首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 439 毫秒
1.
Estrous cycles of 10 postpartum cyclic Holstein cows were synchronized using prostaglandin f(2alpha) (PGF(2alpha)) given twice 12 d apart to study the relationship of the onset of estrus, body temperature, milk yield, luteinizing hormone (LH) and progesterone concentration to ovulation. Blood samples and body temperatures (vaginal and rectal) were taken every 4 h until ovulation, starting 4 h prior to the second PGF(2alpha) treatment. All cows were observed for estrus following the second administration of PGF(2alpha). Ultrasound scanning of the ovaries commenced at standing estrus and thereafter every 2 h until the disappearance of the fluid filled preovulatory follicle (ovulation). Two cows failed to ovulate and became cystic following the second PGF(2alpha) treatment. The remaining eight cows exhibited a decline in progesterone to <1.0 ng/ml within 28 h, standing estrus and a measurable rise (> 1.0 degrees C) in vaginal but not rectal temperature, and ovulated 90 +/- 10 h after the second PGF(2alpha) treatment. Onset of standing estrus, LH peak and vaginal temperature were highly correlated (P<0.05) with time of ovulation (0.82, 0.81 and 0.74, respectively). Intervals to ovulation tended to depend upon parity. Pluriparous (n = 4) and biparous (n = 4) cows ovulated within 24 and 30 +/- 3 h from the onset of standing estrus; 22 and 31 +/- 2 h from the LH peak; and 22 and 27 +/- 3 h from peak vaginal temperature (mean +/- standard error of the mean), respectively. The results indicated that the onset of standing estrus and rise in vaginal temperature are good practical parameters for predicting ovulation time in dairy cattle.  相似文献   

2.
Fertility of Holstein cows has been decreasing for years and, to a lesser extent, the fertility of heifers too but more recently. A hypothesis to explain this phenomenon may be that the chronology of events leading to ovulation is different for those animals bred nowadays when compared to what was reported previously; this would result in an inappropriate time of insemination. Therefore, two experiments were designed to investigate the relationships among estrus behavior, follicular growth, hormonal events and time of ovulation in Holstein cows and heifers. In the first experiment, the onset of estrus, follicular growth, patterns of estradiol-17beta, progesterone and LH, and the time of ovulation were studied in 12 cyclic Holstein heifers that had their estrus synchronized using the Crestar method; this was done twice, 3 weeks apart. The intervals between estrus and ovulation, estrus and the LH peak, and between the LH peak and ovulation were, respectively, 38.5 h +/-3.0, 9.1 +/- 2.0 and 29.4 h +/-1.5 (mean+/- S.E.M). The variation in the interval between estrus and the LH peak explained 80.6% of the variation in the interval between estrus and ovulation. The intervals between estrus and the LH peak, and estrus and ovulation were correlated with estradiol-17beta peak value (r=-0.423, P <0.04 and r=-0.467, P<0.02, respectively). Positive correlation coefficients for the number of follicle larger than 5 mm, and negative correlation coefficients for the size of the preovulatory follicle with the intervals between estrus and LH peak, LH peak and ovulation, and estrus and ovulation suggest an ovarian control of these intervals. In respect to its role to explain the variation in the interval between estrus and ovulation, the variation in the interval between estrus and the LH peak was evaluated further in a second set of experiments utilizing 12 pubertal Holstein heifers and 35 Holstein cows. The duration of the interval between the beginning of estrus and the LH peak was longer in heifers than in cows (4.15 h versus -1.0 h; P <0.002); the variation for this interval was higher in cows than in heifers (S.E.M.= 1.2 h versus 0.8 h; P=0.01). According to the results of these studies it can be proposed that estradiol and other product(s) of ovarian origin regulate not only the duration of intervals between the onset of estrus and the LH surge but also between the LH surge and ovulation. From the results obtained in the first experiment, it may be postulated that differences observed between cows and heifers for the duration of the interval between onset of estrus and the LH surge as well as for the variation of this interval would be observed also for the interval between the onset of estrus and ovulation. Therefore, on a practical point of view, the long interval between the onset of estrus and ovulation and the high variation of this interval, especially in cows, may be a source of low fertility and should be considered when analysing reproductive disorders.  相似文献   

