首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
α-Glucosidase (α-d-glucoside glucohydrolasc; EC: 3.2.1.20) has been extracted from bovine spleen and separated into two fractions (Fractions A and B) by gel filtration on Sephadex G-200. Fraction B which was retarded on Sephadcx columns contained only an acid α-glucosidase. This enzyme catalyzed hydrolysis of maltose and glycogen at comparable rates. Glycogen was hydrolyzed almost completely to glucose. The results of heat-treatment and of inhibition bv turanose demonstrated that Fraction A contained both acid if and neutral α-glucosidases. The neutral enzyme in Fraction A was further separated into four different components on preparative polyacrylamide gel electrophoresis. All of these neutral enzymes showed similar catalytic properties each other, and hydrolyzed maltose much more rapidly than glycogen. The acid enzyme in Fraction A was inactivated on the electrophoresis and was not further characterized.  相似文献   

2.
An ATP-dependent DNase has been purified from Thermus thermophilus HB8 by a procedure involving streptomycin precipitation, DEAE-cellulose chromatography, Sephadex G-200 gel filtration and heparin-agarose affinity chromatography. ATP-dependent DNase activity was separated into two distinct peaks, Peak A and Peak B, by heparin-agarose affinity chromatography. Each peak fraction was further purified by ATP-agarose affinity chromatography. Peak A and Peak B were eluted from an ATP-agarose column at 0.14 M and 0.28 M KCl, respectively, each as a single peak. Both enzyme activities require ATP and Mg2+ for the degradation of double- and single-stranded DNAs, and degrade denatured DNA about 1.5 times faster than native DNA. The two peaks are optimally active at 69 degrees C and have similar optimal pH ranges from 8.2 to 9.2. The two purified peaks were unstable on storage at -20 degrees C, but were remarkably stabilized by addition of 0.4 mg/ml bovine serum albumin. Ammonium sulfate strongly inhibits the activities of both peaks. The molecular weights of Peak A and Peak B are about 170,000 as estimated by glycerol gradient sedimentation. The average chain lengths of denatured DNA produced by Peak A and Peak B were 4.2 and 3.6, respectively, and the products were terminated by 5'-phosphoryl and 3'-hydroxyl groups. The limit-digested products of denatured DNA produced by Peak B consist of mono-, di-, tri-, tetra-, and pentanucleotides along with some larger fragments. The mode of action of both activities is processive and Peak A does not attack double-stranded circular DNA.  相似文献   

3.
A fibrillar protein complex, possessing ouabain-insensitive Ca2+-ATPase activity was isolated from human erythrocyte membranes by using a low ionic strength extraction procedure. Mg2+-ATPase activity was revealed upon addition of rabbit skeletal muscle actin, thus demonstrating the presence of a myosin-like protein in the crude extract of the erythrocyte membrane. Upon sodium dodecylsulfate gel electrophoresis, the extract showed mainly the doublet of subunit molecular weight bands of 230 000 and 210 000, and more than 10 faster moving bands. Gel filtration of the erythrocyte membrane extract on Sepharose 4B furnished 4 fractions. Fraction I, containing the doublet and 80 000, 60 000 and 46 000 subunit molecular weight bands was 5-fold purified with respect to Ca2+-ATPase activity, but was devoid of actin-activated Mg2+-ATPase activity. Fraction II, containing only the doublet, was devoid of Ca2+ and actin-activated Mg2+-ATPase activity. The 210 000 subunit molecular weight protein could be phosphorylated in the presence of Mg2+ in the crude extract and Fraction I but not in Fraction II.  相似文献   

4.
Negatively superhelical pNS1 DNA with a molecular weight of 2.55 MDa (4 kbp) was found to contain 13 specific, unbasepaired sites that are sensitive to a single-strand-specific S1 nuclease cleavage. The S1-cleavage occurred once at these sites. In the absence of added Mg2+, the topoisomerase I purified from Haemophilus gallinarum formed a complex with the superhelical pNS1 DNA which has a hidden strand cleavage. Extensive proteinase K digestion of the complex led to cleavage of the DNA chain. Then the proteinase K-cleaved product was digested with S1, which can cut the opposite strand at the preexisting strand cleavage to generate unit-length linear DNA. Restriction endonuclease analysis of the linear DNA shows that the topoisomerase-induced cleavage occurred once at ten specific sites on the DNA. The topoisomerase caused mainly single-strand cleavage at these sites, but infrequently also caused double-strand cleavage at the same sites. Of interest is the fact that these sites considerably coincide with the S1-cleavable, unbasepaired sites.  相似文献   

