首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In Wistar rats, specific inhibitor UPS lactacystin induced degeneration of 24% of the dopaminergic neurons in the black substance. The work shows that a moderate weakening of the UPS function is characterized by an enhanced activity of the shaperon system. This process seems to restore and maintain population of the dopaminergic neurons.  相似文献   

2.
3.
Protein interaction networks have become a tool to study biological processes, either for predicting molecular functions or for designing proper new drugs to regulate the main biological interactions. Furthermore, such networks are known to be organized in sub-networks of proteins contributing to the same cellular function. However, the protein function prediction is not accurate and each protein has traditionally been assigned to only one function by the network formalism. By considering the network of the physical interactions between proteins of the yeast together with a manual and single functional classification scheme, we introduce a method able to reveal important information on protein function, at both micro- and macro-scale. In particular, the inspection of the properties of oscillatory dynamics on top of the protein interaction network leads to the identification of misclassification problems in protein function assignments, as well as to unveil correct identification of protein functions. We also demonstrate that our approach can give a network representation of the meta-organization of biological processes by unraveling the interactions between different functional classes.  相似文献   

4.
One of the most striking results of the human (and mammalian) genomes is the low number of protein-coding genes. To-date, the main molecular mechanism to increase the number of different protein isoforms and functions is alternative splicing. However, a less-known way to increase the number of protein functions is the existence of multifunctional, multitask, or "moonlighting", proteins. By and large, moonlighting proteins are experimentally disclosed by serendipity. Proteomics is becoming one of the very active areas of biomedical research, which permits researchers to identify previously unseen connections among proteins and pathways. In principle, protein-protein interaction (PPI) databases should contain information on moonlighting proteins and could provide suggestions to further analysis in order to prove the multifunctionality. As far as we know, nobody has verified whether PPI databases actually disclose moonlighting proteins. In the present work we check whether well-established moonlighting proteins present in PPI databases connect with their known partners and, therefore, a careful inspection of these databases could help to suggest their different functions. The results of our research suggest that PPI databases could be a valuable tool to suggest multifunctionality.  相似文献   

5.
Selected proteins were produced in Escherichia coli bacterial expression system--three proteins from extremophil bacteria: a putative monooxygenase from Deinococcus radiodurans, a putative nucleotidyltransferase from Thermotoga maritima, a putative oxidoreductase from Exiguobacterium sibiricum; and a shaperon from Homo sapiens DJ-1. The protocol of isolation & purification of recombinant proteins were developed that allowed to obtain expression products with the purity of no less than 96%. Conditions for the crystallization have been selected that allowed a stable growth of crystals. Preliminary x-ray experiments were conducted in order to confirm the quality of produced crystals; the resolution of obtained structural data was from 1.2 to 1.8 angstrom.  相似文献   

6.
Zhang H 《Proteins》1999,34(4):464-471
A new Hybrid Monte Carlo (HMC) algorithm has been developed to test protein potential functions and, ultimately, refine protein structures. The main principle of this algorithm is, in each cycle, a new trial conformation is generated by carrying out a short period of molecular dynamics (MD) iterations with a set of random parameters (including the MD time step, the number of MD steps, the MD temperature, and the seed for initial MD velocity assignment); then to accept or reject the new conformation on the basis of the Metropolis criterion. The novelty in this paper is that the potential in MD iterations is different from that in the MC step. In the former, it is a molecular mechanics potential, in the latter it is a knowledge-based potential (KBP). Directed by the KBP, the MD iteration is used to search conformational space for realistic conformations with low KBP energy. It circumvents the difficulty in using KBP functions directly in MD simulation, as KBP functions are typically incomplete, and do not always have continuous derivatives required for the calculation of the forces. The new algorithm has been tested in explorations of conformational space. In these test calculations the KBP energy was found to drop below the value for the native conformation, and the correlation between the root mean square deviation (RMSD) and the KBP energy was shown to be different from the test results in other references. At the present time, the algorithm is useful for testing new KBP functions. Furthermore, if a KBP function can be found for which the native conformation has the lowest energy and the energy/RMSD correlation is good, then this new algorithm also will be a tool for refinement of the theory-based structural models.  相似文献   

7.
Many fundamental processes in cell biology are regulated by Rho GTPases, including cell adhesion, migration and differentiation. While regulating cellular functions, members of the Rho protein family cooperate or antagonize each other. The resulting molecular network exhibits many levels of interaction dynamically regulated in time and space. In the first part of this review we describe the main mechanisms of this crosstalk, which can occur at three different levels of the pathway: (i) through regulation of activity, (ii) through regulation of protein expression and stability, and (iii) through regulation of downstream signaling pathways. In the second part we illustrate the importance of Rho protein crosstalk with two examples: integrin-based adhesion and cell migration.  相似文献   