3.
The effect of intramammary (IMM) or intravenous (IV) administration of E. coli endotoxin (LPS), at the onset of estrus, at the time of ovulation was examined. Steroid and gonadotropin concentrations around ovulation were also determined. Lactating Holstein cows (n=33) were assigned to saline-controls (n=12) and treated with LPS-IV (0.5mug/kg; n=13) or LPS-IMM (10mug; n=8). Synchronized cows were observed continuously for estrus. LPS (or saline) was injected within 30min from the onset of standing estrus, at peak estradiol concentrations. The typical rise of body temperature, somatic cell count, cortisol, and NAGase activity was noted. One-third of both LPS-IV- and LPS-IMM-treated cows were manifested by an extended estrus to ovulation (E-O) interval of around 75h or did not ovulate, compared with about 30h in the other 2/3 of LPS cows and all controls. Estradiol concentrations 24h before and after LPS did not differ between groups. However, LPS-IV cows with extended intervals exhibited another estrus and an additional rise of estradiol followed by delayed ovulation. LPS-treated cows with a delayed E-O interval had low or delayed LH surge; two LPS-treated cows did not exhibit LH surge and did not ovulate. All control cows exhibited normal hormone levels. Delayed ovulation was associated with a delayed rise of luteal progesterone. The results indicated that exposing cows to endotoxin during estrus induced a decreased and delayed LH surge in one-third of the cows. This was associated with delayed ovulation, which reduces the chances of successful fertilization.  相似文献   

4.
The effects of 4 estrus synchronization treatments on intervals to and synchrony of estrus and ovulation, on timing of the preovulatory LH surge and associated changes in plasma progesterone, LH, FSH, and 17beta-estradiol (E(2)) were investigated in 48 Bos indicus cows. Treatment 1 consisted of 2 injections of PGF(2alpha) 14 d apart (n = 12); Treatment 2 of a subcutaneous 3-mg norgestomet implant and an intramuscular injection of 3 mg of norgestomet and 5 mg estradiol valerate, with the implant removed 10 d later (n = 12; norgestomet-estradiol); Treatment 3 of norgestomet-estradiol, with a subcutaneous injection of PMSG given at time of implant removal (Day 10; n = 12); and Treatment 4 of norgestomet implant (as for Treatments 2 and 3) inserted for 10 d, with an intramuscular injection of PGF(2alpha) given at the time of implant removal (n = 12). The experiment was conducted in 2 replicates (24 cows/replicate, 6 cows/group). Estrus, ovulation and timing of the preovulatory surge of LH varied less in cows treated with norgestomet-estradiol and PMSG than in cows in Treatments 1 and 4 (P < 0.008). Treatment with PMSG reduced variation in ovulation times and timing of the LH surge in cows treated with norgestomet-estradiol (P < 0.02). Concentrations of E(2) were higher in cows in Treatments 2 and 3 on the final day of treatment and at about 6 h post ovulation compared with cows in Treatments 1 and 4 (P < 0.05). Different methods for synchronizing estrus did not alter sequential endocrine and behavioral changes in relation to the timing of the LH peak, and the results were consistent with current recommendations for insemination times in Bos taurus cattle.  相似文献   

5.
The objective of the study was to determine the timing of ovulation in relation to onset of estrus and the preovulatory LH peak in yaks. For this purpose, a sensitive LH enzymeimmunoassay previously established in buffaloes was successfully validated for measuring the hormone in yak plasma. Plasma LH and progesterone were estimated from blood samples collected from eight non-lactating cycling yaks at 2 h intervals after estrus onset until 6 h after ovulation (ovulation was confirmed by palpation of ovaries per rectum). The mean+/-S.E.M. preovulatory plasma LH peak was 10.11+/-0.35 ng/ml with the values ranging from 8.75 to 11.51 ng/ml in individual yaks. The mean+/-S.E.M. duration of the LH surge was 7.25+/-0.55 h with a range of 6-10 h. Onset of LH surge (mean+/-S.E.M.) occurred 3.0+/-0.65 h after the onset of estrus. Mean plasma progesterone stayed low (<0.25 ng/ml) during the entire duration of sampling. Ovulation occurred 30.5+/-0.82 h (range, 28-34 h) after the onset of estrus and 20.25+/-1.03 h after the end of LH surge. The occurrence of the LH peaks within a narrow time frame of 4-8h post estrus onset in yaks could have contributed to the animals ovulating within a narrow time interval.  相似文献   

