  相似文献   

15.
Luminescence energy transfer measurements have been used to determine the distances between the two high affinity Ca2+ binding-transport sites of the (Ca2+ + Mg2+)-ATPase of skeletal muscle sarcoplasmic reticulum. The lanthanide Tb3+ situated at one high affinity Ca2+ site was used as the transfer donor, and acceptors at the other Ca2+ site were the lanthanides Nd3+, Pr3+, Ho3+, or Er3+. Terbium bound to the enzyme was excited directly with a pulsed dye laser. Analysis of the changes in the terbium luminescence lifetime due to the presence of the acceptor indicates that the distance between the Ca2+ sites is 10.7 A. The distance between the Ca2+ sites and the nucleotide-binding catalytic site was determined using Tb3+ at the Ca2+ sites and either trinitrophenyl nucleotides (TNP-N) or fluorescein 5-isothiocyanate (FITC) in the catalytic site as energy acceptors. The R0 values for the Tb-acceptor pairs are approximately 30 and approximately 40 A for TNP-N and FITC, respectively. The distance between Tb3+ at the Ca2+ sites and TNP-ATP at the nucleotide site is approximately 35 A and that between the Ca2+ sites and the FITC labeling site is approximately 47 A. Considerations of the molecular dimensions of the ATPase polypeptide indicate that while the two Ca2+ sites are close to each other, the Ca2+ sites and the nucleotide site are quite remote in the three-dimensional structure of the enzyme.  相似文献   

16.
The luminescent isomorphous Ca2+ analogue, Tb3+, can be bound in the 12-amino acid metal binding sites of proteins of the EF hand family, and its luminescence can be enhanced by energy transfer from a nearby aromatic amino acid. Tb3+ can be used as a sensitive luminescent probe of the structure and function of these proteins. The effect of changing the molecular environment around Tb3+ on its luminescence was studied using native Cod III parvalbumin and site-directed mutants of both oncomodulin and calmodulin. Titrations of these proteins showed stoichiometries of fill corresponding to the number of Ca2+ binding loops present. Tryptophan in binding loop position 7 best enhanced Tb3+ luminescence in the oncomodulin mutant Y57W, as well as VU-9 (F99W) and VU-32 (T26W) calmodulin. Excitation spectra of Y57F, F102W, Y65W oncomodulin, and Cod III parvalbumin revealed that the principal Tb3+ luminescence donor residues were phenylalanine or tyrosine located in position 7 of a loop, despite the presence of other nearby donors, including tryptophan. Spectra also revealed conformational differences between the Ca2+- and Tb(3+)-bound forms. An alternate binding loop, based on Tb3+ binding to model peptides, was inserted into the CD loop of oncomodulin by cassette mutagenesis. The order of fill of Tb3+ in this protein reversed, with the mutated loop binding Tb3+ first. This indicates a much higher affinity for the consensus-based mutant loop. The mutant loop inserted into oncomodulin had 32 times more Tb3+ luminescence than the identical synthetic peptide, despite having the same donor tryptophan and metal binding ligands. In this paper, a ranking of sensitivity of luminescence of bound Tb3+ is made among this subset of calcium binding proteins. This ranking is interpreted in light of the structural differences affecting Tb3+ luminescence enhancement intensity. The mechanism of energy transfer from an aromatic amino acid to Tb3+ is consistent with a short-range process involving the donor triplet state as described by Dexter (Dexter, D. L. (1953) J. Chem. Phys. 21, 836). This cautions against the use of the F?rster equation in approximating distances in these systems.  相似文献   

17.
C L Wang 《Biochemistry》1989,28(11):4816-4820
Fluorescence energy transfer measurements were carried out between landmarks on wheat germ calmodulin to measure the interdomain distance. Tb3+ ions bound at the four Ca2+-binding sites were used as energy donors, and an organic chromophore, [4-(dimethylamino)-phenyl-4'-azophenyl]maleimide, attached to the single cysteine residue at position 27, was used as the acceptor. At pH's near neutrality all bound Tb3+ ions emit luminescence with shortened lifetimes as a result of energy transfer to the acceptor; at pH 5, however, part of the metal emission becomes unquenched. When the protein is subjected to limited digestion with trypsin in the presence of Ca2+, resulting in the formation of two fragments, each corresponding to half of the molecule, the decay of Tb3+ emission is no longer pH sensitive. These results suggest that, like rabbit skeletal troponin C [Wang, C.-L. A., Zhan, Q., Tao, T., & Gergely, J. (1987) J. Biol. Chem. 257, 8372-8375], wheat germ calmodulin exists in a relatively compact conformation at neutral pH's, but becomes more elongated at pH 5.  相似文献   

