首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 66 毫秒
1.
Crude extracts of Rhodospirillum rubrum catalyzed the formation of acid-volatile radioactivity from (35S) sulfate, (35S) adenosine-5-phosphosulfate, and (35S) 3-phosphoadenosine-5-phosphosulfate. An enzyme fraction similar to APS-sulfotransferases from plant sources was purified 228-fold from Rhodospirillum rubrum. It is suggested here that this enzyme is specific for adenosine-5-phosphosulfate, because the purified enzyme fraction metabolized adenosine-5-phosphosulfate, however, only at a rate of 1/10 of that with adenosine-5-phosphosulfate. Further, the reaction with 3-phosphoadenosine-5-phosphosulfate was inhibited with 3-phosphoadenosine-5-phosphate whereas this nucleotide had no effect on the reaction with adenosine-5-phosphosulfate. For this activity with adenosine-5-phosphosulfate the name APS-sulfotransferase is suggested. This APS-sulfotransferase needs thiols for activity; good rates were obtained with either dithioerythritol or reduced glutathione; other thiols like cysteine, 2-3-dimercaptopropanol or mercaptoethanol are less effective. The electron donor methylviologen did not catalyze this reaction. The pH-optimum was about 9.0; the apparent K m for adenosine-5-phosphosulfate was determined to be 0.05 mM with this so far purified enzyme fraction. Enzyme activity was increased with K2SO4 and Na2SO4 and was inhibited by 5-AMP. These properties are similar to assimilatory APS-sulfotransferases from spinach and Chlorella.Abbreviations APS adenosine-5-phosphosulfate - PAPS 3-phosphoadenosine-5-phosphosulfate - 5-AMP adenosine-5-monophosphate - 3-AMP adenosine-3-monophosphate - 3-5-ADP 3-phosphoadenosine-5-phosphate (PAP) - DTE dithiorythritol - GSH reduced glutathione - BAL 2-3-dimercaptopropanol  相似文献   

2.
By the formation of cGMP the NO-sensitive guanylyl cyclase plays a key role within the NO/cGMP signaling cascade involved in vascular regulation and neurotransmission. The prosthetic heme group of the enzyme acts as the NO sensor, and binding of NO induces conformational changes leading to an up to 200-fold activation of the enzyme. The unexpected fast dissociation half-life of NO of a few seconds is fast enough to account for the deactivation of the enzyme in biological systems. YC-1 and its analogues acting as NO sensitizers uncovered a new pharmacologically and conceivably physiologically relevant regulatory principle of the enzyme.Two existing isoforms of the heterodimeric guanylyl cyclase (11, 21) are known that are functionally indistinguishable. Up to now, the NO-sensitive guanylyl cyclase has been considered as a soluble enzyme. However, recent evidence about the 21 isoform interacting with a PDZ domain of the postsynaptic scaffold protein PSD-95 suggests that the 2 subunit directs a membrane association of this isoform. The interaction with PSD-95 locates the 21 isoform in close proximity to the NO-generating NO synthase thereby enabling the NO sensor to respond to locally raised NO concentrations.  相似文献   