5.
An activated S6 kinase in regenerating rat liver   总被引:1,自引:0,他引:1  
S6 kinase activity was increased in the regenerating liver 5 h after partial hepatectomy compared with sham-operated liver. The protein kinase activity was eluted from DE-52 column at approximately 250 mM NaCl and was not affected by known regulators of protein kinases. The S6 kinase was further purified by chromatography on peptide R1A13-Sepharose 4B and Sephadex G-150. The molecular weight of the enzyme was estimated to be 4.5 X 10(4) by gel filtration. The enzyme catalyzes the phosphorylation of whole histone, mainly H2B histone, at 75 mM Mg2+. These properties are similar to those of a proteolytically modified Ca2+/phospholipid-independent form of protein kinase C.  相似文献   

6.
From the 2 m urea extract of ground barley two zymogen β-amylase (Z-β-A) fractions (Fractions A and B) and one active β-amylase (A-β-A) fraction (Fraction C) were isolated by Sephadex G-75 gel filtration and purified by DEAE-Sephadex A-50 column chromatography. The molecular weights of Fractions A, B and C were estimated to be approximately 280,000, 160,000 and 56,000, respectively.

Both the Z-β-A fractions which were ultracentrifugally and electrophoretically homogeneous were found to be accompanied by a small amount of saccharogenic activities. From the estimation of Km values for these saccharogenic activities and the behavior in their activation with 2-mercaptoethanol and papain, it seems reasonable to conclude that Fraction A is a heteropolymer type of Z-β-A composed of both A-β-A and barley reserve proteins; that Fraction B is a homopolymer type of Z-β-A composed of A-β-A alone; and that two different activation mechanisms, proteolytic activation and disulfide bond cleaving activation, are necessary for full activation of Z-β-A in barley.  相似文献   

7.
Guanosine triphosphate cyclohydrolase activity in rat tissues.   总被引:3,自引:1,他引:2       下载免费PDF全文
The GTP cyclohydrolase activity of rat tissues has been studied by means of the measurement of formic acid release and neopterin synthesis from GTP. After gel filtration of a 45%-satd.-(NH4)2SO4 fraction of liver homogenates, three enzyme fractions were separated and named A1, A2 and A3 according to the order of their elution. Fractions A1 and A3 displayed an 8-formyl-GTP deformylase activity; no proof of cyclized product has yet been established. This activity was heat-labile and required Mg2+ for maximal activity. Fraction A2 displayed a 'neopterin-synthetase' activity, with dihydroneopterin triphosphate and formic acid formed in stochiometric amounts. Fraction A1 isolated from heat-treated homogenates also produced dihydroneopterin triphosphate. Neopterin synthetase activity in fractions A1 and A2 was heat-resistant and inhibited by Mg2+. In liver the A2 fraction represented 70-75% of the neopterin synthetase capacity and was inhibited by reduced pterines (sepiapterin, dihydrobiopterin and tetrahydrobiopterin) and to a lesser extent by reduced forms of folic acid. In kidney and brain, fraction A1 and A3 GTP 8-formylhydrolase activities were found in significant amounts, in contrast with the neopterin synthetase activity, which was low and appeared to be confined to the A1 fraction.  相似文献   

