首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The 1.6 and 1.8 kbp dsRNAs have been found in the rice blast fungus, Magnaporthe grisea strain MG01. These dsRNA molecules are located in cytoplasm of the fungal cells and maintained stably during vegetative growth. Three crosses between dsRNA free and dsRNA containing strains including a parental cross, sib-mating and back cross were made to follow the inheritance of dsRNAs during sexual reproduction. Approximately 10% of ascospore progenies (11 out of 105) contained dsRNAs from all three crosses. These data indicate that dsRNAs of M. grisea are inherited at a low frequency and not in a Mendelian fashion.  相似文献   

2.
Movement via somatic fusion and inheritance of a small mitochondrial double-stranded (ds) RNA element was examined in Cryphonectria parasitica. The 2.7-kb dsRNA from the C. parasitica strain NB631 encodes a putative RNA-dependent RNA polylmerase when the mitochondrial code (UGA = Trp) is invoked. All progeny from asexual spores (conidia) of strain NB631 examined for dsRNA contained the 2.7-kb element. Unlike other C. parasitica dsRNAs, which are cytoplasmic, the dsRNA in strain NB631 was transmitted through the sexual cycle (ascospores) if the strain containing the element acted as the female in crosses. Movement of the 2.7-kb dsRNA was also observed through hyphal anastomosis. Transfer by anastomosis was accompanied by mitochondrial movement and recombination of the mitochondrial genome as determined by RFLP analysis. In control pairings between isolates lacking dsRNA, mitochondrial movement and recombination were also observed. Transfer by anastomosis allowed the generation of infected and uninfected isogenic lines, and permitted us to evaluate the effects of the dsRNA element on virulence of the host. Bark virulence assays on American chestnut suggest that NB631 dsRNA decreases the virulence of C. parasitica, but not to the level associated with members of the Hypoviridae. Received: 5 May 1997 / Accepted: 10 July 1997  相似文献   

3.
 To examine the potential of a method of double-stranded (ds) RNA infection to Helicobasidium mompa, the transmissibility of dsRNA between strains of this fungus was investigated. Strain V70 was used as a dsRNA donor. The dsRNA recipients were six strains that were mycelially incompatible with V70, plus two monokaryotic strains. Random amplified polymorphic DNA analysis suggested that the mycelially incompatible strains were genetically different mutually; however, the analysis also suggested that V70 was genetically homogeneous with the two monokaryotic strains. When V70 was paired with either of the mycelially incompatible strains, the dsRNAs did not transmit to the recipients at all. When V70 was paired with the two monokaryotic strains, the dsRNAs were transmitted to the monokaryotic strains. The two monokaryotic strains, which had acquired dsRNAs from V70 in the previous experiment, were used as new dsRNA donors in a next experiment so that we could investigate dsRNA transmission from these monokaryotic strains to the six strains used in the previous experiment. One of the monokaryotic strains permitted dsRNA transmission to two of the six recipients. We conclude that we can infect genetically different strains of H. mompa with dsRNA using the monokaryotic strains. Received: December 12, 2002 / Accepted: January 27, 2003 Acknowledgments This research was supported by the Program for Promotion of Basic Research Activities for Innovative Biosciences. The authors are grateful to Dr. Tadanori Aimi of Tottori University for helpful discussion. Correspondence to:K. Suzaki  相似文献   

4.
Double-stranded RNA (dsRNA) viruses in some fungi are associated with hypovirulence and have been used or proposed as biological control agents. We isolated 7.5-kb dsRNAs from 13 of 286 field strains of Fusarium graminearum isolated from maize in Korea. One of these strains, DK21, was examined in more detail. This strain had pronounced morphological changes, including reduction in mycelial growth, increased pigmentation, reduced virulence towards wheat, and decreased (60-fold) production of trichothecene mycotoxins. The presence or absence of the 7.5-kb dsRNA was correlated with the changes in pathogenicity and morphology. The dsRNA could be transferred to virus-free strains by hyphal fusion, and the recipient strain acquired the virus-associated phenotype of the donor strain. The dsRNA was transmitted to approximately 50% of the conidia, and only colonies resulting from conidia carrying the mycovirus had the virus-associated phenotype. Partial nucleotide sequences of the purified dsRNA identify an RNA-dependent RNA polymerase sequence and an ATP-dependent helicase that are closely related to those of Cryphonectria hypovirus and Barley yellow mosaic virus. Collectively, these results suggest that this dsRNA isolated from F. graminearum encodes traits for hypovirulence.  相似文献   

