首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Experimental ecology methods and chlorophyll fluorescence technology were used to study the effects of different concentrations of manganese (10−12– 10−4 mol L−1) on the growth, photosystem II and superoxide dismutase (SOD) activity of Amphidinium sp. MACC/D31. The results showed that manganese had a significant effect on the growth rate, fluorescence parameters (maximal photochemical efficiency of PSII (F v /F m ), photochemical quenching (qP) and non-photochemical quenching (NPQ)) in the exponential stage (days 1–3) and SOD activity of Amphidinium sp. (P < 0.05). F v/F m in the exponential stage in 10−12 mol L−1 manganese concentration was significantly lower whilst qP and NPQ significantly higher than those in the other concentrations. F v /F m (days 6–9) in 10−4 mol L−1 manganese was significantly higher than those in the other concentrations. F v /F m (days 3–6) increased with increased concentration of manganese from 10−12 to 10−4 mol L−1. The values of qP and NPQ decreased with decreased concentrations of manganese, except for those in days 4–6. F v /F m under each concentration increased earlier and decreased later with culture stage whilst NPQ decreased earlier and increased later. The SOD activity increased with increased concentration of manganese from 10−12 to 10−8 mol L−1. The SOD activity in 10−4 mol L−1 manganese was significantly higher than those in the other concentrations and in 10−12 mol L−1 manganese, it was significantly lower than those in the other concentrations.  相似文献   

2.
Two variants of open photobioreactors were operated at surface-to-volume ratios up to 170 m−1. The mean values for July and September obtained for photobioreactor PB-1 of 224 m2 culture area (length 28 m, inclination 1.7%, thickness of algal culture layer 6 mm), operated in Třeboň (49N), Czech Republic, were: net areal productivity, P net = 23.5 and 11.1 g dry weight (DW) m−2 d−1; net photosynthetic efficiency (based on PAR – Photosynthetic Active Radiation), η = 6.48 and 5.98%. For photobioreactor PB-2 of 100 m2 culture area (length 100 m, inclination 1.6%, thickness of algal culture layer 8 mm) operated in Southern Greece (Kalamata, 37N) the mean values for July and October were: P net = 32.2 and 18.1 g DW m−2 d−1, η = 5.42 and 6.07%. The growth rate of the alga was practically linear during the fed-batch cultivation regime up to high biomass densities of about 40 g DW L−1, corresponding to an areal density of 240 g DW m−2 in PB-1 and 320 g DW m−2 in PB-2. Night biomass loss (% of the daylight productivity, P L) caused by respiration of algal cells were: 9–14% in PB-1; 6.6–10.8% in PB-2. About 70% of supplied CO2 was utilized by the algae for photosynthesis. The concentration of dissolved oxygen (DO) increased from about 12 mg L−1 at the beginning to about 35 mg L−1 at the end of the 100 m long path of suspension flow in PB-2 at noon on clear summer days. Dissipation of hydraulic energy and some parameters of turbulence in algal suspension on culture area were estimated quantitatively.  相似文献   

3.
Rates of net photosynthesis (P N) and transpiration (E), and leaf temperature (TL) of maintenance leaves of tea under plucking were affected by photosynthetic photon flux densities (PPFD) of 200–2 200 μmol m−2 s−1. P N gradually increased with the increase of PPFD from 200 to 1 200 μmol m−2 s−1 and thereafter sharply declined. Maximum P N was 13.95 μmol m−2 s−1 at 1 200 μmol m−2 s−1 PPFD. There was no significant variation of P N among PPFD at 1 400–1 800 μmol m−2 s−1. Significant drop of P N occurred at 2 000 μmol m−2 s−1. PPFD at 2 200 μmol m−2 s−1 reduced photosynthesis to 6.92 μmol m−2 s−1. PPFD had a strong correlation with TL and E. Both TL and E linearly increased from 200 to 2 200 μmol m−2 s−1 PPFD. TL and E were highly correlated. The optimum TL for maximum P N was 26.0 °C after which P N declined significantly. E had a positive correlation with P N.  相似文献   