6.
The objective of this study was to examine the effect of a chronic stressor, lameness, on reproductive parameters. Seventy cows 30-80 days post-partum were scored for lameness and follicular phases synchronized with GnRH followed seven days later by prostaglandin (PG). Fifteen Lame animals did not respond to GnRH ovarian stimulation. Milk progesterone for 5 days prior to PG was lower in the remaining Lame cows than Healthy herdmates. Fewer Lame cows ovulated (26/37 versus 17/18; P = 0.04) and the interval from PG to ovulation was shorter in Lame cows. In Subset 1 (20 animals), the LH pulse frequency was similar in ovulating animals (Lame and Healthy) but lower in Lame non-ovulators. An LH surge always preceded ovulation but lameness did not affect the interval from PG to LH surge onset or LH surge concentrations. Before the LH surge, estradiol was lower in non-ovulating cows compared to those that ovulated and estradiol concentrations were positively correlated with LH pulse frequency. In Subset 2 (45 cows), Lame ovulating cows had a less intense estrus than Healthy cows, although Lame cows began estrus and stood-to-be-mounted earlier than Healthy cows. In conclusion, we have identified several parameters to explain poor fertility in some chronically stressed animals. From 30 to 80 days post-partum, there was a graded effect that ranged from 29% Lame cows with absence of ovarian activity, whereas another 21% Lame cows failed to express estrus or ovulate a low estrogenic follicle; in 50% cows, many reproductive parameters were unaffected by lameness.  相似文献   

7.
Monitoring changes in vaginal electrical resistance in association with ovarian follicular development during proestrus may provide an alternative to visual estrus detection of cattle for properly timing insemination. In two experiments 94 Holstein heifers were synchronized into estrus with 2 injections of prostaglandin F(2) alpha (PG) 11 d apart. Beginning 12 h prior to the second PG treatment, blood samples and vaginal resistance measurements were taken every 12 h for 60 h, and then every 6 h for the following 48 h. In both Experiments I and II, the lowest resistance value was found to be highly correlated with the luteinizing hormone (LH) preovulatory surge (r = 0.67 P<0.001). The linear regression of time from PG to the LH surge (Y) on time from PG to the lowest resistance value (x) was defined by Y = 17.49 + 0.71 (x) (R(2) = 0.45). This suggests that the lowest resistance value can predict the LH surge and, therefore, the appropriate time to inseminate heifers relative to the expected time of ovulation. This concept was tested in Experiment II by assigning 50 heifers to be inseminated after PG treatment on the basis of their vaginal resistance pattern, by appointment 66 h after PG, or by visual observation of standing estrus. Conception rates were 58, 50 and 50% in these groups respectively, and did not differ significantly. Overall, these results suggest that measurement of vaginal resistance patterns reliably predict the LH surge and can be successfully utilized to inseminate cattle.  相似文献   

8.
The variability of the superovulation response in cattle is an important problem to the commercial embryo transfer industry. Plasma LH and FSH concentrations around the time of estrus and ovulation were studied in relation to embryo production, to try and elucidate this problem. Sixteen cows were superovulated with 38 mg FSH-P and estrus synchronized with prostaglandin F(2) alpha. On the third and fourth day of superovulation increases in plasma LH but not FSH were detected. The LH and FSH profiles appeared to be normal in the size of the surge but in many cases they were were abnormal in timing. Transferable embryo production appeared to be lower in cows in which the LH and FSH surges were not coincident, and in cows where the surges were early or late with reference to estrus. FSH appeared to be primarily responsible for the number of embryos produced and LH for their quality, i.e. the number transferable.  相似文献   