8.
Procollagen N-proteinase, the enzyme which cleaves the NH2-terminal propeptides from type I procollagen, was purified over 15,000-fold from extracts of chick embryos by chromatography on columns of DEAE-cellulose, concanavalin A-agarose, heparin-agarose, pN-collagen-agarose, and a filtration gel. The purified enzyme had an apparent molecular weight of 320,000 as estimated by gel filtration and a pH optimum for activity of 7.4 to 9.0. The enzyme was inhibited by metal chelators and the thiol reagent dithiothreitol. Addition of calcium was required for maximal activity under the standard assay conditions, and the presence of calcium decreased thermal inactivation at 37 degrees C. The purified enzyme cleaved a homotrimer of pro-alpha 1(I) chains, an observation which indicated that the presence of pro-alpha 2(I) chain is not essential for the enzymic cleavage of NH2-terminal propeptides. Previous observations suggesting that the enzyme requires a substrate with a native conformation were explored further by reacting the enzyme with type I procollagen at different temperatures. Type I procollagen from chick embryo fibroblasts became resistant to cleavage at about 43 degrees C. Type I procollagen from human skin fibroblasts, which was previously shown to have a slightly lower thermal stability than chick embryo type I procollagen, became resistant to cleavage at temperatures that were about 2 degrees C lower. The results suggested that the enzyme is a sensitive probe for the three-dimensional structure of the NH2-terminal region of the procollagen molecule and that it requires the protein substrate to be triple helical.  相似文献   

9.
Bacillus stearothermophilus H-804 isolated from a hot spring in Beppu, Japan, produced an ammonia-specific NAD synthetase (EC 6.3.1.5). The enzyme specifically used NH3 as an amide donor for the synthesis of NAD as it formed AMP and pyrophosphate from deamide-NAD and ATP. None of the l-amino acids tested, such as l-asparagine or l-glutamine, or other amino compounds such as urea, uric acid, or creatinine was used instead of NH3. Mg2+ was needed for the activity, and the maximum enzyme activity was obtained with 3 mM MgCl2. The molecular mass of the native enzyme was 50 kDa by gel filtration, and SDS-PAGE showed a single protein band at the molecular mass of 25 kDa. The optimum pH and temperature for the activity were from 9.0 to 10.0 and 60 degrees C, respectively. The enzyme was stable at a pH range of 7.5 to 9.0 and up to 60 degrees C. The Km for NH3, ATP, and deamide-NAD were 0.91, 0.052, and 0.028 mM, respectively. The gene encoding the enzyme consisted of an open reading frame of 738 bp and encoded a protein of 246 amino acid residues. The deduced amino acid sequence of the gene had about 32% homology to those of Escherichia coli and Bacillus subtilis NAD synthetases. We caused the NAD synthetase gene to be expressed in E. coli at a high level; the enzyme activity (per liter of medium) produced by the recombinant E. coli was 180-fold that of B. stearothermophilus H-804. The specific assay of ammonia and ATP (up to 25 microM) with this stable NAD synthetase was possible.  相似文献   

10.
R G von Tigerstrom 《Biochemistry》1982,21(25):6397-6403
Saccharomyces cerevisiae contains a membrane-bound mitochondrial nuclease. The enzyme was purified nearly 500-fold from sphaeroplasts of the organism by differential centrifugation, differential solubilization, heparin-agarose chromatography, and gel filtration. A final specific activity of 98 mumol min-1 (mg of protein)-1 was obtained. The enzyme required further purification to achieve homogeneity. Two peaks of activity were obtained after gel filtration with apparent molecular weights of 140000 and 57000. Otherwise, these two components have nearly identical characteristics. Without detergent the enzyme is insoluble and has very low activity. Zwittergent 3-14 or Triton X-100 in the presence of KCl could be used to solubilize and activate the enzyme. A number of other detergents were much less effective in solubilizing or activating the nuclease. The enzyme requires Mg2+ for activity, and this can be replaced to some degree by Mn2+ but not by Ca2+ or Zn2+. It is most active at pH 6.5-7.0 and degrades the substrate to small oligonucleotides with 5'-phosphate ends. The relative rates of hydrolysis were 100 for poly(A), 31 for ssDNA, 19 for RNA, 2.1 for dsDNA, and less than or equal to 0.2 for poly(C). Under the assay conditions used the enzyme appears to constitute about 90% of the total nuclease activity of the cell. The enzyme is unstable, especially at neutral and alkaline pH.  相似文献   

