首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Our group is developing a novel technology, enzyme-mediated cancer imaging and therapy (EMCIT), that aims to entrap radioiodinated compounds within solid tumors for noninvasive tumor detection and therapy. In this approach, a water-soluble, radioiodinated prodrug is hydrolyzed in vivo to a highly water-insoluble compound by an enzyme overexpressed extracellularly by tumor cells. We have synthesized and characterized the water-soluble prodrug, 2-(2'-phosphoryloxyphenyl)-6-[(125)I]iodo-4-(3H)-quinazolinone [(125)I]5, which is readily hydrolyzed by alkaline phosphatase, an enzyme expressed by many tumor cell lines, to a water-insoluble drug, 2-(2'-hydroxyphenyl)-6-[(125)I]iodo-4-(3H)-quinazolinone [(125)I]1. In the course of our study, we discovered that ammonium 2-(2'-phosphoryloxyphenyl)-6-tributylstannyl-4-(3H)-quinazolinone, an intermediate in the radioiodination of the prodrug, exists as two isomers (3 and 4) whose radioiodination leads, respectively, to [(125)I]6 and [(125)I]5. These prodrugs have different in vitro and in vivo biologic activities. Compound 6 is not hydrolyzed by alkaline phosphatase (ALP), whereas 5 is highly soluble (mg/mL) in aqueous solution and is rapidly dephosphorylated in the presence of ALP to 1, a water-insoluble molecule (ng/mL). Mouse biodistribution studies indicate that [(125)I]6 has high uptake in kidney and liver and [(125)I]5 has very low uptake in all normal organs. Compounds 3 and 6 are converted, respectively, to 4 and 5 after incubation in DMSO. The stability of 5 in human serum is high. The minimum ALP concentration needed to hydrolyze 5 is much greater than the ALP level in the blood of patients with cancer, and the latter should not affect the pharmacokinetics of the compound. Incubation of 5 with viable human and mouse tumor-cell lines--but not with normal human cells and mouse tissues--leads to its hydrolysis and the formation of large crystals of 1. We expect that 5 will also be hydrolyzed in vivo by tumor cells that express phosphatase activity extracellularly and anticipate the specific precipitation of radioiodinated 1 within tumor cell clusters. This should lead to high tumor-to-normal-tissue ratios and enable imaging (SPECT/PET) and radionuclide therapy of solid tumors.  相似文献   

2.
Iodobenzamides labelled with radioactive iodine are undergoing clinical evaluation as imaging and potential therapeutic agents in malignant melanomas. However, the uptake mechanism in melanic tissues remains controversial. Using secondary ion mass spectrometry (SIMS), we studied the microscopic distribution of N-(2 diethylaminoethyl)-4 iodobenzamide (I-BZA) in B16 murine melanoma inoculated to C57BL/6J1 Co mice as well as in normal pigmented skin. SIMS provides specific detection of iodine-127 atoms entering 127I-BZA composition. In B16 melanoma, 127I-BZA distribution was found to be heterogeneous, with focal areas of high concentration corresponding to cells rich in melanin pigments. In skin, SIMS analysis showed 127I-BZA distribution appearing as multiple small selective concentration areas within the epidermis. The number of these foci decreased from the stratum basale towards the stratum corneum. In both tissues, the intracellular location appeared specifically intracytoplasmic, with no apparent nuclear uptake. Distribution of this molecule mirrored that of melanin pigments. There was no enhancement of uptake at the membrane site. These results suggest that, in melanic tumors as well as in normal pigmented tissue, specific uptake of 127I-BZA occurs in pigment cells, with a possible link to melanin pigments.  相似文献   