4.
During the last two decades, the monostromatic green seaweed Gayralia sp. has been harvested sporadically by local fishermen on the Paraná coast of southern Brazil and sold to Japanese restaurants. However, the production is erratic and its economic impact very small. This paper provides basic information about a technique to cultivate this seaweed on suspended nets in Paranaguá Bay, southern Brazil, aiming to develop a more reliable and sustainable source of income for impoverished coastal dwellers. Gayralia sp. occurs year round in the region, usually growing on mangrove stems and roots. Polypropylene nets (10 m long × 1 m wide with 16 cm mesh) were placed close to the mangrove fringe. Recruitment occurred year round reaching a peak of 500 recruits m−2 during early spring. Higher recruitment occurred at periods of low temperature (21–23°C) and high salinity (30–33 psu). Growth rates of Gayralia sp. ranged from 5.75 ± 0.56% to 6.50 ± 0.43% day−1 during the winter and from 1.43 ± 1.65% to 4.65 ± 2.17% day−1, during the summer. Production ranged from 22 ± 6 g m−2 DW in June to 58 ± 21 g m−2 DW in September 2004 in 45 days after zooid settlement. The simplicity of the cultivation method, reasonable growth rates and extensive favorable area for cultivation suggest that mariculture of Gayralia sp. may become a good alternative of income for the local inhabitants.  相似文献   

5.
The spatial and temporal variation of microphytobenthic biomass in the nearshore zone of Martel Inlet (King George Island, Antarctica) was estimated at several sites and depths (10–60 m), during three summer periods (1996/1997, 1997/1998, 2004/2005). The mean values were inversely related to the bathymetric gradient: higher ones at 10–20 m depth (136.2 ± 112.5 mg Chl a m−2, 261.7 ± 455.9 mg Phaeo m−2), intermediate at 20–30 m (55.6 ± 39.5 mg Chl a m−2, 108.8 ± 73.0 mg Phaeo m−2) and lower ones at 40–60 m (22.7 ± 23.7 mg Chl a m−2, 58.3 ± 38.9 mg Phaeo m−2). There was also a reduction in the Chl a/Phaeo ratio with depth, from 3.2 ± 3.2 (10–20 m) to 0.7 ± 1.0 (40–60 m), showing a higher contribution of senescent phytoplankton and/or macroalgae debris at the deeper sites and the limited light flux reaching the bottom. Horizontal differences found in the biomass throughout the inlet could not be clearly related to hydrodynamics or proximity to glaciers, but with sediment characteristics. An inter-summer variation was observed: the first summer presented the highest microphytobenthic biomass apparently related to more hydrodynamic conditions, which causes the deposition of allochthonous material.  相似文献   

6.
Nutrient concentrations, chlorophyll-a, bacterial biomass and relative activity of denitrifying organisms were investigated from ice-core, brine and underlying water samples in February 1998 in the Gulf of Bothnia, Baltic Sea. Examined sea ice was typical for the Baltic Sea; ice bulk salinity varied from 0.1 to 1.6 psu, and in underlying water salinity was from 4.2 to 4.7 psu. In 2- to 3-months-old sea ice (thickness 0.4–0.6 m), sea-ice communities were at the winter stage; chl-a concentrations were generally below 1 mg m−3 and heterotrophic organisms composed 7–20% of organism assemblage. In 1-month-old ice (thickness 0.2–0.25 m), an ice spring bloom was already developing and chl-a concentrations were up to 5.6 mg m−3. In relation to low salinity, high concentrations of NH+ 4, NO 2, PO3+ 4 and SiOH4 were found in the ice column. The results suggest that the upper part of ice accumulates atmospheric nutrient load during the ice season, and nutrients in the upper 10–20 cm of ice are mainly of atmospheric origin. The most important biological processes controlling the sea-ice nutrient status are nutrient regeneration, nutrient uptake and nitrogen transformations. Nutrient regeneration is specially active in the middle parts of the 50- to 60-cm-thick ice and subsequent accumulation of nutrients probably enhances the ice spring bloom. Nitrite accumulation and denitrifying activity were located in the same ice layers with nutrient regeneration, which together with the observed significant correlation between the concentrations of nitrogenous nutrients points to active nitrogen transformations occurring in the interior layers of sea ice in the Baltic Sea. Accepted: 12 June 2000  相似文献   