3.
Summary Effects of -galactosidase (from green coffee beans) digestion on lectin staining were examined in formalin-fixed, paraffin-embedded human pancreatic tissues from individuals of blood-group B and AB. Digestion with the enzyme resulted in almost complete loss of Griffonia simplicifolia agglutinin I-B4(GSAI-B4) staining in the acinar cells with concomitant appearance of Ulex europaeus agglutinin-I(UEA-I) staining in the corresponding cells. In addition, reactivity with soybean agglutinin(SBA) was also imparted by the enzyme digestion in GSAI-B4 positive acinar cells. -Galactosidase digestion following -galactosidase digestion neither reduced the reactivity with SBA nor induced the reactivity with Griffonia simplicifolia agglutinin-II(GSA-II) in GSAI-B4 positive cells, while in UEA-I positive cells, both reduction of SBA reactivity and appearance of GSA-II reactivity occurred after simple -galactosidase digestion as well as sequential digestion with - and -galactosidase. However, when -l-fucosidase digestion procedure was inserted between - and -galactosidase digestion, UEA-I staining imparted by -galactosidase digestion was markedly decreased in intensity and GSA-II reactivity was appeared in GSAI-B4 positive acinar cells. Furthermore, after sequential digestion with -galactosidase and fucosidase, reactivity with peanut agglutinin(PNA) was revealed in GSAI-B4 positive acinar cells as well as UEA-I positive cells in secretors. In non-secretors, strong PNA staining was usually observed in the acinar cells throughout the glands without enzyme digestion. These results confirmed that the -galactosidase induced GSA-II reactivity and the fucosidase induced PNA reactivity are due to precursors of different kinds of blood-group determinants and suggest that at least two kinds of B antigen determinants, i.e. Gal(1-3)[Fuc(1-2)]Gal(1-3,4)GlcNac and Gal(1-3)-[Fuc(1-2)]Gal(1-3)GalNAc are produced in GSAI-B4 positive acinar cells. The synthesis of the latter type of B antigen is assumed to be controlled under the secretory gene in human pancreas.Abbreviation GalNAc N-acetyl-d-galactosamine - Gal d-galactose - GlcNAc N-acetyl-d-glucosamine - Fuc l-fucose - NeuNAc N-acetylneuraminic acid (sialic acid)  相似文献   

4.
Conversion of methanol to CH4 has a large isotope effect so that a small contribution of methanol-dependent CH4 production may decrease the 13CH4 of total CH4 production. Therefore, we investigated the role of methanol for CH4 production. Methanol was not detectable above 10 M in anoxic methanogenic rice field soil. Nevertheless, addition of 13C-labeled methanol (99% enriched) resulted in immediate accumulation of 13CH4. Addition of 0.1 M 13C-methanol resulted in increase of the 13CH4 from –47 to –6 within 2 h, followed by a slow decrease. Addition of 1 M 13C-methanol increased 13CH4 to +500 within 4 h, whereas 10 M increased 13CH4 to +2500 and continued to increase. These results indicate that the methanol concentrations in situ, which diluted the 13C-methanol added, were 0.1 M and that the turnover of methanol contributed only about 2% to total CH4 production at 0.1 M. However, contribution increased up to 5 and 17% when 1 and 10 M methanol were added, respectively. Anoxic rice soil that was incubated at different temperatures between 10 and 37 °C exhibited maximally 2–6% methanol-dependent methanogenesis about 1–2 h after addition of 1 M 13C-methanol. Only at 50 °C, contribution of methanol to CH4 production reached a maximum of 10%. After longer (7–10 h) incubation, however, contribution generally was only 2–4%. Methanol accumulated in the soil when CH4 production was inhibited by chloroform. However, the accumulated methanol accounted for only up to 0.7 and 1.2% of total CH4 production at 37 and 50 °C, respectively. Collectively, our results show that methanol-dependent methanogenesis was operating in anoxic rice field soil but contributed only marginally to total CH4 production and the isotope effect observed at both low and high temperature.  相似文献   

5.
DNA-degrading enzymes of 24.0 kDa and 27.0 kDa were observed to have different activities in two common wheat (Triticum aestivum L.) cultivars, Wichita and Cheyenne. A substrate-based SDS-PAGE assay revealed that these two enzymes were much more active in Wichita than in Cheyenne. Genes controlling the activities of these two enzymes were localized on chromosome 2D by testing DNA-degrading activities in reciprocal chromosome substitution lines between Wichita and Cheyenne. While the allele on Wichita chromosome 2D stimulated the activities of the 24.0- and 27.0-kDa enzymes in Cheyenne, the allele on Cheyenne chromosome 2D did not reduce the activities of the 24-kDa and 27-kDa enzymes in Wichita. Whether these genes code for the DNA-degrading enzymes themselves or for factors that regulate the enzyme activities remains unknown.This work was supported in part by USDA-Competitive Research Grants Office grant No. 90-37140-5426 to P.S.B. Contribution from Agricultural Research Division, University of Nebraska. Journal Series Number 10304  相似文献   