3.
《MABS-AUSTIN》2013,5(3):689-696
The neonatal Fc receptor (FcRn) plays an important and well-known role in antibody recycling in endothelial and hematopoietic cells and thus it influences the systemic pharmacokinetics (PK) of immunoglobulin G (IgG). However, considerably less is known about FcRn’s role in the metabolism of IgG within individual tissues after intravenous administration. To elucidate the organ distribution and gain insight into the metabolism of humanized IgG1 antibodies with different binding affinities FcRn, comparative biodistribution studies in normal CD-1 mice were conducted. Here, we generated variants of herpes simplex virus glycoprotein D-specific antibody (humanized anti-gD) with increased and decreased FcRn binding affinity by genetic engineering without affecting antigen specificity. These antibodies were expressed in Chinese hamster ovary cell lines, purified and paired radiolabeled with iodine-125 and indium-111. Equal amounts of I-125-labeled and In-111-labeled antibodies were mixed and intravenously administered into mice at 5 mg/kg. This approach allowed us to measure both the real-time IgG uptake (I-125) and cumulative uptake of IgG and catabolites (In-111) in individual tissues up to 1 week post-injection. The PK and distribution of the wild-type IgG and the variant with enhanced binding for FcRn were largely similar to each other, but vastly different for the rapidly cleared low-FcRn-binding variant. Uptake in individual tissues varied across time, FcRn binding affinity, and radiolabeling method. The liver and spleen emerged as the most concentrated sites of IgG catabolism in the absence of FcRn protection. These data provide an increased understanding of FcRn’s role in antibody PK and catabolism at the tissue level.  相似文献   

4.
The neonatal Fc receptor (FcRn) plays an important and well-known role in antibody recycling in endothelial and hematopoietic cells and thus it influences the systemic pharmacokinetics (PK) of immunoglobulin G (IgG). However, considerably less is known about FcRn’s role in the metabolism of IgG within individual tissues after intravenous administration. To elucidate the organ distribution and gain insight into the metabolism of humanized IgG1 antibodies with different binding affinities FcRn, comparative biodistribution studies in normal CD-1 mice were conducted. Here, we generated variants of herpes simplex virus glycoprotein D-specific antibody (humanized anti-gD) with increased and decreased FcRn binding affinity by genetic engineering without affecting antigen specificity. These antibodies were expressed in Chinese hamster ovary cell lines, purified and paired radiolabeled with iodine-125 and indium-111. Equal amounts of I-125-labeled and In-111-labeled antibodies were mixed and intravenously administered into mice at 5 mg/kg. This approach allowed us to measure both the real-time IgG uptake (I-125) and cumulative uptake of IgG and catabolites (In-111) in individual tissues up to 1 week post-injection. The PK and distribution of the wild-type IgG and the variant with enhanced binding for FcRn were largely similar to each other, but vastly different for the rapidly cleared low-FcRn-binding variant. Uptake in individual tissues varied across time, FcRn binding affinity, and radiolabeling method. The liver and spleen emerged as the most concentrated sites of IgG catabolism in the absence of FcRn protection. These data provide an increased understanding of FcRn’s role in antibody PK and catabolism at the tissue level.  相似文献   

5.

Purpose of work

Provide a safer way for treating various cancers with PLGA-PEG-PLGA (PPP)-embedded iodine-125. To improve the safety of iodine treatment for colon cancer, iodine-125 solution was embedded into PLGA–PEG–PLGA (PPP) (synthesized by bulk co-polymerization of dl-polylactide glycolide and PEG). Xenograft-carrying nude mice were then treated with iodine-125-PPP. Proliferating cell nuclear antigen and Terminal Transferase dUTP Nick-End Labeling were used to measure proliferation and apoptosis in the tumors, respectively. Simultaneously, immunohistochemistry SP was used to detect the expression levels of p53. In addition, the microvessel density (MVD) of the tumors was recorded. PPP-embedded iodine-125 induced apoptosis by increasing the expression of p53, and by decreasing the levels of VEGF and MVD in the colon cancer tumors (P < 0.01). Significant inhibition of tumor growth is seen with iodine-125 from 0.4 to 0.8 mCi. PPP-embedded iodine-125 has a similar inhibitory efficiency to using the iodine-125 seeds for the treatment of colon tumors (P > 0.05). The findings therefore provide a potentially safer method for treating various tumors with radioactive iodine.  相似文献   