5.
Movement via somatic fusion and inheritance of a small mitochondrial double-stranded (ds) RNA element was examined in Cryphonectria parasitica. The 2.7-kb dsRNA from the C. parasitica strain NB631 encodes a putative RNA-dependent RNA polylmerase when the mitochondrial code (UGA?=?Trp) is invoked. All progeny from asexual spores (conidia) of strain NB631 examined for dsRNA contained the 2.7-kb element. Unlike other C. parasitica dsRNAs, which are cytoplasmic, the dsRNA in strain NB631 was transmitted through the sexual cycle (ascospores) if the strain containing the element acted as the female in crosses. Movement of the 2.7-kb dsRNA was also observed through hyphal anastomosis. Transfer by anastomosis was accompanied by mitochondrial movement and recombination of the mitochondrial genome as determined by RFLP analysis. In control pairings between isolates lacking dsRNA, mitochondrial movement and recombination were also observed. Transfer by anastomosis allowed the generation of infected and uninfected isogenic lines, and permitted us to evaluate the effects of the dsRNA element on virulence of the host. Bark virulence assays on American chestnut suggest that NB631 dsRNA decreases the virulence of C. parasitica, but not to the level associated with members of the Hypoviridae.  相似文献   

6.
Killer strains contain two double stranded RNAs, L and M. The M dsRNA appears to be necessary for production of a toxin and for resistance to that toxin. Mutant strains have been found that are defective in their ability to kill and in their resistance to toxin. These sensitive, non-killer strains have altered dsRNA composition. One class has no M dsRNA. Another class of sensitive, non-killers called suppressives has no M dsRNA but instead has smaller dsRNAs called S. In diploids resulting from a cross of a wild-type killer by a suppressive the transmission of the M dsRNA is suppressed by the S dsRNA. When a suppressive is crossed by a strain with no M dsRNA, the diploids and all four meiotic spores have the S dsRNA characteristic of the parental suppressive strain. Suppressive strains do not suppress each other. Intercrosses between two different suppressives yields diploids with both parental S dsRNAs. These two S dsRNAs are transmitted to all 4 meiotic progeny. Another class of mutants has been found which is defective for one of the traits but retains the other. One type, temperature-sensitive killers, has a normal dsRNA composition but is unable to kill at 30°. The other type, immunity-minus, has a complex dsRNA pattern. The immunity-minus strain is extremely unstable during mitotic growth and segregates several different types of non-killers. Analysis of the dsRNAs from wild type and the mutants by electron microscopy shows that the L, M, and S dsRNAs are linear. All strains regardless of killer phenotype appear to have the same size L dsRNA.  相似文献   

7.
Double-stranded RNA mycovirus from Fusarium graminearum   总被引:2,自引:0,他引:2  
Double-stranded RNA (dsRNA) viruses in some fungi are associated with hypovirulence and have been used or proposed as biological control agents. We isolated 7.5-kb dsRNAs from 13 of 286 field strains of Fusarium graminearum isolated from maize in Korea. One of these strains, DK21, was examined in more detail. This strain had pronounced morphological changes, including reduction in mycelial growth, increased pigmentation, reduced virulence towards wheat, and decreased (60-fold) production of trichothecene mycotoxins. The presence or absence of the 7.5-kb dsRNA was correlated with the changes in pathogenicity and morphology. The dsRNA could be transferred to virus-free strains by hyphal fusion, and the recipient strain acquired the virus-associated phenotype of the donor strain. The dsRNA was transmitted to approximately 50% of the conidia, and only colonies resulting from conidia carrying the mycovirus had the virus-associated phenotype. Partial nucleotide sequences of the purified dsRNA identify an RNA-dependent RNA polymerase sequence and an ATP-dependent helicase that are closely related to those of Cryphonectria hypovirus and Barley yellow mosaic virus. Collectively, these results suggest that this dsRNA isolated from F. graminearum encodes traits for hypovirulence.  相似文献   