18.
Interaction between Gd3+ and Tb3+ ions and Ca2+,Mg2+-ATPase of sarcoplasmic reticulum was studied. Three classes of lanthanide-ion binding sites with different affinities were distinguished. Binding of Gd3+ to the site with the highest affinity seemed to occur at less than 10(-6)M free Gd3+ and resulted in severe inhibition of ATPase activity. The reaction rates of both E-P formation and decomposition in the forward direction were inhibited in parallel with this binding, whereas ADP-dependent decay of E-P in the backward direction was not. At these Gd3+ concentrations, Ca2+-binding to the transport site was not inhibited. Binding of Gd3+ and Tb3+ to the Ca2+-transport site did occur, but more than 10(-5)M free Gd3+ or Tb3+ was required for effective competition with Ca2+ for that site. Gd3+ bound to the transport site in place of Ca2+ did not activate the E-P intermediate formation. Addition of 10(-1)M Tb3+ to a suspension of sarcoplasmic reticulum membranes resulted in marked enhancement of Tb3+ fluorescence, which is due to an energy transfer from aromatic amino acid residues of ATPase to Tb3+ ions bound to the low affinity site of the enzyme. Gd3+ and Mn2+ competed with Tb3+ for that site, but Ca2+, Zn2+, and Cd2+ did not.  相似文献   

19.
The reactions of a disulfide and a benzylsulfide derived from 4-thiouridine were studied in aqueous acetonitrile using stationary and laser flash photolysis methods. Irradiation of the compounds results in specific cleavage of the S-S bond in the disulfide and the S-CH(2) bond in the sulfide. Identical pyrimidine-derived intermediates were observed in the transient absorption spectra (lambda(max) = 420 nm, epsilon(max) approximately 2500 M(-1) cm(-1)) recorded for both compounds in laser flash photolysis experiments. The intermediate was identified as the 4-pyrimidinylthiyl radical. Irradiation of the disulfide in the absence of oxygen gives 4-thiouridine while the sulfide under identical conditions produced, additionally, 3-benzyl-4-thiouridine as a stable photoproduct. The formation of the latter photoproduct provides evidence for the existence of the N-centered 4-thioxopyrimidynyl radical formed from the initially produced S-centered (thiyl) radical. The 4-thiouridine is formed from the radicals generated in the primary photochemical step by an H abstraction reaction from the solvent (acetonitrile) or from additives (alcohols) that were purposely added. Interestingly, in contrast to the benzylsulfide, the photoreaction of the disulfide is quenched by molecular oxygen with the concomitant formation of uridine. However it appears that uridine is not produced as a result of the reaction of the radicals with oxygen. A mechanism is proposed for the photochemical transformations of the disulfide and benzylsulfide derived from 4-thiouridine. The proposed mechanism is based on the structures of the identified stable photoproducts, the values of the photoreaction quantum yields determined under differing irradiation conditions, and the flash photolysis results.  相似文献   

20.
The conditions under which the fluorescent pyrazolopyrimidine nucleotide formycin A triphosphate (7-amino-3-(beta-D-(5'- tripolyphosphate)ribofuranosyl)pyrazolo[4,3-d]pyrimidine, FTP) forms a 1:1 complex in solution with Tb3+ have been characterized. The complex has a dissociation constant of approx. 10(-7) M. Within the complex, the luminescence of Tb3+ is dramatically sensitized by energy transfer from formycin. The value for 50% transfer efficiency, F?rster's R0 (F?rster, T. (1964) in Modern Quantum Chemistry (Sinanoglu, O., ed.), pp. 93-137, Academic Press, New York) was determined to be 3.34 +/- 0.4 A, and the effective distance between the donor and acceptor transition dipoles, R, in the complex was estimated to be 6.6 +/- 1.0 A. The quantum yield of Tb3+ in the complex is sensitive to the number of O-H oscillators bound to the Tb3+, which allows determination of the number of waters bound to it (approx. 4). Preliminary results show that the complex binds to the phosphoryl transfer enzyme hexokinase in the presence of the glucose analogs N-acetylglucosamine, frucose and xylose, which are not phosphorylated by the enzyme. The binding occurs with a loss of energy efficiency consistent with a new distance from the effective transition dipole of formycin to that of terbium of approx. 9.6 A. The FTP-terbium complex can be used as both a spectroscopic and an X-ray diffraction probe. Studies with this compound should be most valuable for correlating solution and crystallographic data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号