6.
For the purpose of developing highly sensitive and convenient determination of plasmalogens, the high-performance liquid chromatography (HPLC) method using radioactive iodine ((125)I) was investigated. Radioactive triiodide (1-) ion ((125)I(3)(-)), which is an actual iodine form capable of reacting with vinyl ether bond ([bond]CH(2)[bond]O[bond]CH[double bond]CH[bond]) of plasmalogens, could be safely and efficiently produced by oxidizing a commercial radioactive sodium iodine (Na(125)I) with hydrogen peroxide (H(2)O(2)) under acid condition (pH 5.5-6.0), which is called iodine-125 reagent. I(3)(-) specifically reacted with plasmalogens at the molar ratio of 1:1 in methanol, and 1 or 2 mol of plasmalogens was involved in the binding with iodine per iodine atom, resulting in the formation of stable iodine-binding phospholipids. The HPLC system with Diol column and acetonitrile/water as a mobile phase was available for separating iodine-binding phospholipids from nonbinding free iodine and for separately eluting iodine-binding phospholipids derived from choline and ethanolamine plasmalogens. Using iodine-125 reagent (1.85 MBq/ml), plasmalogens were detectable at high sensitivity of 10,000-15,000 cpm/nmol, which is more than 1000-fold higher sensitivity than the classical determination with nonradioactive iodine. Plasmalogen concentrations in human plasma were measured with the HPLC system and determined as, on average, 129.1+/-31.3 microM (n=8) in a 1.2 content ratio of choline to ethanolamine plasmalogens, a concentration that nearly agrees with the value reported previously.  相似文献   

7.
Two new iodinated fluoro- and hydroxy-pegylated aza-diphenylacetylene derivatives, 1 and 2, targeting beta-amyloid (Abeta) plaques have been successfully prepared. In vitro binding carried out in tissue homogenates prepared from postmortem AD brains with [(125)I]IMPY (6-iodo-2-(4'-dimethylamino)phenyl-imidazo[1,2-a]pyridine) as the radioligand indicated good binding affinities (K(i)=9.2 and 16.8 nM for 1 and 2, respectively). Brain penetrations of the corresponding radioiodinated ligands, evaluated in the normal mice, showed good initial brain penetrations (3.55% and 5.67% ID/g for [(125)I]1 and [(125)I]2 at 2 min post-injection). The washout from normal mice brain was relatively fast (0.33% and 0.91% ID/g at 2h post-injection). The specific binding of these radioiodinated ligands to beta-amyloid plaques was clearly demonstrated using film autoradiography of AD brain sections. Taken together, these preliminary results strongly suggest that these novel iodinated aza-diphenylacetylenes may be potentially useful for imaging Abeta plaques in the living human brain.  相似文献   

8.
Two new phenylacetylene derivatives, 5-((4-(2-(2-(2-fluoroethoxy)ethoxy)ethoxy)phenyl)ethynyl)indoline 8 and 5-((4-(2-(2-(2-fluoroethoxy)ethoxy)ethoxy)phenyl)ethynyl)-1H-indole 14, targeting β-amyloid (Aβ) plaques have been prepared. In vitro binding carried out in tissue homogenates prepared from postmortem AD brains with [125I]IMPY (6-iodo-2-(4′-dimethylamino-)phenyl-imidazo[1,2-a]pyridine) as the radioligand indicated good binding affinities (Ki = 4.0 and 1.5 nM for 8 and 14, respectively). Brain penetration of the corresponding radiofluorinated ligands, evaluated in the normal mice, showed good initial brain penetration (4.50 and 2.43% ID/g (injected dose/gram) for [18F]8 and [18F]14 at 2 min after injection) with moderate to low washout rates from the brain (1.71% ID/g at 2 h and 2.10% ID/g at 3 h, respectively). Autoradiography and homogenate binding studies demonstrated the high specific binding of [18F]14 to the Aβ plaques; however, [18F]8 showed low specific binding. These preliminary results identified that indolylphenylacetylene, 14, may be a good lead for further structural modification to develop a useful Aβ plaque imaging agent.  相似文献   