8.
9.
Double-stranded RNAs (dsRNAs) are widespread in plant pathogenic fungi, but their functions in fungal hosts remain mostly unclear, with a few exceptions. We analyzed dsRNAs from Nectria radicicola, the causal fungus of ginseng root rot. Four distinct sizes of dsRNAs, 6.0, 5.0, 2.5, and 1.5 kbp, were detected in 24 out of the 81 strains tested. Curing tests of individual dsRNAs suggested that the presence of 6.0-kbp dsRNA was associated with high levels of virulence, sporulation, laccase activity, and pigmentation in this fungus. The 6.0-kbp dsRNA-cured strains completely lost virulence-related phenotypes. This 6.0-kbp dsRNA was reintroduced by hyphal anastomosis to a dsRNA-cured strain marked with hygromycin resistance, which resulted in the restoration of virulence-related phenotypes. These results strongly suggest that 6.0-kbp dsRNA up regulates fungal virulence in N. radicicola. Sequencing of several cDNA clones derived from 6.0-kbp dsRNA revealed the presence of a RNA-dependent RNA polymerase (RDRP) gene. Phylogenetic analysis showed that this gene is closely related to those of plant cryptic viruses. Biochemical analyses suggested that the 6.0-kbp dsRNA may regulate fungal virulence through signal-transduction pathways involving cyclic AMP-dependent protein kinase and protein kinase C.  相似文献   

10.
Pineapple (Ananas comosus) is one the important fruit crops planted in Malaysia, and this study was conducted to determine Fusarium spp. associated with diseases of the fruit crop as Fusarium is prevalent in tropical countries. Our objective was to identify and characterize Fusarium spp. associated with pineapple fruit rot and leaf spot mainly found on the fruits and leaves in Peninsular Malaysia. Fusarium isolates (n = 108) associated with pineapple fruit rot and leaf spot were characterized by morphological, molecular and phylogenetic analyses, a mating study and pathogenicity testing. TEF‐1α sequence analysis identified Fusarium proliferatum, Fusarium verticillioides, Fusarium sacchari and Fusarium sp. Mating was successful only between tester strains of F. proliferatum and F. verticillioides. Sexual crosses with standard tester strains showed that 82 isolates of F. proliferatum produced fertile crosses with mating population D (Gibberella intermedia) and three isolates of F. verticillioides were fertile with the tester strain of mating population A (Gibberella moniliformis). All isolates were pathogenic, causing pineapple fruit rot and leaf spot, thus fulfilling Koch's postulates.  相似文献   

11.
Double-Stranded RNA in Rice   总被引:2,自引:0,他引:2  
Oryza sativa ) and wild rice (O. rufipogon) tissues. It is detected at every developmental stage, and is transmitted very efficiently to progeny via seeds (more than 98%). The dsRNA is maintained at a constant level (approximately 100 copies/cell) in almost all tissues. However, the number of copies increases about 10-fold when host cells are grown in suspension culture. Complete nucleotide sequences of cultivated rice (temperate japonica rice, cv. Nipponbare, J-dsRNA) and wild rice (W-1714, W-dsRNA) dsRNAs have been determined. Both wild and cultivated rice dsRNAs have a single long open reading frame (ORF) containing the conserved motifs of RNA-dependent RNA polymerase and RNA helicase. The coding strands of both contain a site-specific discontinuity (nick) at nt 1,211 (J-dsRNA) or at nt 1,197 (W-dsRNA) from the 5′ end of their coding strand. Rice dsRNA has several unique properties and can be regarded as a novel RNA replicon. This paper discusses the origin and evolution of the rice dsRNA. Received 23 October 1998/ Accepted in revised form 15 December 1998  相似文献   