7.
The rabbit Na+/glucose cotransporter (SGLT1) exhibits a presteady-state current after step changes in membrane voltage in the absence of sugar. These currents reflect voltage-dependent processes involved in cotransport, and provide insight on the partial reactions of the transport cycle. SGLT1 presteady-state currents were studied as a function of external Na+, membrane voltage V m , phlorizin and temperature. Step changes in membrane voltage—from the holding V h to test values, elicited transient currents that rose rapidly to a peak (at 3–4 msec), before decaying to the steady state, with time constants τ≈4–20 msec, and were blocked by phlorizin (K i ≈30 μm). The total charge Q was equal for the application of the voltage pulse and the subsequent removal, and was a function of V m . The Q-V curves obeyed the Boltzmann relation: the maximal charge Q max was 4–120 nC; V 0.5, the voltage for 50% Q max was −5 to +30 mV; and z, the apparent valence of the moveable charge, was 1. Q max and z were independent of V h (between 0 and −100 mV) and temperature (20–30°C), while increasing temperature shifted V 0.5 towards more negative values. Decreasing [Na+] o decreased Q max, and shifted V 0.5 to more negative voltages 9by −100 mV per 10-fold decrease in [Na+] o ). The time constant τ was voltage dependent: the τ-V relations were bell-shaped, with maximal τmax 8–20 msec. Decreasing [Na+] o decreased τmax, and shifted the τ-V curves towards more negative voltages. Increasing temperature also shifted the τ-V curves, but did not affect τmax. The maximum temperature coefficient Q 10 for τ was 3–4, and corresponds to an activation energy of 25 kcal/mole. Simulations of a 6-state ordered kinetic model for rabbit Na+/glucose cotransport indicate that charge-movements are due to Na+-binding/dissociation and a conformational change of the empty transporter. The model predicts that (i) transient currents rise to a peak before decay to steady-state; (ii) the τ-V relations are bell-shaped, and shift towards more negative voltages as [Na+] o is reduced; (iii) τmax is decreased with decreasing [Na+] o ; and (iv) the Q-V relations are shifted towards negative voltages as [Na+] o is reduced. In general, the kinetic properties of the presteady-state currents are qualitatively predicted by the model. Received: 12 August 1996/Revised: 30 September 1996  相似文献   

8.
Seedlings of Bidens cernua L. emerged when mean air temperature was 17.0±1.3 °C. The highest net photosynthetic rate (P N), 13.8±0.8 μmol(CO2) m−2 s−1, was monitored during the vegetative period (May–August), decreasing on an average by 50 % during flowering (August–September) and during fruiting (September–November) phases. The senescence phase (October–November) was characterised by 79, 58, and 18 % decrease of P N, chlorophyll content, and leaf area (LA), respectively, from the maximum values. The time span from seedling emergence to the end of fruiting phase was 202 d. The total plant biomass was 1.58±0.05 g of which 81 % was aboveground plant portion. The total dry mass relative growth rate averaged over the assimilation period was 0.0804±0.0002 kg kg−1 d−1, and it was correlated to both the net assimilation rate (NAR) and the leaf area ratio (LAR).  相似文献   

9.
Seasonal changes in abundance and distribution pattern of soil micro-arthropods were studied in connection with a few environmental factors in a Japanese cedar (Cryptomeria japonica D. Don) plantation. The soil arthropods were sampled from three different depths at intervals of two months for two years. Of the collected animals (total 51000–155000 m−2), Collembola (20000–76000 m−2), oribatid mites (19000–55000 m−2) and carnivorous mites (6200–21000 m−2) were the numerically dominant animal groups. Low seasonal variations in abundance indicated their seasonal stability in population levels. The trends in seasonal fluctuation were similar among these groups and between the two years, showing bimodal pattern with little peaks in early summer and winter. The pattern of seasonal fluctuation in abundance of carnivorous mites (P d) was significantly synchronized with that in the total abundance of Collembola and oribatid mites (P τ). Thus, the number-ratios (P d/P τ) were fairly constant, ranging from 0.10 to 0.25. Seasonal changes in vertical distribution of the three animal groups showed a similar pattern for both years. The downward migrations were shown to be more affected by low temperatures in winter accompanied by snow coverage rather than by the desiccation of the surface soil in summer. All the three groups demonstrated as a whole slightly aggregated patterns of horizontal distribution throughout the two years. Temporal increases in the patchiness indices were observed from summer to autumn when the moisture content of the surface soil was low.  相似文献   