9.
Scintillation fluid shortens exposure times in autoradiography   总被引:1,自引:0,他引:1  
Premixed, commercially available scintillation fluids were used to reduce exposure time of tritium (3H) and iodine-125 (125I)-labeled whole cells, and of 3H-labeled Giemsa-banded chromosome preparations. Emulsion-coated slides were dipped into scintillator for no longer than 2 min and exposed in the dark at 4 degrees C. Maximal values for percentage of human diploid cell (WI-38) nuclei labeled with 3H-thymidine of moderate specific activity were obtained in 12 hr. Without scintillator the exposure time was 4 days. Exposure time for cells labeled with 125I-serum was reduced from over 90 days to 14 days. The shortened exposure time for banded chromosomes permitted successful prestaining with Giemsa, a sequence that is not possible without scintillator.  相似文献   

10.
The mechanisms by which DNA-incorporated radionuclides impart lethal damage to mammalian cells were investigated by examining the capacity of dimethyl sulfoxide (DMSO) to protect against lethal damage to Chinese hamster V79 cells caused by unbound tritium ((3)H(2)O), DNA-incorporated (125)I- and (131)I-iododeoxyuridine ((125)IdU, (131)IdU), and cytoplasmically localized (210)Po citrate. The radionuclides (3)H and (131)I emit low- and medium-energy beta particles, respectively, (125)I is a prolific Auger electron emitter, and (210)Po emits 5.3 MeV alpha particles. Cells were radiolabeled and maintained at 10.5 degrees C for 72 h in the presence of different concentrations of DMSO (5-12.5% v/v), and the surviving fraction compared to that of unlabeled controls was determined. DMSO afforded no protection against the lethal effects of the high-LET alpha particles emitted by (210)Po. Protection against lethal damage caused by unbound (3)H, (131)IdU and (125)IdU depended on the concentration of DMSO in the culture medium. Ten percent DMSO provided maximum protection in all cases. The dose modification factors obtained at 10% DMSO for (3)H(2)O, (131)IdU, (125)IdU and (210)Po citrate were 2.9 +/- 0.01, 2.3 +/- 0.5, 2.6 +/- 0.2 and 0.95 +/- 0.07, respectively. These results indicate that the toxicity of Auger electron and beta-particle emitters incorporated into the DNA of mammalian cells is largely radical-mediated and is therefore indirect in nature. This is also the case for the low-energy beta particles emitted by (3)H(2)O. In contrast, alpha particles impart lethal damage largely by direct effects. Finally, calculations of cellular absorbed doses indicate that beta-particle emitters are substantially more toxic when incorporated into the DNA of mammalian cells than when they are localized extracellularly.  相似文献   

11.
Radioactive decay of some radionuclides produces a shower of Auger electrons, potent ionizing radiation within a very short range in living tissue (typically ca. 100 nm). Therefore, they must be brought to DNA-containing cell compartments and preferentially directly to DNA to be fully biologically effective. They may be used for a triple-targeting approach (first targeting, polymer-based system targeting into tumor tissue due to EPR effect; second targeting, pH-controlled release of intercalator-bound Auger electron emitter in slightly acidic tumor tissue or endosome; third targeting, into DNA in cell nucleus by the intercalator) minimizing radiation burden of healthy tissues. We describe a first system of this type, an ellipticine derivative-bound iodine-125 attached to hydrazide moieties containing poly[N-(2-hydroxypropyl)methacrylamide]. The system is stable at pH 7.4 (0% intercalator released after 24 h incubation), while iodine-containing biologically active intercalator is released upon decrease of pH (25% intercalator released after 24 h incubation at pH 5.0-model of late endosomes). Both 2-N-(2-oxobutyl)-9-iodoellipticinium bromide and the noniodinated 2-N-(2-oxobutyl)ellipticinium bromide are potent intercalators, as proven by direct titration with DNA and ethidium displacement assay, and readily penetrate into cell nuclei, as proven by confocal microscopy. They retain chemotherapeutical antiproliferative properties of ellipticine against Raji, EL-4, and 4T1cells with IC(50) in the range 0.27-8.8 μmol/L. Polymer conjugate of 2-N-(2-oxobutyl)-9-iodoellipticinium bromide is internalized into endosomes, releases active drug, possesses cytotoxic activity, and the drug accumulates in cell nuclei.  相似文献   