9.
The effects of chronic treatment with norgestomet on follicular dynamics, corpus luteum growth and function as well as the temporal relationships among body temperature, oestrous behaviour, the luteinizing hormone (LH) surge and ovulation following implant removal were studied in 16 Holstein heifers. Oestrous cycles of the heifers were initially synchronized using 2 injections of prostaglandin F-2 alpha (PGF-2 alpha) 12 days apart. The heifers were then implanted with a norgestomet ear implant for 9 days, beginning either at the middle of the synchronized cycle (dioestrus) or at the end of the synchronized cycle (pro-oestrus). Follicular dynamics, corpus luteum growth and regression, and plasma progesterone were not affected by norgestomet treatment at dioestrus. The dominant follicle present at the time of norgestomet implantation in the pro-oestrus group was maintained during the 9-day implant period of 6 of 8 heifers and ovulated after implant removal. Time from implant removal to onset of standing oestrus and time to LH peak following implant removal were highly correlated with the time of ovulation (r = 0.92 and 0.96, respectively). Onset of standing oestrus and the LH peak and the onset of standing oestrus and peak vaginal and rectal temperatures were also highly correlated (r = 0.96, 0.82 and 0.81, respectively). It is concluded that any decrease in pregnancy rates following treatment with norgestomet is not due to asynchrony among oestrus, the LH surge and ovulation.  相似文献   

10.
This study was conducted to determine whether or not exogenous gonadotropin releasing hormone (GnRH) alters the timing or improves the synchrony of estrus, the LH surge, and ovulation following estrous synchronization in dwarf goats, and to assess the effects of season on these parameters. In January and June, estrus was synchronized in 12 Pygmy and Nigerian Dwarf goats with a 10-day progestagen sponge, 125 microg cloprostenol i.m. 48 h before sponge removal, and 300 IU equine chorionic gonadotrophin (eCG) i.m. at sponge removal. Six of the 12 goats were given 50 microg GnRH i.m. 24h after sponge removal. Onset of estrus was monitored using two males. Samples for plasma LH were collected at 2 h intervals beginning 22 h after sponge removal and ending at 48 h in January and at 58 h in June. Time of ovulation time was confirmed by laparoscopy at 36, 50, 60, and 74 h in January and at 50, 60, and 74 h in June. Administration of GnRH had no significant effect on the onset of estrus; however, it reduced the interval from sponge removal to the LH surge and improved the synchrony of the LH surge (P<0.05). Treatment with GnRH also reduced the interval from sponge removal to ovulation and improved the synchrony of ovulation (P<0.05). Season had a significant effect on the timing and the synchrony of estrus with and without GnRH treatment (P<0.05). A seasonal shift was also observed in the timing of the LH surge in the absence of GnRH treatment (P<0.05). Further research is required to determine the optimum time for GnRH administration and the minimum effective dose in dwarf goats.  相似文献   

11.
The purpose of the study was to induce estrus and ovulation in normal bitches using a combination of diethylstilbestrol (DES) and follicle stimulating hormone of porcine pituitary origin (FSH-P). Thirteen mature mongrel female dogs were divided into two groups, the first group was treated for estrus induction during late anestrus and the second group during mid-anestrus. The dogs were monitored by teasing, vaginal cytology, and hormonal assay during the induced (n = 13) and the previous spontaneous estrous cycle (n = 9). Six of eight and three of five bitches came into standing estrus in the first and second group, respectively. Of the bitches that came into estrus, three conceived in the first group and one in the second. The average induced litter size was 7.0 versus 7.5 for the colony. Based on vaginal cytology the induced proestrus and estrus lasted 1.7 (0 to 3) and 12.9 (4 to 24) d, respectively, while the spontaneous proestrus and estrus lasted 5.8 (0-17) and 12.8 (9-15) d, respectively. Progesterone profiles were similar between the induced and spontaneous estrous cycles, although the progesterone peak was higher during the spontaneous cycle. The preovulatory luteinizing hormone (LH) surge was observed in only one induced estrous cycle. Modest results were obtained with this therapy. However, the litter sizes were normal and the induced cycles were very similar to the physiologic ones. No side effects were seen with the oral form of DES.  相似文献   