6.
Ninety fungal strains (42 species) isolated from marine habitats were studied for their ability to produce extracellular enzymes. Cultural filtrates of these strains were shown to contain a series of glycosidases (-glucosidases, N-acetyl--glucosaminidases, -galactosidases -mannosidases) and glucanases (1,3--glucanases, amylases) which varied with habitat. The level of activity depended on the species of fungi. Several promising strains capable of producing both individual enzymes and a set of enzymes for splitting carbohydrate-containing compound have been isolated. Optimal conditions for growth of Chaetomium indicum and for biosynthesis of -1,3-glucanase were determined. -1,3-Glucanase was isolated using ion-exchange chromatography, ultrafiltration, and gel filtration. The presence of 2 enzyme forms was shown; both forms were exo--1,3-glucanases.  相似文献   

7.
The carbondioxide compensation point (), dry matter production, and the activities of nitrate reductase (NR), glycolate oxidase (GO), ribulose 1,5-bisphosphate carboxylase (RuBPC) and phosphoenolpyruvate carboxylase (PEPC) were measured in wheat, grown on media, containing nitrate or ammonium. Significantly higher and lower dry matter was observed in plants supplied with ammonium-nitrogen (NH4-N), as compared to those supplied with nitrate-nitrogen (NO3-N). The activities of NR and PEPC were higher in plants grown on NO3-N than to those grown on NH4-N. There were no significant differences in the activities of GO and RuBPC irrespective of whether NO3-N or NH4-N was supplied. None of the enzymes was found to be associated directly with the .PEPC activity accounted the measured differences in the and biomass production between NH4-N and NO3-N supplied plants. The relationship between PEPC and the is discussed.  相似文献   

8.
The seed storage globulins from sixHelianthus and four hybrids were studied using mono and bidimensional gel SDS electrophoresis (+ 2 mercaptoethanol). The polypeptide composition of each subunit was determined. Different pairs are specifically expressed according to the species studied. Three typical patterns were discriminated. All the studied species exhibit five subunits: two of them are expressed in all the species (11 and 22). The subunit corresponding to the 11 pair is present inH. petiolaris and in the three populations ofH. annuus studied. The 2b2 pair is common toH. annuus andH. argophyllus. H. petiolaris presents two specific 2a2 and 44 pairs andH. annuus a specific 33 pair. InH. argophyllus 11 33 or 44 are never observed but are replaced by 13 and 31 pairs. Some globulins, poorly represented, are of forms but present chains of higher molecular weights (in the range 54–56 kDa). Expressing variations in the banding patterns between these species by the use of a similarity index reveals complete identity between the three populations ofH. annuus. Identity between the twoH. petiolaris studied is also observed.H. annuus andH. argophyllus appear to be closer to each other thanH. petiolaris concerning the seed storage globulins.  相似文献   

9.
Summary Kinetic properties of extracellular -glucosidase from Aspergillus ornatus were determined. The pH and temperature optima for the enzyme were found to be 4.6 and 60°C, respectively. Under these conditions, the enzyme exhibited a K m (p-nitrophenyl--glucoside) value of 0.76±0.11 mM. The activation energy for the enzyme was 11.8 kcal/mol. Several divalent metal ions inhibited -glucosidase activity, some of which showed inhibition of enzyme activity only at higher concentrations. Ag2+ was the most potent inhibitor. A metal chelating agent, EDTA, also inhibited -glucosidase activity. Except for trehalose, glucose, glucono--lactone, cellobiose, gentiobiose, laminaribiose, maltose and isomaltose inhibited -glucosidase activity. Glucose was found to be a competitive inhibitor, whereas glucono--lactone and other -linked disaccharides were noncompetitive (mixed) inhibitors of the enzyme.  相似文献   