12.
1-(2-Fluoro-4-iodo-2,4-dideoxy-beta-L-xylopyranosyl)-2-nitroimidazole (FIAZP) has been synthesized and labeled with radioiodine (125I). Radioiodinated FIAZP is one of a series of sugar-coupled 2-nitroimidazoles developed in our laboratory as probes for noninvasive scintigraphic assessment of tumor hypoxia. An in vivo biodistribution study with [125I]FIAZP in the murine BALB/c EMT-6 tumor model showed a tumor-to-blood ratio of 6, 24 h after injection, with 0.5% of the injected dose present per gram of tumor. These values are several times higher than the respective ratios and distribution values in any of the organs, with the exception of liver. Radioactivity from tissues other than tumor and liver declined with time, following the decline of blood radioactivity. Rapid whole-body elimination of radioactivity was observed (> 96% in 24 h). The thyroid showed little uptake of radioactivity, indicating minimal in vivo deiodination. 1-(2-Fluoro-4-iodo-2,4-dideoxy-beta-L-xylopranosyl)-2-nitroimidazo le appears to undergo hypoxia-dependent binding in tumor tissue at levels comparable to those of other sugar-coupled 2-nitroimidazoles. The potential for imaging with this compound is discussed.  相似文献   

13.
In this study, six novel benzothiazole derivatives based on the bithiophene structure were developed as potential β-amyloid probes. In vitro binding studies using Aβ aggregates showed that all of them demonstrated high binding affinities with Ki values ranged from 0.11 to 4.64 nM. In vitro fluorescent staining results showed that these compounds can intensely stained Aβ plaques within brain sections of APP/PS1 transgenic mice, animal model for AD. Two radioiodinated compounds [125I]-2-(5′-iodo-2,2′-bithiophen-5-yl)-6-methoxybenzo[d]thiazole [125I]10 and [125I]-2-(2,2′-bithiophen-5-yl)-6-iodobenzo[d]thiazole [125I]13 were successfully prepared through an iododestannylation reaction. Furthermore, in vitro autoradiography of the AD model mice brain sections showed that both [125I]10 and [125I]13 labeled the Aβ plaques specifically with low background. In vivo biodistribution studies in normal mice indicated that [125I]13 exhibited high brain uptake (3.42% ID/g at 2 min) and rapid clearance from the brain (0.53% ID/g at 60 min), while [125I]10 showed lower brain uptake (0.87% ID/g at 2 min). In conclusion, these preliminary results of this study suggest that the novel radioiodinated benzothiazole derivative [125I]13 may be a candidate as an in vivo imaging agent for detecting β-amyloid plaques in the brain of AD patients.  相似文献   

14.
O(6)-Benzylguanine derivatives with suitable radionuclides attached to the benzyl ring are potentially useful in the noninvasive imaging of the DNA repair protein, alkylguanine-DNA alkyltransferase (AGT). Previously, O(6)-3-[(131)I]iodobenzylguanine ([(131)I]IBG) was prepared using a two-step approach; we now report its synthesis in a single step by the radioiododestannylation of O(6)-3-(trimethylstannyl)benzylguanine in 85-95% radiochemical yield. The in vitro specific uptake of [(131)I]IBG in DAOY human medulloblastoma cells, in TE-671 human rhabdomyosarcoma cells and a CHO cell line transfected to express AGT was linear (r(2) = 0.9-1.0) as a function of cell density. After intravenous injection of [(131)I]IBG in athymic mice bearing TE-671 xenografts, tumor uptake was 1.38 +/- 0.34% ID/g at 0.5 h and declined at 2 and 4 h. Preadministration of O(6)-(3-iodobenzyl)guanine (IBG) at 0.5 h increased uptake not only in tumor but also in several normal tissues. Notable exceptions were thyroid (p < 0.05), lung (p <0.05) and stomach. After intratumoral injection of [(131)I]IBG in the same xenograft model, the uptake in tumors that were depleted of AGT by BG treatment (165.8 +/- 27.5% ID/g) was about 60% of that in control mice (272.4 +/- 48.2% ID/g; p < 0.05).  相似文献   