10.
As a part of the ICEFISH04 project on the RVIB Nathaniel B. Palmer, miniature end plate currents (MEPCs) were recorded from the extraocular muscles of Notothenia rossii captured at King Edward Point, South Georgia. A total of 1,176 MEPCs were recorded from the inferior oblique extraocular muscles of four specimens, over a temperature range of 1–12°C. The MEPCs were normal in form, with a rapid quasi-linear increase in inward current (typically <500 μs), followed by a slower exponential decay of the inward current to baseline. Exponential decay rates were calculated for individual MEPCs by linear regression of the log-transformed data, and converted to exponential time constants (τ). Only those MEPCs that fit the exponential model well, with r 2 ≥ 0.95 (or in some cases r 2 ≥ 0.99) were used for further calculations. At temperatures between 1 and 2°C, τ ranged from about 2,000 to 4,000 μs, similar to values extrapolated for temperate teleosts at the same temperature, but significantly longer than τ from MEPCs of high-latitude Antarctic nototheniids. Between 11 and 12°C, τ values for the N. rossii MEPCS were mainly between 1,100 and 1,700 μs, giving a Q 10 of 2.05. An Arrhenius plot and linear regression were used to describe the effect of changing temperature on the decay phase of the N. rossii MEPCs: −ln τ = 27.887−6078/K, yielding an Arrhenius temperature coefficient (μ or apparent E a) of −50.5 ± 2.9 (95% CL) kJ mol−1 deg−1. When compared with other nototheniids, these results showed that the neuromuscular junctions of N. rossii are compensated for low temperature, but not to the same degree as those of high Antarctic species. The ICEFISH Cruise (International Collaborative Expedition to collect and study Fish Indigenous to Sub-antarctic Habitats) was conducted on board the RVIB Nathaniel B. Palmer in May to July 2004. For further information, please visit .  相似文献   

11.
Phytoplankton biomass and productivity were measured during two cruises in the Bransfield Strait in December 1991 (D91) and January/February 1993 (J93). Strong seasonal variability in productivity values was observed due to differences in the physiological response of phytoplankton. However, although the photosynthetic capacity of phytoplankton was markedly lower in D91 [P m B =0.61 ± 0.25 mg C (mg Chla)−1 h−1] than in J93 [P m B =2.18 ± 0.91 mg C (mg Chla)−1 h−1], average water column chlorophyll values in different areas of the strait were approximately similar in D91 (49–78 mg Chla m−2) and J93 (22–76 mg Chla m−2). The spatial distribution of chlorophyll was patchy and generally associated with the influence of the different water masses that meet together in the Bransfield Strait. No correlation was found between the mixed layer depth and either the integrated chlorophyll or the productivity. Our results suggest that major phytoplankton blooms in the Bransfield Strait are advected from the nearby Gerlache Strait or Bellingshausen Sea following the main eastward surface currents. Accepted: 5 July 1998  相似文献   