10.
Exchange-out of amide tritium from labeled -subunit of 33 complex of F0F1-ATP synthase was not accelerated by ATP, suggesting that hemagglutinin-type transition of coiled-coil structure did not occur in -subunit. Local topology of nucleotide binding site and switch II region of G-protein resemble those of F1- subunit and other proteins which catalyze ATP-triggered reactions. Probably, binding of nucleotide to F0F1-ATP synthase induces conformational change of the switch II-like region with transforming subunit structure from open to closed form and this transformation results in loss of hydrogen bonds with the subunit, thus enabling the subunit to move.  相似文献   

11.
The reaction of methanol dehydrogenase with cytochrome c L from Methylophaga marina and the reactions of the non-physiological substrates, Wurster's blue and ascorbic acid, with both proteins were studied as a function of temperature (4–32 °C), pressure (1–2000 bar) and ionic strength using the optical high pressure stopped-flow method. The thermodynamic parameters H, S and V were determined for all reactions where electron transfers are involved. These data allowed the determination of the Maxwell relationships which proved the internal thermodynamic consistency of the system under study. A conformational change on the cytochrome c L level was deduced from both breaks in the Arrhenius plots and the variation of the V with temperature.Abbreviations MOPS 4-morpholinepropanesulfonic acid - CHES 2-(cyclohexylamino)ethanesulfonic acid - MDH methanol dehydrogenase - EDTA ethylenedinitrilotetraacetic acid disodium salt - BTB bromothymol blue (3,3-dibromothymolsulfoneph-thalein) - PQQ 2,7,9-tricarboxy-lH-pyrrolo-[2,3f]quinoline-4,5-dione - cytochrome c HH mammalian horse heart cytochrome c  相似文献   

12.
The organization of carbonic anhydrase (CA) system in halo- and alkalophilic cyanobacteria Rhabdoderma lineare was studied by Western blot analysis and immunocytochemical electron microscopy. The presence of extracellular -CA (60 kD) in the glycocalyx, forming a tight sheath around the cell, and of two intracellular -CA is reported. One -CA (60 kD) is associated with polypeptides of photosystem II (PSII) and is a constitutive enzyme. Another -carbonic anhydrase (25 kD) was induced by low content of bicarbonate in the culture medium; this inducible CA was found in the fraction of total soluble proteins. The expressed synthesis of inducible -CA was accompanied by the increase in the intracellular pool of inorganic carbon, which suggests an important role of this enzyme in the functioning of CO2-concentrating mechanism.  相似文献   

13.
Summary Candida wickerhamii growing on cellobiose produced -glucosidase with high activity against -nitrophenyl glucoside (PNPG) but low activity against cellobiose. -glucosidase production was constitutive, and was repressed by -glucosides and glucose. -glucosides containing an aromatic moiety in the aglycon were the best substrates for -glucosidase indicating that the enzyme is an aryl--glucosidase. A -glucosidase from C. wickerhamii cells was purified by (NH4)2SO4 precipitation, dialysis, ion-exchange chromatography and gel filtration. The purified enzyme was homogeneous as shown by sodium-dodecyl-sulphate polyacrylamide gel electrophoresis and discontinuous gel electrophoresis. The purified enzyme hydrolysed PNPG but not cellobiose. The Km of the enzyme was 0.185 mM. Glucose inhibited the enzyme competitively and the Ki was 7.5 mM. The apparent molecular mass was 97,000. The optimum pH and temperature for enzyme activity were between pH 7 and 7.4 and 40°C respectively. At temperatures of 45°C and greater the enzyme was inactivated. The activation energy of the enzyme was 29.4 kJ · mol-1.  相似文献   

