首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
In eukaryotic cells, the major protein constituents of the chromatin are histones, which can be divided into five classes, identified as H1, H2A, H2B, H3 and H4. During normal spermatogenesis, a testis-specific H1t is expressed in primary spermatocytes and believed to facilitate histone to protamine exchanges during spermiogenesis. In equine testes we detected the H1 protein at 22kDa by western blot analysis while H1t was detected at 29kDa. H1 protein was found to be expressed in all germ cells up to elongating spermatids (Sc) at stage IV. In peripubertal animals, there was a prolonged expression up to elongating spermatids (Sd1) at stage V. A fragment of the equine H1t gene was cloned (GenBank Accession No. AJ865320). The mRNA expression of H1t was found at the level in spermatogonia and in primary spermatocytes up to mid-pachytene at stage VIII/I, whereas H1t protein was found to be expressed up to round spermatides (Sa/Sb1) at stage VIII/I. In peripubertal animals, the H1t protein expression was detected up to elongating spermatids (Sb2) at stage II. Analysis of testes of different ages (< or =2 years) and (> or =3 years) by real-time RT-PCR revealed an increase of H1t mRNA expression, with a wide range of individual variety between 2 and 4 years old animals indicating a stable expression in animals older than 4 years old. This is the first study to show the testis-specific H1t in the stallion and gives evidence that the well-known peripubertal infertility in the stallion may be related to an insufficient histone to protamine exchange. The pattern of protamine gene expression, however, has still to be elucidated.  相似文献   

3.
We have cloned cDNA of a testis-specific histone, TH2B (a variant of H2B), and rat somatic H2B gene to investigate regulation of testis-specific histone genes during rat spermatogenesis. The amino acid sequences deduced from DNA sequences show extensive sequence divergence in the N-terminal third of the two histones. The rest is highly conserved. One cysteine residue was found in TH2B. No cysteine is present in somatic histones except in H3 histone. We investigated the expression of TH2B and H2B genes using the regions of sequence divergence as hybridization probes. The TH2B gene is expressed only in the testis, and the expression of this gene is detected 14 days after birth, reaching a maximum at Day 20. The level of H2B mRNA shows a reciprocal pattern. This contrasting pattern can be explained by the gradually changing proportion of spermatogonia and spermatocytes with testicular maturation. In situ cytohybridization studies show that H2B gene is expressed primarily in proliferating spermatogonia and preleptotene spermatocytes, whereas TH2B gene is expressed exclusively in pachytene spermatocytes which first appear in testis about 14 days after birth. H2B and TH2B genes appear to be ideal markers for the study of proliferation and differentiation events in spermatogenesis and their regulatory mechanisms.  相似文献   

4.
To investigate the function of Wilms' tumor 1 (WT1) during spermatogenesis, cDNA for newt WT1 homolog was cloned and the expression of WT1 in newt testes was examined. The cDNA is 2089 bp in length and encodes 426 amino acid (aa) residues. The deduced aa sequence shares 76 and 79% homology with human and Xenopus WT1, respectively. Northern blot analysis shows that WT1 mRNA, 3.2 and 4.5kb in length, are expressed in the testis and kidney. Both WT1 mRNA species are detected in various stages of spermatogenesis, but the 3.2kb mRNA is highly expressed in spermatogonia and mature sperm stages, while the amount of 4.5kb mRNA is almost constant throughout spermatogenesis. In situ hybridization reveals that WT1 mRNA is localized in Sertoli cells. Moreover, immunohistochemical analysis shows that WT1 protein is highly expressed in the nuclei of Sertoli cells in early spermatogonia and mature sperm stages, but not in pericystic cells or germ cells. These results suggest that WT1 is involved in the regulation of gene expression in Sertoli cells, depending on the spermatogenic stage.  相似文献   

5.
The expression of testis-specific and adult somatic histone genes in sea urchin testis was investigated by in situ hybridization. The testis-specific histone genes (Sp H2B-1 of Strongylocentrotus purpuratus and Sp H2B-2 of Lytechinus pictus) were expressed exclusively in a subset of male germ line cells. These cells are morphologically identical to replicating cells pulse-labelled with 3H-thymidine. Genes coding for histones expressed in adult somatic and late embryo cells (H2A-beta for S. purpuratus and H3-1 for L. pictus) were expressed in the same germ line cells, as well as in the supportive cells (nutritive phagocytes) of the gonad. All histone mRNAs detected in the male germ lineage declined precipitously by the early spermatid stage, before cytoplasmic reduction. The data suggest that both testis-specific and adult somatic histone genes are expressed in proliferating male germ line cells. Testis-specific gene expression is restricted to spermatogonia and premeiotic spermatids, but somatic histone expression is not. The decline of histone mRNA in nondividing spermatids is not merely a consequence of cytoplasmic shedding, but probably reflects mRNA turnover.  相似文献   

6.
Kong WH  Yan S  Gu Z  Tso JK 《生理学报》2002,54(5):400-404
利用原位杂交和免疫组化等方法,研究兔精子发生过程中生精细胞cyclin B1 mRNA的表达和蛋白定位特点,结果显示,兔生精上皮中Cyclin B1 mRNA的主要分布在初级精母细胞中,直至圆形精子细胞仍然存在,于精子细胞的变态过程中逐渐消失,在伸长的精子细胞和精子中未检测出cyclin B1 mRNA,Cyclin B1蛋白在进入分裂期的精原细胞和精母细胞中表达,在圆形精子细胞和伸长的精子细胞中呈现大量的cyclin B1蛋白,上述结果表明,在兔精子发生过程中,cyclin B1 mRNA表达和蛋白定位具有发育阶段依赖性的特征。  相似文献   