15.
Isopropyl- and fluoroisopropyl-amino derivatives of the β(1)-adrenergic receptor antagonist 2-[4-[3-(tert-butyl-amino)-2-hydroxypropoxy]phenyl]-3-methyl-6-methoxy-4(3H)-quinazolinone ((±)HX-CH 44) were synthesized, including a concise and efficient preparation of the core, 2-(4-hydroxyphenyl)-6-methoxy-3-methylquinazolin-4(3H)-one. In vitro binding assays showed that the fluorinated analog was selective towards β(1)-adrenergic receptors over β(2)-adrenergic and 5-HT(1A) receptors. An X-ray crystallographic characterization of the fluorinated analog is also reported.  相似文献   

16.
The efficacy of agents that alkylate the O-6 position of guanine is inhibited by O(6)-alkylguanine-DNA alkyltransferase (AGT) which removes these lesions from the tumor DNA. To increase differential toxicity, inhibitors must selectively deplete AGT in tumors, while sparing normal tissues where this protein serves a protective function. A newly synthesized prodrug of the AGT inhibitor O(6)-benzylguanine (O(6)-BG) with an α,α-dimethyl-4-nitrobenzyloxycarbonyl moiety masking the essential 2-amino group has demonstrated the feasibility of targeting hypoxic regions that are unique to solid tumors, for drug delivery. However, these modifications resulted in greatly decreased solubility. Recently, new potent global AGT inhibitors with improved formulatability such as O(6)-[(3-aminomethyl)benzylguanine (1) have been developed. However, acetylamino (N-(3-(((2-amino-9H-purin-6-yl)oxy)methyl)benzyl)acetamide) (2) exhibits a pronounced decrease in activity. Thus, 1 would be inactivated by N-acetylation and probably N-glucuronidation. To combat potential conjugational inactivation while retaining favorable solubility, we synthesized 6-((3-((dimethylamino)methyl)benzyl)oxy)-9H-purin-2-amine (3) in which the 3-aminomethyl moiety is protected by methylation; and to impart tumor selectivity we synthesized 2-(4-nitrophenyl)propan-2-yl(6-((3-((dimethylamino)methyl)benzyl)oxy)-9H-purin-2-yl)carbamate (7), a hypoxia targeted prodrug of 3 utilizing an α,α-dimethyl-4-nitrobenzyloxycarbonyl moiety. Consistent with this design, 7 demonstrates both hypoxia selective conversion by EMT6 cells of 7 to 3 and hypoxic sensitization of AGT containing DU145 cells to the cytotoxic actions of laromustine, while exhibiting improved solubility.  相似文献   

17.
Derivatives of the somatostatin analogues octreotide and octreotate labeled with radioiosotopes are used in the diagnosis and therapy of somatostatin receptor (SSTR)-positive tumors. A method has been devised to synthesize {N-(4-guanidinomethyl-3-iodobenzoyl)-Phe1-octreotate (GMIBO). Receptor binding assay and scatchard analysis yielded a Kd of 4.83 +/- 0.19 nM for this peptide. Derivatives of this peptide labeled with radioiodine ([*I]GMIBO) and the alpha-particle-emitting radiohalogen 211At N-(3-[211At]astato-4-guanidinomethylbenzoyl)-Phe1-octreotate; [211At]AGMBO} were prepared in a single step from a tin precursor in radiochemical yields of 30-35% and 15-20%, respectively. Paired-label internalization assays performed with the SSTR-positive D341 Med human medulloblastoma cell line demonstrated that [125I]GMIBO and [211At]AGMBO were specifically internalized 20-40% more than Nalpha-(1-deoxy-D-fructosyl)-[131I]I-Tyr3-octreotate ([131I]I-Glu-TOCA), the radioiodinated octreotide derivative previously shown to exhibit maximum internalization in this cell line. Uptake of [131I]GMIBO in D341 Med subcutaneous xenografts in a murine model (8.34 +/- 1.82 versus 8.10 +/- 2.23% ID/g at 1h) and SSTR-expressing normal tissues was comparable to that of [125I]I-Glu-TOCA and was shown to be specific. However, the uptake of [131I]GMIBO also was substantially higher in liver (16.9 +/- 3.15 versus 1.39 +/- 0.45% ID/g at 1 h) and in kidneys (44.33 +/- 6.47 versus 3.44 +/- 0.68% ID/g at 1h) compared to that of [125I]I-Glu-TOCA. These data suggest that these novel peptide conjugates retain their specificity for SSTR both in vitro and in vivo; however, because of their higher accumulation in normal tissues they would be best applied in settings amenable to loco-regional administration such as medulloblastoma neoplastic meningitis.  相似文献   