14.
The oxidation of catechol, an intermediate in benzene catabolism, was studied using transient variations in dissolved oxygen tension (DOT) when a succinate limited steady state culture of Pseudomonas putida ML2 was perturbed with a pulse of another substrate. A model was developed and tested for the effect of fluctuations in oxidizing enzyme activity on DOT. It was found that the rate of induction of catechol oxidizing enzymes was independent of dilution rate up to a relative growth rate /max of 0.75. Only at higher dilution rates was catabolite repression observed.Abbreviations DOT dissolved oxygen tension - K L a gas transfer coefficient - specific growth rate - max maximum specific growth rate - Ks substrate saturation constant  相似文献   

15.
Two intracellular -glucosidases (E.C. 3.2.1.21) were purified from the filamentous fungus Neurospora crassa, mutant cell-1 (FGSC no. 4335) and characterized. The extent of purification were 2.55- and 28.89-fold for -glucosidase A and -glucosidase B, respectively. -Glucosidase A was a dimeric protein, and B a monomeric protein, with molecular masses of 178 and 106 kDa, respectively. Both isoenzymes were glycoproteins with relatively high carbohydrate contents (-glucosidase A, 29.2%; -glucosidase B, 34.2%). The isoelectric points determined by IEF were 6.27 and 4.72, respectively. pH optima for activity were determined to be 5.0 and 5.5, and temperature optima to be 55 and 60 °C, for -glucosidases A and B, respectively. Both purified -glucosidases. especially -glucosidase B, showed relatively high stability against pH and temperature. Both enzymes were stable in the pH range of 5.0–9.0. The activities were completely retained up to 48 h at temperatures below 40 °C. At higher temperatures, enzymes were relatively unstable and lost their activities at 60 °C after 24 h. Both -glucosidases were highly activated by CuCl2, and inhibited by SnCl2 and KMnO4. Hg2+ and Ag+ also inhibited severely -glucosidase B. The K m and V max values of the isoenzymes against cellobiose as substrate were 1.50 mM and 12.2mol min–1 mg–1 for -glucosidase A and 2.76 mM and 143.5 mol min–1 mg–1 for -glucosidase B.  相似文献   

16.
Streptococcus suis causes meningitis and other serious infections in pigs and humans, and binds to host cell globotriosylceramide. In order to determine the essential hydroxyls involved in binding, the complete set of monodeoxy derivatives of the receptor trisaccharide Gal1-Gal1-4Glc were tested as inhibitors of bacterial hemagglutination. Removal of the 4-, 6, 2 or 3-hydroxyls abolished inhibitory activity, which indicated that they were critically involved in binding. The same results were obtained using synthetic lipid-linked monodeoxy derivatives of the trisaccharides in a thin-layer overlay assay. The PN and PO subtypes of the S. suis adhesin showed similar binding patterns. The hydroxyls of the glucose moiety were not critical for binding, although the adhesin binds better to the trisaccharide Gal1-4Gal1-4Glc than the disaccharide Gal1-4Gal.  相似文献   

17.
The partition behaviour of -lactalbumin (la) and -lactoglobulin (lg) on PEG/(NH4)2SO4 system was studied. For purified proteins, a partition coefficient of 12.8 for la and 0.34 for lg, with mass recovery yields of 96.7% for la in the upper phase and 83.8% for lg in the lower phase was obtained, in 18% (w/w) PEG 900/14% (w/w) (NH4)2SO4 system, at pH 7. PEG/(NH4)2SO4 system was an economical alternative for the recovery and separation of the two proteins in cheese whey, allowing a 50% reduction in costs. An efficient and inexpensive separation of both proteins in cheese whey could be achieved, by using 16% (w/w) PEG 900/15% (w/w) (NH4)2SO4, at pH 7.5.  相似文献   