11.
The 5SrRNA in the rat liver postmicrosomal supernatant was investigated. Acrylamide gel electrophoresis and Northern blot analysis showed that most of the 5SrRNA was present in the fractions obtained on high molecular weight regions separated by Sephadex G-200 column chromatography of the supernatant, which contained the bulk of the methionyl-tRNA synthetase (Fraction I) and tyrosyl-tRNA synthetase (Fraction II). A high molecular weight complex containing nine aminoacyl-tRNA synthetases [Mirande, M., LeCorre, D., & Waller, J.-P. (1985) Eur. J. Biochem. 147, 281-289] was purified by fractional precipitation with polyethylene glycol 6000, gel filtration on Bio-Gel A-1.5m, and finally tRNA-Sepharose column chromatography, which gave two fractions. Fraction B showed the activities of nine aminoacyl-tRNA synthetases and gave protein bands corresponding to eight previously identified enzymes on SDS-PAGE. Fraction A, eluted with a lower KCl concentration than Fraction B, showed lower activities than fraction B of eight of the aminoacyl-tRNA synthetases, the exception being prolyl-tRNA synthetase. The staining patterns with ethidium bromide of the RNAs after PAGE showed 5SrRNA bands for Fraction A but not for Fraction B. However, Northern blot analysis indicated that 5SrRNA was present in both Fractions A and B. The staining pattern after SDS-PAGE of Fraction A with Coomassie Brilliant Blue showed several protein bands in addition to those observed for Fraction B, one of which, with a staining intensity comparable with those of other bands, was located at the same position as ribosomal protein L5, which is the protein moiety of the 5SrRNA-L5 protein complex of ribosomal 60S subunits.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
Methionine aminopeptidase (MetAP) catalyzes the removal of an amino-terminal methionine from a newly synthesized polypeptide. The enzyme was purified to homogeneity from Bacillus stearothermophilus (KCTC 1752) by a procedure that involves heat precipitation and four sequential chromatographs (including DEAESepharose ion exchange, hydroxylapatite, Ultrogel AcA 54 gel filtration, and Reactive red 120 dye affinity chromatography). The apparent molecular masses of the enzyme were 81,300 Da and 41,000 Da, as determined by gel filtration chromatography and sodium dodecylsulfate polyacrylamide gel electrophoresis (SDS-PAGE), respectively. This indicates that the enzyme is comprised of two identical subunits. The MetAP specifically hydrolyzed the N-terminal residue of Met-Ala-Ser that was used as a substrate, and exhibited a strong preference for Met-Ala- Ser over Leu-Gly-Gly, Leu-Ser-Phe, and Leu-Leu-Tyr. The enzyme has an optimal pH at 8.0, an optimal temperature at 80 degrees C, and pI at 4.1. The enzyme was heat-stable, as its activity remained unaltered when incubated at 80 degrees C for 45 min. The Km and Vmax values of the enzyme were 3.0 mM and 1.7 mmol/min/mg, respectively. The B. stearothermophilus MetAP was completely inactivated by EDTA and required Co(2+) ion(s) for activation, suggesting the metal dependence of this enzyme  相似文献   

13.
An endodeoxyribonuclease has been purified from nuclei of bovine small intestinal mucosa to a homogeneous state by a procedure involving affinity chromatography on heparin-agarose. The endonuclease, which was found to be bound to chromatin, has a pH optimum of 5.4. It requires Mn2+ or Co2+ for activity and its maximum activity with Mg2+ is about 80% of that with Mn2+. Its activity is strongly inhibited by sulfhydryl-blocking agents, and by ethidium bromide. The enzyme does not attack RNA and is inhibited by it. Its isoelectric point is 8.5 +/- 0.1, and its molecular weight is 49,000 +/- 3,000, determined by sucrose gradient sedimentation and gel filtration on Sephadex G-100. Polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate indicated that the enzyme is composed of two nonidentical subunits with molecular weights of 30,000 and 23,000. The enzyme catalyzes the endonucleolytic cleavage of circular duplex ColE1 DNA via single strand scissions from the initial stage of degradation. The average size of the limit products of native phage T7 or ColE1 DNA is about 2,000 to 1,500 base pairs, estimated by neutral sucrose gradient sedimentation or agarose gel electrophoresis. The enzyme degrades denatured DNA about 20 times faster than native DNA. The products contain 5'-phosphoryl and 3'-hydroxyl termini, and all four deoxymononucleotides are present in almost equal amounts at the 5'-termini.  相似文献   