18.
Although monoclonal antibodies have been radiolabeled with many different radionuclides, the application of positron emission tomography (PET) to the imaging of radiolabeled antibodies has been limited to the investigation of a small number of long-lived radionuclides. In this study, we labeled F(ab′)2 fragments of a mouse monoclonal antibody (BB5-G1) specific for a human parathyroid surface antigen with the positron emitting radionuclides, gallium-68 and fluorine-18. The biodistribution of the fragments was evaluated in a nude mice model and the results were compared to those obtained with fragments labeled with iodine-125 and indium-111 using conventional labeling techniques. All labeled fragments bound to human parathyroid tissue implanted in nude mice, with parathyroid-to-muscle ratios reaching as high as 10:1, 4 h after administration. A major difference was observed in the uptake and clearance of the various labeled fragments through the kidney. The halogen activity cleared, but the metal radioactivity was retained in the kidney. The results indicate that the fluorine-18 or gallium-68 labeled fragment may be useful for parathyroid imaging with positron emission tomography.  相似文献   

19.
To understand the biophysical mechanism(s) underlying the induction of cell death by the decay of the Auger electron emitter iodine-125 in DNA, Chinese hamster V79 lung fibroblasts were labeled with 5-[(125)I]iodo-2'-deoxyuridine ((125)IdU) for two doubling times and frozen and stored at -135 degrees C in the presence of 0.26-3.0 M dimethyl sulfoxide (DMSO), which acts simultaneously as a cryoprotector and a hydroxyl radical scavenger. After the accumulation of (125)I decays, the cells were defrosted and their survival was determined. Within the range of the number of decays examined (up to 470 disintegrations per cell), the survival curves are exponential. The dependence of the D(37) on DMSO concentration is triphasic and seems to reach a plateau at approximately 1.3 M. By extrapolating to infinite DMSO concentration, we estimate the D(37) for maximal hydroxyl radical scavenging to be 411 +/- 36 disintegrations per cell. To determine the D(37) in the absence of DMSO, we extrapolate the D(37) curve to zero concentration, and a D(37) of 54 +/- 5 disintegrations per cell is obtained. The maximal dose modification factor, calculated as the ratio of the D(37) at infinite DMSO concentration (i.e. direct effects only) to the D(37) at zero DMSO concentration (i.e. direct and indirect effects), is 7.6 +/- 1.0. By inference, approximately 90% of the radiotoxic effects of DNA-incorporated (125)I are due to indirect mechanisms.  相似文献   

20.
Radioiodine-labeled 5-iodo-2′-deoxyuridine (IUdR) has been evaluated as a tracer for measuring cell loss from C3H mouse mammary tumors. This has been accomplished by considering the problems of label specificity, chemical and radiation toxicity, and reutilization; and by comparing the estimate for cell loss, as obtained here, to another independent estimate previously reported for tumors from the same slow-growing line. 125I-IUdR is the current tracer of choice for measuring cell loss from undisturbed solid tumors, and this method is simpler and more direct than the combined techniques of autoradiography and volumetric-growth-curve analyses. However, the following limitations apply: (1) the tumor DNA must be extracted prior to counting the radioactivity in the DNA, (2) one must be especially concerned with the chemical and radiation toxicity and they should be evaluated in each new situation, and (3) one must realize the potential for low levels of IUdR reutilization even in the undisturbed tumor. In perturbed situations (i.e. chemical or radiation induced killing) this problem may become severe.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号