12.
A natural population of recently isolated Podospora anserina strains was screened for homologues of the linear longevity-inducing plasmid pAL2-1. Of the 78 wild-type isolates, 14 hybridised with a pAL2-1 specific probe, half of which contained a single plasmid and the other half multiple plasmid copies (plasmid family). All strains except one plasmid-containing strain, senesced normally. However, no inserted plasmid sequences were detected in the mitochondrial DNA, as was the case for the longevity-inducing pAL2-1 plasmid. Occasional loss of plasmids and of repeated plasmid sequences occurred during sexual transfer. Plasmid transmission was equally efficient for mono- and dikaryotic spores and was independent of the genetic background of the strains. Furthermore, horizontal transfer experiments showed that the linear plasmid could easily infect plasmid-free strains. Horizontal transfer was even observed between strains showing a clear vegetative incompatibility response (barrage). The linear plasmids are inherited maternally; however, paternal transmission was observed in crosses between confronted vegetative-incompatible strains. Paternal transmission of the plasmid was never observed using isolated spermatia for fertilisation, showing that mitochondrial plasmids can only gain access to maternal sexual reproductive structures following horizontal transfer. These findings have implications for both the function of vegetative incompatibility in fungi and for the mechanism of maintenance of linear plasmids. Received: 13 November 1997 / Accepted: 17 February 1998  相似文献   

13.
Aspergillus flavus and A. parasiticus are the two most important aflatoxin‐producing fungi responsible for the contamination of agricultural commodities worldwide. Both species are heterothallic and undergo sexual reproduction in laboratory crosses. Here we examine the possibility of interspecific matings between A. flavus and A. parasiticus. These species can be distinguished morphologically and genetically, as well as by their mycotoxin profiles. Aspergillus flavus produces both B aflatoxins and cyclopiazonic acid (CPA), B aflatoxins or CPA alone, or neither mycotoxin; Aspergillus parasiticus produces B and G aflatoxins or the aflatoxin precursor O‐methylsterigmatocystin, but not CPA. Only four of forty‐five attempted interspecific crosses between opposite mating types of A. flavus and A. parasiticus were fertile and produced viable ascospores. Single ascospore strains from each cross were shown to be recombinant hybrids using multilocus genotyping and array comparative genome hybridization. Conidia of parents and their hybrid progeny were haploid and predominantly monokaryons and dikaryons based on flow cytometry. Multilocus phylogenetic inference showed that experimental hybrid progeny were grouped with naturally occurring A. flavus L strain and A. parasiticus. Higher total aflatoxin concentrations in some F1 progeny strains compared to midpoint parent aflatoxin levels indicate synergism in aflatoxin production; moreover, three progeny strains synthesized G aflatoxins that were not produced by the parents, and there was evidence of allopolyploidization in one strain. These results suggest that hybridization is an important diversifying force resulting in the genesis of novel toxin profiles in these agriculturally important fungi.  相似文献   

14.
One hundred one isolates of Macrophomina phaseolina from various hosts and eco-geographical locations were employed for elucidating relationships among genetic diversity and virulence. Highly pathogenic, moderately pathogenic, and hypovirulent cluster bean specific isolates were identified. In order to correlate respective phenotypes of plant pathogenic fungus multiple and complex patterns of dsRNA elements were analyzed. Double-stranded ribonucleic acids (dsRNA) are ubiquitous in all major groups and most of them have vast potential as biological control agents for fungi. Rate of virulence and its further association could ascertain by host plant and their fungal genotypes. Variability of the fungal genotypes decides the link between the complexity of dsRNA with different variants and the change in virulence pattern. Double-stranded RNA was identified in approximately 21.7% of M. phaseolina isolates from charcoal rot infected cluster bean varieties. After recurrent laboratory transfer on culture media, the preponderance of the isolates harboring dsRNAs developed degenerate culture phenotypes and showed reduced virulence (hypovirulence) to cluster bean. Macrophomina has successfully showed diversified and reproducible banding profile in dsRNA containing/free isolates. This is the first report of hypovirulence and detection of dsRNA in Macrophomina phaseolina isolates of cluster bean origin.  相似文献   