12.
In frog red blood cells, K-Cl cotransport (i.e., the difference between ouabain-resistant K fluxes in Cl and NO3) has been shown to mediate a large fraction of the total K+ transport. In the present study, Cl-dependent and Cl-independent K+ fluxes via frog erythrocyte membranes were investigated as a function of external and internal K+ ([K+] e and [K+] i ) concentration. The dependence of ouabain-resistant Cl-dependent K+ (86Rb) influx on [K+] e over the range 0–20 mm fitted the Michaelis-Menten equation, with an apparent affinity (K m ) of 8.2 ± 1.3 mm and maximal velocity (V max ) of 10.4 ± 1.6 mmol/l cells/hr under isotonic conditions. Hypotonic stimulation of the Cl-dependent K+ influx increased both K m (12.8 ± 1.7 mm, P < 0.05) and V max (20.2 ± 2.9 mmol/l/hr, P < 0.001). Raising [K+] e above 20 mm in isotonic media significantly reduced the Cl-dependent K+ influx due to a reciprocal decrease of the external Na+ ([Na+] e ) concentration below 50 mm. Replacing [Na+] e by NMDG+ markedly decreased V max (3.2 ± 0.7 mmol/l/hr, P < 0.001) and increased K m (15.7 ± 2.1 mm, P < 0.03) of Cl-dependent K+ influx. Moreover, NMDG+ Cl substitution for NaCl in isotonic and hypotonic media containing 10 mm RbCl significantly reduced both Rb+ uptake and K+ loss from red cells. Cell swelling did not affect the Na+-dependent changes in Rb+ uptake and K+ loss. In a nominally K+(Rb+)-free medium, net K+ loss was reduced after lowering [Na+] e below 50 mm. These results indicate that over 50 mm [Na+] e is required for complete activation of the K-Cl cotransporter. In nystatin-pretreated cells with various intracellular K+, Cl-dependent K+ loss in K+-free media was a linear function of [K+] i , with a rate constant of 0.11 ± 0.01 and 0.18 ± 0.008 hr−1 (P < 0.001) in isotonic and hypotonic media, respectively. Thus K-Cl cotransport in frog erythrocytes exhibits a strong asymmetry with respect to transported K+ ions. The residual, ouabain-resistant K+ fluxes in NO3 were only 5–10% of the total and were well fitted to linear regressions. The rate constants for the residual influxes were not different from those for K+ effluxes in isotonic (∼0.014 hr−1) and hypotonic (∼0.022 hr−1) media, but cell swelling resulted in a significant increase in the rate constants. Received: 19 November 1998/Revised: 23 August 1999  相似文献   

13.
The effects of temperature (20, 24 and 28 °C) and irradiance (15 and 40 μmol photon m−2 s−1) on the nitrate and ammonium uptake rates of the subtropical red alga, Laurencia brongniartii, were investigated to prepare for tank cultivation. Nitrate uptake followed saturation kinetics and was faster at higher irradiances and temperatures. In contrast, ammonium uptake was linear over the experimental range and was not affected by an increase in temperature. A parameter, β, was calculated to compare substrate uptake rates of nitrate along the linear portion of the uptake curve with that of ammonium. For nitrate, β was lower at low irradiance and higher at high irradiance (β = 0.007 ± 0.003 and 0.030 ± 0.002 [μmol N L−1 (μmol N gww−1 d)−1], respectively). However, β was 0.023 ± 0.002 and 0.034 ± 0.002 [μmol N L−1 (μmol N gww−1 d−1)−1] for ammonium, suggesting a preference for ammonium over nitrate.  相似文献   

14.
Isotherms of the EtBr adsorption on native and denatured poly(dA)poly(dT) in the temperature interval 20–70°C were obtained. The EtBr binding constants and the number of binding sites were determined. The thermodynamic parameters of the EtBr intercalation complex upon changes of solution temperature 20–48°C were calculated: 1.0·106 M−1K≤1.4·106 M−1, free energy ΔG o=−8.7±0.3 kcal/mol, enthalpy ΔH o≅0, and entropy ΔS o=28±0.5 cal/(mol deg). UV melting has shown that the melting temperature (T m) of EtBr-poly(dA)poly(dT) complexes (μ=0.022,4.16·10−5 M EtBr) increased by 17°C as compared with the ΔT m of free homopolymer, whereas the half-width of the transition (T m) is not changed. It was shown for the first time that EtBr forms complexes of two types on single-stranded regions of poly(dA)poly(dT) denatured at 70°C: strong (K 1=1.7·105 M−1; ΔG o=−8.10±0.03 kcal/mol) and weak (K 2=2.9·103 M−1; ΔG o=−6.0±0.3 kcal/mol).The ΔG o of the strong and weak complexes was independent of the solution ionic strength, 0.0022≤μ≤0.022. A model of EtBr binding with single-stranded regions of poly(dA)poly(dT) is discussed.  相似文献   