12.
For a better understanding of the mechanisms that lead to the preovulatory GnRH/LH surge and estrus behavior, the minimum estradiol (E) requirements (dose and duration) to induce each of these events were determined and compared between two breeds of ewes having either single (Ile de France) or multiple (Romanov) ovulations. The ewes were initially studied during a natural estrus cycle, and were then ovariectomized and run through successive artificial estrus cycles. For these artificial cycles the duration and amplitude of the follucular phase E increase were manipulated by E implants. Under all conditions, the onset of estrus behavior was similar in the two breeds, although its duration was longer in Romanov ewes. While a moderate E signal (6 cm for 12 h) induced an LH surge in 10/10 Ile de France ewes, a larger E signal (12 cm for 12 h) was minimally effective in Romanov ewes (4/10). Additional studies revealed that a small E signal (3 cm for 6 h) induced full estrus behavior in all Romanov ewes but was completely ineffective in Ile de France animals (0/10). Higher doses and mostly longer durations of the E signal (12 cm for 24 h) were required to induce a surge in all the Romanov ewes. These results demonstrate a clear difference in the E requirement for the induction of estrus behavior and the LH surge between breeds of ewes that have different ovulation rates. These data provide compelling evidence that, in one breed, the neuronal systems that regulate both events require different estrogen signals.  相似文献   

13.
Considering that there is limited information about the preovulatory LH surge in Zebu cattle (Bos indicus), the purpose of the present work was to assess the LH surge in Nelore cows during the estrous cycle and after ovarian superestimulation of ovarian follicular development with FSH. This information is particularly important to improve superovulatory protocols associated with fixed-time artificial insemination. Nelore cows (n=12) had their estrus synchronized with an intravaginal device containing progesterone (CIDR-B) associated with estradiol benzoate administration (EB, 2.5 mg, i.m., Day 0). Eight days later all animals were treated with PGF2alpha (Day 8) in the morning (8:00 h) and at night, when CIDR devices were removed (20:00 h). Starting 38h after the first PGF2alpha injection, blood sampling and ovarian ultrasonography took place every 4h, during 37 consecutive hours. Frequent handling may have resulted in a stress-induced suppression of LH secretion resulting in only 3 of 12 cows having ovulations at 46.7+/-4.9 and 72.3+/-3.8 h, respectively, after removal of CIDR-B. Thirty days later, the same animals received the described hormonal treatment associated with FSH (Folltropin), total dose=200 mg) administered twice a day, during 4 consecutive days, starting on Day 5. Thirty-six hours after the first injection of PGF2alpha, to minimize stress, only seven blood samples were collected at 4h interval each, and ultrasonography was performed every 12 h until ovulation. In 11 of 12 cows (92%) the LH surge and ovulation were observed 34.6+/-1.6 and 59.5+/-1.9 h, respectively, after removal of progesterone source. The maximum values for LH in those animals were 19.0+/-2.6 ng/ml (mean+/-S.E.M.). It is concluded that, in Nelore cows submitted to a ovarian superstimulation protocol, the LH surge occurs approximately 35 h after removal of intravaginal device containing progesterone, and approximately 12h before the LH surge observed after an induced estrus without ovarian superstimulation.  相似文献   