15.
Long double-stranded RNAs (dsRNAs) may undergo covalent modification (hyper-editing) by adenosine deaminases that act on RNA (ADARs), whereby up to 50–60% of adenosine residues are converted to inosine. Previously, we have described a ribonuclease activity in various cell extracts that specifically targets dsRNAs hyper-edited by ADARs. Such a ribonuclease may play an important role in viral defense, or may alternatively be involved in down-regulation of other RNA duplexes. Cleavage of hyper-edited dsRNA occurs within sequences containing multiple IU pairs but not in duplexes that contain either isosteric GU pairs or Watson–Crick base pairs. Here, we describe experiments aimed at further characterizing cleavage of hyper-edited dsRNA. Using various inosine-containing dsRNAs we show that cleavage occurs preferentially at a site containing both IU and UI pairs, and that inclusion of even a single GU pair inhibits cleavage. We also show that cleavage occurs on both strands within a single dsRNA molecule and requires a 2′-OH group. Strikingly, we show that ADAR1, ADAR2 or dADAR all preferentially generate the preferred cleavage site when hyper-editing a long dsRNA.  相似文献   

16.
ABSTRACT: BACKGROUND: Occurrence of extrachromosomal dsRNA elements has been described in the red-yeast Xanthophyllomyces dendrorhous, with numbers and sizes that are highly variable among strains with different geographical origin. The studies concerning to the encapsidation of viral-like particles and dsRNA-curing have suggested that some dsRNAs are helper viruses, while others are satellite viruses. However, the nucleotide sequences and functions of these dsRNA are still unknown. In this work, the nucleotide sequences of four dsRNAs of the strain UCD 67-385 of X. dendrorhous were determined, and their identities and genome structures are proposed. Based on this molecular data, the dsRNAs of different strains of X. dendrorhous were analyzed. RESULTS: The complete sequences of L1, L2, S1 and S2 dsRNAs of X. dendrorhous UCD 67-385 were determined, finding two sequences for L1 dsRNA (L1A and L1B). Several ORFs were uncovered in both S1 and S2 dsRNAs, but no homologies were found for any of them when compared to the database. Instead, two ORFs were identified in each L1A, L1B and L2 dsRNAs, whose deduced amino acid sequences were homologous with a major capsid protein (5'-ORF) and a RNA-dependent RNA polymerase (3'-ORF) belonging to the Totivirus family. The genome structures of these dsRNAs are characteristic of Totiviruses, with two overlapped ORFs (the 3'-ORF in the -1 frame with respect to the 5'-ORF), with a slippery site and a pseudoknot in the overlapped regions. These structures are essential for the synthesis of the viral polymerase as a fusion protein with the viral capsid protein through -1 ribosomal frameshifting. In the RNase protection analysis, all the dsRNAs in the four analyzed X. dendrorhous strains were protected from enzymatic digestion. The RT-PCR analysis revealed that, similar to strain UCD 67-385, the L1A and L1B dsRNAs coexist in the strains VKM Y-2059, UCD 67-202 and VKM Y-2786. Furthermore, determinations of the relative amounts of L1 dsRNAs using two-step RT-qPCR revealed a 40-fold increment of the ratio L1A/L1B in the S2 dsRNA-cured strain compared to its parental strain. CONCLUSIONS: Three totiviruses, named as XdV-L1A, XdV-L1B and XdV-L2, were identified in the strain UCD 67-385 of X. dendrorhous. The viruses XdV-L1A and XdV-L1B were also found in other three X. dendrorhous strains. Our results suggest that the smaller dsRNAs (named XdRm-S1 and XdRm-S2) of strain UCD 67-385 are satellite viruses, and particularly that XdRm-S2 is a satellite of XdV-L1A.  相似文献   