15.
Part of the Larsen A Ice Shelf (64°15′S to 74°15′S) collapsed during January 1995. A first oceanographic and biological data set from the newly free waters was obtained during December 1996. Typical shelf waters with temperatures near and below the freezing point were found. A nutrient-rich water mass (max: PO4 3− 1.80 μmol L−1 and NO3 27.64 μmol L−1) was found between 70 and 200 m depth. Chlorophyll-a (Chl-a) values (max 14.24 μg L−1) were high; surface oxygen saturation ranged between 86 and 148%. Diatoms of the genera Nitzschia and Navicula and the prymnesiophyte Phaeocystis sp. were the most abundant taxa found. Mean daily primary production (Pc) estimated from nutrient consumption was 14.80 ± 0.17 mgC m−3 day−1. Pc was significantly correlated with total diatom abundance and Chl-a. Calculated ΔpCO2 (difference of the CO2 partial pressure between surface seawater and the atmosphere) was –30.5 μatm, which could have contributed to a net CO2 flux from the atmosphere to the sea and suggests the area has been a CO2 sink during the studied period. High phytoplankton biomass and production values were found in this freshly open area, suggesting its importance for biological CO2 pumping.  相似文献   

16.
The morphological, anatomical and physiological variations of leaf traits were analysed during Quercus ilex L. leaf expansion. The leaf water content (LWC), leaf area relative growth rate (RGRl) and leaf dry mass relative growth rate (RGRm) were the highest (76±2 %, 0.413 cm2 cm−2 d−1, 0.709 mg mg−1 d−1, respectively) at the beginning of the leaf expansion process (7 days after bud break). Leaf expansion lasted 84±2 days when air temperature ranged from 13.3±0.8 to 27.6±0.9 °C. The net photosynthetic rate (P N), stomatal conductance (g s), and chlorophyll content per fresh mass (Chl) increased during leaf expansion, having the highest values [12.62±1.64 μmol (CO2) m−2 s−1, 0.090 mol (H2O) m−2 s−1, and 1.03±0.08 mg g−1, respectively] 56 days after bud break. Chl was directly correlated with leaf dry mass (DM) and P N. The thickness of palisade parenchyma contributed to the total leaf thickness (263.1±1.5 μm) by 47 %, spongy layer thickness 38 %, adaxial epidermis and cuticle thickness 9 %, and abaxial epidermis and cuticle thickness 6 %. Variation in leaf size during leaf expansion might be attributed to a combination of cells density and length, and it is confirmed by the significant (p<0.001) correlations among these traits. Q. ilex leaves reached 90 % of their definitive structure before the most severe drought period (beginning of June — end of August). The high leaf mass area (LMA, 15.1±0.6 mg cm−2) at full leaf expansion was indicative of compact leaves (2028±100 cells mm−2). Air temperature increasing might shorten the favourable period for leaf expansion, thus changing the final amount of biomass per unit leaf area of Q. ilex.  相似文献   

17.
Our basic knowledge of the ecology, especially the age and growth of polar deep-sea biota is still scarce. This study provides first data about the age and growth of the two abundant Arctic fish species Lycodes frigidus and Lycodes squamiventer (Zoarcidae). Lycodes frigidus was caught at the deeper parts (1,546–3,576 m depth) of the HAUSGARTEN observatory (HG), west of Svalbard. The congener Lycodes squamiventer was caught at two HG stations (1,273–1,546 m) and at the H?kon Mosby Mud Volcano (HMMV, ~1,250 m), a cold seep in the southwestern Barents Sea. Age was determined by sagittal otolith increment analysis. Growth performance was assessed by fitting age–length data to a von Bertalanffy growth equation. Our data suggest that L. frigidus and L. squamiventer attain maximum ages of 33 and 21 years, respectively. Lycodes squamiventer from the HMMV had significantly higher growth rates and their maximum age and length was slightly lower compared to conspecifics from the shallow HG stations. Von Bertalanffy growth equations were L t  = 58.9 ∗ (1 − e(−0.042*t)) for L. frigidus, and L t  = 25.3 ∗ (1 − e(−0.074*t)) and L t  = 24.2 ∗ (1 − e(−0.099 * t)) for L. squamiventer from HG and the HMMV, respectively. A comparison of these data with those of eight other zoarcids indicates that growth performances are correlated with temperature: the higher the annual mean temperatures experienced, the higher the growth rates. However, maximum ages decrease with increasing temperatures.  相似文献   