8.
While Darwin pictured organismal evolution as "descent with modification" more than 150 years ago, a detailed reconstruction of the basic evolutionary transitions at the molecular level is only emerging now. In particular, the evolution of today's protein structures and their concurrent functions has remained largely mysterious, as the destruction of these structures by mutation seems far easier than their construction. While the accumulation of genomic and structural data has indicated that proteins are related via common ancestors, naturally occurring protein structures are often considered to be evolutionarily robust, thus leaving open the question of how protein structures can be remodelled while selective pressure forces them to function. New information on the proteome, however, increasingly explains the nature of local and global conformational diversity in protein evolution, which allows the acquisition of novel functions via molecular transition forms containing ancestral and novel structures in dynamic equilibrium. Such structural plasticity may permit the evolution of new protein folds and help account for both the origins of new biological functions and the nature of molecular defects.  相似文献   

9.
The first representatives of proteins of the macroglobulin family appeared 500–700 million years ago. At present representatives of this family have been revealed in crustaceans, molluscs, fish, amphibians, reptiles, ticks, insects, birds, and mammals, the macroglobulin family in blood of some species being represented simultaneously by several proteins that have different molecular weight and partly duplicate functions of each other. In different species, they are present as monomers, dimers, or tetramers. The distinguishing feature of each protein subunit is the presence of a “trap” with cyclic thioether on the bottom and of a sufficiently large hydrophobic area. All representatives are able to form complexes with different regulatory substances through covalent or hydrophobic bonds, which allows them to perform a wide range of regulatory functions. The ancient origin, evolutionary conservatism, widespread presence, and a diversity of regulatory functions permit proteins of the macroglobulin family to be considered as the main regulatory biomolecules of organism fluid media.  相似文献   

10.
Abstract

Hyaluronic acid (HA) is a linear glycosaminoglycan composed of disaccharide units of glucuronic acid and N-acetylglucosamine. It has interesting and distinctive viscoelastic properties that are functions of chain length, concentration and environmental conditions, like pH and ionic strength. These characteristics, coupled with its lack of immunogenicity or toxicity, have led to a wide range of applications in the pharmaceutical and cosmetic industries where molecular mass is of primary importance. Biotechnological production of HA was established many years ago, but HA obtained from bacterial fermentation results in shorter chains compared with HA extracted from animal sources. In the present research the issue of HA degradation during the initial phases of downstream processing is addressed. In particular, the effects of clarification and protein separation on molecular weight have been studied using a triple-detector chromatographic system. Environmental factors affecting degradation (pH, shear stresses, etc.) were uncoupled in order to identify the main causes of molecular weight reduction.  相似文献   

11.
Calcineurin in memory and bidirectional plasticity   总被引:4,自引:0,他引:4  
The molecular mechanisms of learning and memory, and the underlying bidirectional changes in synaptic plasticity that sustain them largely implicate protein kinases and phosphatases. Specifically, Ca(2+)-dependent kinases and phosphatases actively control neuronal processing by forming a tightly regulated balance in which they oppose each other. In this balance, calcineurin (PP2B) is a critical protein phosphatase whose main function is to negatively modulate learning, memory, and plasticity. It acts by dephosphorylating numerous substrates in different neuronal compartments. This review outlines some of CN neuronal targets and their implication in synaptic functions, and describes the role of CN in the acquisition, storage, retrieval, and extinction of memory, as well as in bidirectional plasticity.  相似文献   

12.
13.
Jang HH  Kim SY  Park SK  Jeon HS  Lee YM  Jung JH  Lee SY  Chae HB  Jung YJ  Lee KO  Lim CO  Chung WS  Bahk JD  Yun DJ  Cho MJ  Lee SY 《FEBS letters》2006,580(1):351-355
The H2O2-catabolizing peroxidase activity of human peroxiredoxin I (hPrxI) was previously shown to be regulated by phosphorylation of Thr90. Here, we show that hPrxI forms multiple oligomers with distinct secondary structures. HPrxI is a dual function protein, since it can behave either as a peroxidase or as a molecular chaperone. The effects of phosphorylation of hPrxI on its protein structure and dual functions were determined using site-directed mutagenesis, in which the phosphorylation site was substituted with aspartate to mimic the phosphorylated status of the protein (T90D-hPrxI). Phosphorylation of the protein induces significant changes in its protein structure from low molecular weight (MW) protein species to high MW protein complexes as well as its dual functions. In contrast to the wild type (WT)- and T90A-hPrxI, the T90D-hPrxI exhibited a markedly reduced peroxidase activity, but showed about sixfold higher chaperone activity than WT-hPrxI.  相似文献   