18.
The regulation of the expression of enzyme activities catalyzing initial reactions in the anoxic metabolism of various aromatic compounds was studied at the whole cell level in the denitrifying Pseudomonas strain K 172. The specific enzyme activities were determined after growth on six different aromatic substrates (phenol, 4-hydroxybenzoate, benzoate, p-cresol, phenylacetate, 4-hydroxyphenylacetate) all being proposed to be metabolized anaerobically via benzoyl-CoA. As a control cells were grown on acetate, or aerobically on benzoate. The expression of the following enzyme activities was determined.Phenol carboxylase, as studied by the isotope exchange between 14CO2 and the carboxyl group of 4-hydroxybenzoate; 4-hydroxybenzoyl-CoA reductase (dehydroxylating); p-cresol methylhydroxylase; 4-hydroxybenzyl alcohol dehydrogenase; 4-hydroxybenzaldehyde dehydrogenase; coenzymeA ligases for the aromatic acids benzoate, 4-hydroxybenzoate, phenylacetate, and 4-hydroxyphenylacetate; phenylglyoxylate: acceptor oxidoreductase and 4-hydroxyphenylglyoxylate: acceptor oxidoreductase; aromatic alcohol and aldehyde dehydrogenases.The formation of most active enzymes is strictly regulated; they were only induced when required, the basic activities being almost zero. The observed whole cell regulation pattern supports the postulate that the enzyme activities play a role in anoxic aromatic metabolism and that the compounds are degraded via the following intermediates: Phenol 4-hydroxybenzoate 4-hydroxybenzoyl-CoA benzoyl-CoA; 4-hydroxybenzoate 4-hydroxybenzoyl-CoA benzoyl-CoA; benzoate benzoyl-CoA; p-cresol 4-hydroxybenzaldehyde 4-hydroxybenzoate 4-hydroxybenzoyl-CoA benzoyl-CoA; phenylacetate phenylacetyl-CoA phenylglyoxylate benzoyl-CoA plus CO2; 4-hydroxyphenylacetate 4-hydroxyphenylacetyl-CoA 4-hydroxyphenylglyoxylate 4-hydroxybenzoyl-CoA plus CO2 benzoyl-CoA.  相似文献   

19.
Summary Measurements were made of the difference in the electrochemical potential of protons ( ) across the membrane of vesicles reconstituted from the ATPase complex (TF 0 ·F 1) purified from a thermophilic bacterium and P-lipids. Two fluorescent dyes, anilinonaphthalene sulfonate (ANS) and 9-aminoacridine (9AA) were used as probes for measuring the membrane potential () and pH difference across the membrane ( pH), respectively.In the presence of Tris buffer the maximal and no pH were produced, while in the presence of the permeant anion NO 3 the maximal pH and a low were produced by the addition of ATP. When the ATP concentration was 0.24mm, the was 140–150 mV (positive inside) in Tris buffer, and the pH was 2.9–3.5 units (acidic inside) in the presence of NO 3 . Addition of a saturating amount of ATP produced somewhat larger and pH values, and the attained was about 310 mV.By trapping pH indicators in the vesicles during their reconstitution it was found that the pH inside the vesicles was pH 4–5 during ATP hydrolysis.The effects of energy transfer inhibitors, uncouplers, ionophores, and permeant anions on these vesicles were studied.  相似文献   

20.
Summary A cultivar lacking the glycinin subunit A5A4B3 (Raiden) was crossed with one lacking the -subunit of -conglycinin (Keburi). Analysis of F2 and F3 progeny indicated that the missing bands of the A5A4B3 and the -subunit were each controlled by a recessive allele of two independently segregating genes. Gene symbols Gy 4/gy 4 and Cgy 1/cgy 1 were proposed for the genes which confer the presence or absence of the glycinin and conglycinin subunits, respectively.Cooperative research of USDA-ARS and the Indiana Agric. Exp. Stn., Purdue Univ., West Lafayette, IN 47907, USA. Indiana Agric. Exp. Stn. Journal Article 9675. Financial support from the American Soybean Association Research Foundation is gratefully acknowledged  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号