17.
Total dsRNA extractions in five killer K2 strains of Saccharomyces cerevisiae isolated from spontaneous fermentations revealed the presence of a novel dsRNA fragment (which we named NS dsRNA) of approximately 1.30 kb, together with L and M2 dsRNAs. NS dsRNA appeared to be encapsidated in the same kind of viral particles as L and M2 dsRNA. Northern blot hybridization experiments indicated that NS dsRNA was derived from M2 dsRNA, likely by deletion of the internal A+U-rich region. However, unlike S dsRNAs (suppressive forms derived from M1 dsRNA in K1 killers), NS dsRNA did not induce exclusion of the parental M2 dsRNA when the host strain was maintained for up to 180 generations of growth.  相似文献   

18.
We have isolated and characterised the nuclear gene that codes for the 30.4-kDa subunit of the peripheral arm of complex I from Neurospora crassa. The single-copy gene was localised on chromosome VI of the fungal genome by restriction fragment length polymorphism mapping. An extra copy of the gene was introduced into a strain of N. crassa by transformation. This strain was crossed with another strain in order to inactivate, by repeat-induced point mutations, both copies of the duplication carried by the parental transformant. Ascospore progeny from the cross were analysed and a mutant strain lacking the 30.4-kDa protein, nuo30.4, was isolated and further characterised. The mutant appears to assemble the membrane arm of complex I, while formation of the peripheral arm is prevented. Nevertheless, the mutant grows reasonably well – indicating that this well conserved protein is not essential for vegetative growth – and is able to mate with other strains both as male or female. Strains with multiple mutations are readily obtained from heterozygous crosses between different complex I mutants of N. crassa. On the other hand, homozygous crosses between several mutants, including nuo30.4, fail to produce ascospores. These results suggest that complex I plays an essential role during the sexual phase of the life cycle of the fungus. Received: 24 February 1997 / Accepted: 23 September 1997  相似文献   

19.
A series of crosses between a naturally-occurring self-compatible accession ofLycopersicon peruvianum and a closely-related self-incompatible accession were used to demonstrate that the mutation to self-compatibility is located at the S-locus. Progeny of the crosses contain abundant style proteins of about 30 kDa that segregate with the S6and S7-alleles from the SI parent and the Sc-allele from the SC parent. The S6and S7-associated proteins have ribonuclease activity whereas the Sc-associated protein is not an active ribonuclease. This finding indicates that S-RNases are determinants of self-incompatibility in the style and that the ribonuclease activity is essential for their function.  相似文献   

20.
The M species (medium sized) dsRNA (1.1–1.4 × 106 daltons) isolated from a toxin-producing yeast killer strain (K+R+) and three related, defective interfering (suppressive) S species dsRNAs of the yeast killer-associated cytoplasmic multicomponent viral-like particle system were analyzed by in vitro translation in a wheat germ cell-free protein synthesis system. Heat-denatured M species dsRNA programmed the synthesis of two major polypeptides, M-P1 (32,000 daltons) and M-P2 (30,000 daltons). M-P1 has been shown by the criteria of proteolytic peptide mapping and cross-antigenicity to contain the 12,000 dalton polypeptide corresponding to the in vivo produced killer toxin, thus establishing that it is the M species dsRNA which carries the toxin gene. An M species dsRNA obtained from a neutral strain (K?R+) also programmed the in vitro synthesis of a polypeptide identical in molecular weight to M-P1, thus indicating that the cytoplasmic determinant of the mutant neutral phenotype is either a simple point mutation in the dsRNA toxin gene or a mutation in a dsRNA gene which is required for functional toxin production. In vitro translation of each of the three different suppressive S dsRNAs resulted in the production of a polypeptide (S-P1) of approximately 8000 daltons instead of the 32,000 dalton M-P1 polypeptide programmed by M dsRNA. This result is consistent with the heteroduplex analysis of these dsRNAs by Fried and Fink (1978), which shows retention of M dsRNA ends, accompanied by large internal deletions in each of the S dsRNAs translated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号