14.
Enzymatic heme oxygenase activity has been partially purified from extracts of the unicellular red alga Cyanidium caldarium, and the macromolecular components have been separated into three protein fractions, referred to as Fractions I, II, and III, by serial column chromatography through DEAE-cellulose and Reactive Blue 2-Sepharose. Fraction I is retained by DEAE-cellulose at low salt concentration and eluted by 1 M NaCl. Fraction II is retained by Blue Sepharose at low salt concentration and eluted by 1 M NaCl. Fraction III is retained on 2',5'-ADP-agarose and eluted by 1 mM NADPH, while Fraction II is not retained on ADP-agarose. Fractions I-III, have Mr values of 22,000, 38,000, and 37,000, respectively (all +/- 2,000), as determined by Sephadex gel filtration chromatography. In vitro heme oxygenase activity requires the presence of all three fractions, plus substrate, O2, reduced pyridine nucleotide, and another reductant. Ascorbate, isoascorbate, and phenylenediamine serve equally well as the second reductant, but hydroquinone can also be used, with lower activity resulting. Fractions I-III are heat sensitive and inactive by Pronase digestion. Fraction I has a visible absorption spectrum similar to that of ferredoxin and is bleached by dithionite reduction or incubation with p-hydroxymercuribenzoate. Fraction I can be replaced by commercially available ferredoxin derived from the red alga Porphyra umbilicalis, and to a smaller extent, by spinach ferredoxin. Fraction III contains ferredoxin-linked cytochrome c reductase activity and can be partially replaced by spinach ferredoxin-NADP+ oxidoreductase. Reconstituted heme oxygenase and ferredoxin-linked cytochrome c reductase activities are both abolished if Fraction I or III is preincubated with 0.1 mM p-hydroxymercuribenzoate, but heme oxygenase activity is only slightly affected if Fraction II is preincubated with p-hydroxymercuribenzoate. Preincubation of Fraction II with 0.5 mM diethylpyrocarbonate inactivates heme oxygenase in the reconstituted system, and 10 microM mesohemin partially protects this Fraction against diethylpyrocarbonate inactivation. Algal heme oxygenase is inhibited 80% by 2 microM Sn-protoporphyrin even in the presence of 20 microM mesohemin. Fraction II is rate limiting in unfractionated and reconstituted incubation mixtures. None of the three cell fractions could be replaced by bovine spleen microsomal heme oxygenase or NADPH-cytochrome P450 reductase.  相似文献   

15.
The DNA cleavage reaction of topoisomerase II is central to the catalytic activity of the enzyme and is the target for a number of important anticancer drugs. Unfortunately, efforts to characterize this fundamental reaction have been limited by the low levels of DNA breaks normally generated by the enzyme. Recently, however, a type II topoisomerase with an extraordinarily high intrinsic DNA cleavage activity was isolated from Chlorella virus PBCV-1. To further our understanding of this enzyme, the present study characterized the site-specific DNA cleavage reaction of PBCV-1 topoisomerase II. Results indicate that the viral enzyme cleaves DNA at a limited number of sites. The DNA cleavage site utilization of PBCV-1 topoisomerase II is remarkably similar to that of human topoisomerase IIalpha, but the viral enzyme cleaves these sites to a far greater extent. Finally, PBCV-1 topoisomerase II displays a modest sensitivity to anticancer drugs and DNA damage in a site-specific manner. These findings suggest that PBCV-1 topoisomerase II represents a unique model with which to dissect the DNA cleavage reaction of eukaryotic type II topoisomerases.  相似文献   

16.
An endoribonuclease has been purified nearly to homogeneity from rat liver microsomes, and its mode of action and general properties were studied. The enzyme had an apparent molecular weight of 58 000, as estimated by both gel filtration and SDS-polyacrylamide gel electrophoresis and produced oligonucleotides from poly(A), poly(U) and poly(C). No mononucleotide was obtained by the enzymatic hydrolysis of the above substrates. The enzyme made endonucleolytic cleavages which generated 5'-phosphate-terminated oligonucleotides. It was suggested that the existence of at least (Ado5'P)2 residues at both sides of the cleavage bond was necessary for the action of the endoribonuclease. Divalent cations (Mg2+ or Mn2+) were required for the enzymatic activity, while K+ inhibited the enzyme. Spermine stimulated the enzymatic activity in the presence of 1 mM Mg2+.  相似文献   