14.
This experiment was conducted to define the temporal relationships among estrus, the LH surge and ovulation after estrus synchronization in dwarf goats and to assess the effect of season on these parameters. In November (breeding season), March (transition period) and July (non-breeding season), estrus was synchronized in 12 dwarf goats by means of intravaginal sponges containing 60 mg medroxyprogesterone acetate (MAP) for 10 d, coupled with 125 microg cloprostenol i.m. 48 h before sponge removal and 300 IU eCG i.m. at sponge removal. A different group of animals was used during each time period. Onset of estrus was monitored using two males, and blood samples for the measurement of plasma LH were collected at 2-h intervals from 24 to 60 h after sponge removal. Ovulation was confirmed by laparoscopy at 54 and 72 h after sponge removal. A seasonal shift was detected in the intervals to onset of estrus, LH surge, and ovulation after sponge removal (P<0.05), with sponge removal to onset of estrus being shorter (P<0.05) in November (25.0 +/- 1.56 h) and July (28.9 +/- 2.43 h) than in March (40.9 +/- 3.27 h). The intervals between onset of estrus and the LH surge and between the LH surge and ovulation were found to be constant throughout the different seasons. An optimal time for breeding, artificial insemination, oocyte and embryo recovery, and embryo transfer may be predicted using information gained from these studies.  相似文献   

15.
Continuous illumination (LL) beginning at 22 days of age caused precocious puberty followed by persistent estrus with anovulation in female offspring originating from mother rats exposed to a 14L:10D light-dark cycle prior to and during pregnancy. However, LL had no deleterious effect on reproductive cycles of offspring reared in LL and originating from mothers exposed to LL prior to and during pregnancy. These rats had a normal onset of puberty in LL, a normal 4-day estrous cycle, a periodic rise of plasma estrogen prior to the periodic appearance of the preovulatory luteinizing hormone (LH) surge, and spontaneous ovulation in LL continued until at least 300 days of age. Also, the female offspring of these rats showed a similar resistance to the deleterious effects of LL on cyclic ovulation. These results support the following interpretation: 1) offspring from mother rats exposed to LL prior to and during pregnancy become insensitive to the deleterious effects of LL on cyclic ovulation, 2) neural elements controlling cyclic release of LH are not totally photoperiod (14L:10D)-dependent, and 3) in the absence of daily 14L:10D signals, an endogenous clock, possibly timed by daily laboratory signals (temperature, noise, taking of vaginal smears), may provide time cues for cyclic LH release.  相似文献   

16.
Administering gonadotropin-releasing hormone (GnRH) improved conception rates in our previous studies. Our objective was to determine if the effect of GnRH was mediated through serum luteinizing hormone (LH) and/or by altered secretion of serum progesterone (P) and estradiol-17 beta (E) during the periestrual and post-insemination periods. Cattle were given either GnRH (n = 54) or saline (n = 55) at 72 h and inseminated artificially (AI) 80 h after the second of two injections of either prostaglandin F2 alpha or its analog, cloprostenol. Progesterone and E were measured in blood serum collected during 3 wk after AI (estrus) from 60 females. Blood was collected for LH determinations via indwelling jugular cannulae from 14 cows and 11 heifers. Collections were taken every 4 h from 32 to 108 h after the second PGF injection (PGF-2) (periestrual period) and at more frequent intervals during 240 min after administration of GnRH (n = 18) or saline (n = 7). Ten females had a spontaneous preovulatory LH surge before GnRH treatment (GnRH-spontaneous), whereas GnRH induced the preovulatory LH surge in six females. A spontaneous LH surge appeared to be initiated in two heifers at or near the time of GnRH treatment (spontaneous and/or induced). The remaining seven cows had spontaneous LH surges with no subsequent change in LH after saline treatment. Serum P during the 21 days after estrus was lower (p less than 0.05) in both pregnant and nonpregnant (open) cattle treated previously with GnRH compared with saline. Serum P during the first week after estrus was greater (p less than 0.01) and increased (p less than 0.05) more rapidly in saline controls and in GnRH-spontaneous cattle than in those exhibiting GnRH-induced or GnRH-spontaneous and/or-induced surges of LH. Conception rate of cattle receiving GnRH was higher (p = 0.06) than that of saline-treated controls. These data suggest that GnRH treatment at insemination initiated the preovulatory LH surge in some cattle, but serum P in both pregnant and open cows was compromised during the luteal phase after GnRH treatment. Improved fertility may be associated with delayed or slowly rising concentrations of serum progesterone after ovulation.  相似文献   