14.
15.
An involvement of molecular chaperones in the action and well-being of steroid receptors was recognized early in the molecular era of hormone research. However, this has continued to be a topic of much enquiry and some confusion. All steroid receptors associate with heat shock protein 90, the main character of a series of multiprotein chaperone complexes generally referred to as the "heat shock protein 90 chaperoning machine." Receptor association with chaperones occurs in an ordered, step-wise fashion and is necessary for the maintenance of unliganded receptor in a state ready to bind and respond to hormone. Chaperones additionally modulate how receptors respond to hormone and activate target genes. Although much is known about the participants in this chaperoning process and the consequences of chaperoning, many key questions remain unanswered, particularly those concerning molecular mechanisms, cellular dynamics, and the functions of an array of cochaperone proteins. Here, we point out several areas in need of investigation to encourage new ideas and participants in this burgeoning field.  相似文献   

16.
Pulmonary surfactant is a mixture of lipids and proteins which is secreted by the epithelial type II cells into the alveolar space. Its main function is to reduce the surface tension at the air/liquid interface in the lung. This is achieved by forming a surface film that consists of a monolayer which is highly enriched in dipalmitoylphosphatidylcholine and bilayer lipid/protein structures closely attached to it. The molecular mechanisms of film formation and of film adaptation to surface changes during breathing in order to remain a low surface tension at the interface, are unknown. The results of several model systems give indications for the role of the surfactant proteins and lipids in these processes. In this review, we describe and compare the model systems that are used for this purpose and the progress that has been made. Despite some conflicting results using different techniques, we conclude that surfactant protein B (SP-B) plays the major role in adsorption of new material into the interface during inspiration. SP-C's main functions are to exclude non-DPPC lipids from the interface during expiration and to attach the bilayer structures to the lipid monolayer. Surfactant protein A (SP-A) appears to promote most of SP-B's functions. We describe a model proposing that SP-A and SP-B create DPPC enriched domains which can readily be adsorbed to create a DPPC-rich monolayer at the interface. Further enrichment in DPPC is achieved by selective desorption of non-DPPC lipids during repetitive breathing cycles.  相似文献   

17.
Human fibrinogen in solution was studied by monitoring the time-resolved depolarization of the fluorescence emitted by two spectroscopic labels of which the fluorescence lifetimes differ by an order of magnitude. Contrary to a long-held view, no evidence of molecular flexibility was found in the 10-1000 ns range. In addition, from the rate of the overall rotation, it is proposed that a prolate and symmetric ellipsoid of 47 X 10.5 nm may represent the time-averaged hydrodynamic size and shape of the protein in solution. This rigid and highly hydrated structure (4 g water/g protein) accommodates the latest nodular models obtained from electron microscopy, explains the singular hydrodynamics of fibrinogen and, apparently, it would perform the two main functions of the protein in haemostasis, blood coagulation and platelet aggregation, more efficiently than the flexible molecule.  相似文献   

18.
19.
Understanding the complex network and multi-functionality of proteins is one of the main objectives of post-genome research. Aminoacyl-tRNA synthetases (ARSs) are the family of enzymes that are essential for cellular protein synthesis and viability that catalyze the attachment of specific amino acids to their cognate tRNAs. However, a lot of evidence has shown that these enzymes are multi-functional proteins that are involved in diverse cellular processes, such as tRNA processing, RNA splicing and trafficking, rRNA synthesis, apoptosis, angiogenesis, and inflammation. In addition, mammalian ARSs form a macromolecular complex with three auxiliary factors or with the elongation factor complex. Although the functional meaning and physiological significance of these complexes are poorly understood, recent data on the molecular interactions among the components for the multi-ARS complex are beginning to provide insights into the structural organization and cellular functions. In this review, the molecular mechanism for the assembly and functional implications of the multi-ARS complex will be discussed.  相似文献   

20.
Chaperonin 60 is the prototypic molecular chaperone, an essential protein in eukaryotes and prokaryotes, whose sequence conservation provides an excellent basis for phylogenetic analysis. Escherichia coli chaperonin 60 (GroEL), the prototype of this family of proteins, has an established oligomeric‐structure‐based folding mechanism and a defined population of folding partners. However, there is a growing number of examples of chaperonin 60 proteins whose crystal structures and oligomeric composition are at variance with GroEL, suggesting that additional complexities in the protein‐folding function of this protein should be expected. In addition, many organisms have multiple chaperonin 60 proteins, some of which have lost their protein‐folding ability. It is emerging that this highly conserved protein has evolved a bewildering variety of additional biological functions – known as moonlighting functions – both within the cell and in the extracellular milieu. Indeed, in some organisms, it is these moonlighting functions that have been left after the loss of the protein‐folding activity. This highlights the major paradox in the biology of chaperonin 60. This article reviews the relationship between the folding and non‐folding (moonlighting) activities of the chaperonin 60 family and discusses current knowledge on their molecular evolution focusing on protein domains involved in the non‐folding chaperonin functions in an attempt to understand the emerging biology of this evolutionarily ancient protein family.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号