17.
A DNA-relaxing enzyme capable of concerted nicking and closing of DNA backbone bonds has been purified from Haemophilus gallinarum by two chromatographic steps and gel filtration. The enzyme efficiently catalyzes the removal of superhelical turns from a negatively twisted DNA and requires Mg2+ for this activity. Slight removal of superhelical turns from a positively twisted DNA generated by binding of ethidium bromide is found, but only at high enzyme concentrations. The DNA-relaxing activity is inhibited markedly with heat-denatured DNA, whereas native DNA and RNA have almost no affect on this activity.  相似文献   

18.
Compound 48/80 (48/80), a mixture of polycationic compounds was fractionated using affinity chromatography on calmodulin-Sepharose. Unfractionated 48/80 and various fractions were tested for their potential inhibitory effects on ATPase activities of isolated human red blood cell membranes. ATPase activities tested included: Mg2+-ATPase, the Na+/K+-pump ATPase, and the Ca2+-pump ATPase in both its basal (calmodulin-independent) and calmodulin-activated state. Neither 48/80 nor its various fractions were very potent or efficacious inhibitors of the Mg2+-ATPase or the Na+/K+-pump ATPase. In agreement with previous reports, 48/80 was found to be an inhibitor of the calmodulin-activated Ca2+-pump ATPase. By contrast, we found that unfractionated, as well as some fractionated, material inhibited both the basal (calmodulin-independent) and calmodulin-activated Ca2+-pump ATPase activity. A fraction designated as Fraction III bound to calmodulin-Sepharose in the presence of Ca2+ and low salt and was eluted in the absence of Ca2+ and 0.15 M NaCl. By gel filtration, Fraction III had an apparent average molecular weight of 2064 (1320 for unfractionated material). Fraction III was the most potent inhibitor of the Ca2+-pump ATPase with IC50 values for the basal and calmodulin-activated forms of the enzyme of 0.6 and 1.2 micrograms/ml, respectively. Inhibition by Fraction III was cooperative with n apparent values of 2.4 and 5.7, respectively, for the basal and calmodulin-activated forms of the enzyme. Thus, binding of 48/80 constituents to calmodulin can not fully account for the observed data. Direct interaction of 48/80 constituent(s) with the enzyme and/or the lipid portion of the membrane is suggested.  相似文献   

19.
A protein fraction from Micrococcus luteus with endonuclease activity against gamma-irradiated DNA was isolated and characterized. An additional activity on apurinic sites could not be separated, either by sucrose gradient sedimentation or by gel filtration through Sephadex G 100. From gel filtration, a molecular weight of about 25 000 was calculated for both endonuclease activities. The endonuclease activity against gamma-irradiated DNA was stimulated five-fold with 5 mM Mg++, whereas that against apurinic sites was less dependent on the Mg++ concentration. 100 mM KCl inhibited the gamma-ray endonuclease, but not the apurinic endonuclease activity. In gamma-irradiated RNA the protein recognized 1.65 endonuclease sensitive sites per radiation induced single-strand break, among which are 0.45 alkali labile lesions in the nucleotide strand. The affinity of the enzyme for the endonuclease sensitive site was evaluated resulting in a Km-value of 73 nM.  相似文献   

20.
Alkaline phosphatase [orthophosphoric monoester phosphohydrolase, EC 3.1.3.1] was purified from the mucosa of rat small intestine by butanol extraction, ethanol fractionation, gel filtration, with controlled-pore glass-10 and DEAE-cellulose column chromatography. On the gel filtration, the enzyme activity was separated into three peaks; A in the void volume, B and C at lower molecular weight positions. Enzyme A was purified to homogeneity. The activity of enzymes A, B, and C was detected even on sodium dodecyl sulfate-polyacrylamide gel electrophoresis at the position of the protein of enzyme A, which had a molecular weight of 110,000 daltons. Enzymatic properties such as pH optimum, Km value for the substrate, heat inactivation and inhibition by amino acids were the same in all three enzymes. Based on these findings, together with the elution positions on gel filtration, enzyme A was regarded as an aggregate, and enzymes B and C as dimer and monomer molecules, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号