17.
We tested the hypothesis that sustained and repeated acute elevation of cortisol would impair the LH surge, estrus, and ovulation in gilts. Cortisol was injected intramuscularly, to achieve a sustained elevation of plasma concentrations of cortisol, or intravenously, to achieve an acute elevation of plasma concentrations of cortisol. Control gilts received i.m. injections of oil and i.v. injections of saline. These treatments were administered to gilts (n = 6 per treatment) at 12-h intervals from Days 7 to 11 of the estrous cycle until after estrus ceased or until Day 27 or 28 of the estrous cycle, whichever came first. The repeated acute elevation of cortisol had no effect on the LH surge, estrus, or ovulation. In contrast, when the elevation of cortisol was sustained, the LH surge, estrus, and ovulation were inhibited. We conclude that cortisol is capable of direct actions to impair reproductive processes in female pigs but that plasma concentrations of cortisol need to be elevated for a substantial period for this to occur.  相似文献   

18.
Two experiments were conducted to study the time of occurrence of the preovulatory LH surge in pigs. Sampling every ten minutes in six cycling gilts before and after onset of standing estrus revealed the preovulatory surge began from 8 hr before to 12 hr after the lordosis reflex was elicited. Three of six gilts initiated the preovulatory LH release coincident with the onset of estrus. Data from 28 postpartum sows, with samples drawn every six hours commencing with the onset of estrus, indicated maximum LH levels were present at the first observance of estrus. Six of the 28 sows had an LH peak 18-24 hr after the onset of estrus.  相似文献   

19.
Transitional patterns of LH, FSH, and progesterone (P4) in the circulation were studied in peripubertal female golden hamsters. A daily rhythm, with afternoon surges of these hormones, is typical of the immature female, whereas 4-day rhythms characterize the estrous cycle of the adult. Blood samples were collected repeatedly from maturing individuals at either 1400 or 1700 h. Each animal was examined daily for the appearance of regular vaginal estrous cycles as indicated by a mucous exudate on the morning of ovulation. Between Days -10 and -5 relative to first vaginal estrus (FVE), afternoon surges of LH, FSH, and P4 were often observed. From Days -5 to -1 relative to FVE, afternoon surges of LH and FSH were less frequent, but P4 retained the daily rhythmicity until Day -2. A 4-day pattern of LH secretion, but not of FSH or P4, was established prior to FVE. To determine whether or not ovulations were occurring prior to the appearance of external vaginal estrous cycles, reproductive tracts were collected from 26-34 days of age and examined for evidence of ovulation. Of 124 females, concordance between the record of daily vaginal examinations and the examinations of the ovaries and oviducts was found in 103 cases (83%). The development of ovarian follicles was correlated with FVE in peripubertal hamsters by unilateral ovariectomy. Antral follicles were found only in the last 3 days prior to vaginal estrus.  相似文献   

20.
The objective of this experiment was to characterise temporal changes in estradiol and pulsatile secretion of luteinizing hormone (LH) and follicle stimulating hormone (FSH) during the interval between weaning and estrus in the sow. Five multiparous sows were sampled at 10-min intervals for 3 h beginning 8 h after weaning and continuing every 12 h until estrus. Interval to estrus was 102 ± 2 h (range 96–108) after litters were weaned, and interval to preovulatory LH and FSH surges was 109 ± 5 h (range 92–116). With the exception of the period of the preovulatory surge, neither average nor basal concentrations of LH or FSH changed over time. Number of LH peaks per 3 h reached a maximum of 2.8 at 48 h before the preovulatory surge, then declined to 0.8 at 12 h before the surge. Peak amplitude for LH and peak frequency and amplitude for FSH also declined with time before preovulatory surges. Relative ranks were computed for individual sows based on the mean concentration of LH or FSH for each bleeding period. Rankings were consistent over the periods, but were not correlated with interval to estrus. Estradiol concentrations peaked (88 ± 7 pg/ml) at 36 h before preovulatory surges, coincident with the decline in peak frequency of LH. We conclude that pulsatile secretion of LH and FSH changes during the interval between weaning and estrus but secretion of these two hormones may be controlled by different mechanisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号