18.
Synopsis The routine swimming speed (S) of three groups of 4, 9 and 32 cm total length (LT) juvenile cod (Gadus morhua) was quantified in the laboratory at 6 – 10 different temperatures (T) between 3.2 and 16.7°C. At temperatures between 5 and 15°C, mean group S increased exponentially with increasing T (S=a ebT) and the effect of temperature (b = 0.082, Q10 = 2.27) was not significantly different among the groups (over the 8-fold difference in fish sizes of early- and post-settlement juveniles). Differences in mean S among individuals within each group were quite large (coefficient of variation = 40 – 80%). Swimming data for juveniles and those collected for groups of 0.4, 0.7 and 0.9 cm standard length (LS) larvae were combined to assess the effect of body size on S. At 8°C, S (mm s−1) increased with LS (mm) according to: S = 0.26LSΦ−5.28LS−1, where Φ = 1.55LS−0.08. Relative S (body lengths s−1) was related to LS by a dome-shaped relationship having a maximum value (0.49 body lengths s−1) at 18.5 – 19 mm LS corresponding to the sizes of fish at the end of larval-juvenile metamorphosis. Previous larval cod IBM’s using a cruise-predator mode likely overestimated rates of foraging (prey searching and encounters) by a factor of ~2, whereas foraging rates in pause-travel models are closer to estimates of swimming velocities obtained in this and other laboratory studies.  相似文献   

19.
During summer 2007, Arctic microphytobenthic potential primary production was measured at several stations around the coastline of Kongsfjorden (Svalbard, Norway) at ≤5 m water depth and at two stations at five different water depths (5, 10, 15, 20, 30 m). Oxygen planar optode sensor spots were used ex situ to determine oxygen exchange in the overlying water of intact sediment cores under controlled light (ca. 100 μmol photons m−2 s−1) and temperature (2–4°C) conditions. Patches of microalgae (mainly diatoms) covering sandy sediments at water depths down to 30 m showed high biomass of up to 317 mg chl a m−2. In spite of increasing water depth, no significant trend in “photoautotrophic active biomass” (chl a, ratio living/dead cells, cell sizes) and, thus, in primary production was measured at both stations. All sites from ≤5 to 30 m water depth exhibited variable rates of net production from −19 to +40 mg O2 m−2 h−1 (−168 to +360 mg C m−2 day−1) and gross production of about 2–62 mg O2 m−2 h−1 (17–554 mg C m−2 day−1), which is comparable to other polar as well as temperate regions. No relation between photoautotrophic biomass and gross/net production values was found. Microphytobenthos demonstrated significant rates of primary production that is comparable to pelagic production of Kongsfjorden and, hence, emphasised the importance as C source for the zoobenthos.  相似文献   

20.
This study was aimed at determining the optimal depth and photon irradiance for growth of Sargassum fulvellum. Sampling and measurement of underwater irradiance were carried out at farms cultivating S. fulvellum at Wando, southwestern coast of Korea, from May 2004 to April 2005. Growth of thalli, underwater irradiance and photosynthetic quantum yield were measured over a range of depths for three culture stages. During their nursery cultivation stage (Stage I), length increase was greatest at 1.5 m depth (2.5 ± 0.2 cm), where the average midday irradiance over 28 days was 488 ± 58 μmol photons m−2 s−1. During the pre-main cultivation stage (Stage II), the greatest length increase occurred at 1 m depth (10.9 ± 0.1 cm) with an average irradiance of 845 ± 169 μmol photons m−2 s−1. For the main cultivation stage (Stage III) of the alga, thalli showed maximal length growth in March and early April at depths of 1–2 m and 3 m. These results suggest that growth at each cultivation stage of S. fulvellum could be controlled by depth of cultivation rope. Presented at the 6th Meeting of the Asian Pacific Society of Applied Phycology, Manila, Philippines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号