7.
8.
9.
Circadian rhythms are generated by the oscillating expression of the Per1 and Per2 genes, which are expressed not only in the central brain pacemaker but also in peripheral tissues. Hormones are likely to coordinate physiological function in time. We performed in situ hybridization to localize mPer1 and mPer2 mRNA to particular cell types and tissue compartments in adrenal, thyroid, and testis. BALB/c mice maintained in a 12:12-h light-dark cycle expressed mPer1 in adrenal medulla, particularly in late afternoon and early night. mPer2 mRNA was more intensely expressed in adrenal cortex, especially in afternoon and evening. mPer1 mRNA was detected in thyroid. mPer1 was found in some but not all seminiferous tubules of each mouse at all times of day. Quantitation in C57BL/6 mice revealed a significant increase in the number of heavily labeled seminiferous tubules early in the night. Consistent with in situ hybridization, immunocytochemistry showed PER1 protein in spermatocytes and spermatids (spermatogenic stages VII-XII). Staining in spermatogonia and interstitial cells was inconsistent. Double labeling with 5'-bromodeoxyuridine showed PER1 expression first occurring 5 days after DNA replication. We conclude that mPeriod genes are expressed in peripheral endocrine glands. Central regulation, adenohypophyseal control, and functional importance of expression and phase remain to be elucidated.  相似文献   

10.
The urokinase receptor, uPAR, which binds to the urinary-type plasminogen activator, controls matrix degradation in the processes of tissue remodeling, cell migration, and invasion. In the present study, we found a new urokinase receptor gene that encodes a 249-amino acid putative protein. Northern blot analysis showed specific expression in the testis of this gene, which we named the spermatogenesis-related gene (SGRG). In situ hybridization revealed a strong expression signal for SGRG in spermatogonia, but not in spermatocytes. Therefore, we conjecture that SGRG may regulate spermatocyte migration through breakdown of extracellular matrix protein barriers in spermatogenesis. Since SGRG is specifically expressed in spermatogonia, it provides an attractive candidate for development of a contraceptive vaccine.  相似文献   

11.
We cloned a cDNA encoding a novel mouse protein, named A-C1, by differential display between two mouse cell lines: embryonic fibroblast C3H10T1/2 and chondrogenic ATDC5. The deduced amino acid sequence of A-C1 consists of 167 amino acids and shows 46% identity with that of a ras-responsive gene, rat Ha-rev107. Northern blot analysis showed a distinct hybridization band of 3.2 kilobases. Expression of A-C1 mRNA was detected in undifferentiated ATDC5 cells and myoblastic C2C12 cells, while none of C3H10T1/2 cells, NIH3T3 fibroblasts, Balb/c 3T3 fibroblasts, osteoblastic MC3T3-E1 cells, and ST2 bone marrow stromal cells expressed A-C1 mRNA in vitro. Moreover, A-C1 mRNA was expressed in skeletal muscle, heart, brain, and bone marrow in adult mice. By in situ hybridization, A-C1 gene expression was localized in hippocampus as well as bone marrow cells. By immunocytochemistry, A-C1 protein was detected in the cytoplasm as well as perinuclear region of the cells. Transfection of A-C1 cDNA into Ha-ras-transformed NIH3T3 cell line caused increase in the number of flat colonies and inhibition of cell growth. Our data indicate that A-C1 is expressed in some specific tissues in vivo and modulates Ha-ras-mediated signaling pathway.  相似文献   

12.
We screened a mouse germinal cell expression library with a probe derived from Sob1, a human testis-specific cDNA, and identified 2P1, a new mouse cDNA. A database search revealed that 2P1 was 91% identical to ORF1 of E3-3, a rat gene probably involved in the regulation of alternative splicing. Sequencing showed that 2P1 has a destabilization motif in its 3'-untranslated region. Northern blotting showed strong gene expression in the testis and weak expression in the epididymis, with no signal detected in other tissues. RT-PCR analysis confirmed testis and epididymis expression. In situ hybridization revealed that 2P1 mRNA was absent in spermatogonia but expressed in spermatocytes. This last result was confirmed by RT-PCR of FACS isolated primary spermatocytes (pachytene stage). Using RT-PCR, purified spermatids were also shown to express 2P1.  相似文献   

13.
A variant human H2B histone gene (GL105), previously shown to encode a 2300 nt replication independent mRNA, has been cloned. We demonstrate this gene expresses alternative mRNAs regulated differentially during the HeLa S3 cell cycle. The H2B-Gl105 gene encodes both a 500 nt cell cycle dependent mRNA and a 2300 nt constitutively expressed mRNA. The 3' end of the cell cycle regulated mRNA terminates immediately following the region of hyphenated dyad symmetry typical of most histone mRNAs, whereas the constitutively expressed mRNA has a 1798 nt non-translated trailer that contains the same region of hyphenated dyad symmetry but is polyadenylated. The cap site for the H2B-GL105 mRNAs is located 42 nt upstream of the protein coding region. The H2B-GL105 histone gene was localized to chromosome region 1q21-1q23 by chromosomal in situ hybridization and by analysis of rodent-human somatic cell hybrids using an H2B-GL105 specific probe. The H2B-GL105 gene is paired with a functional H2A histone gene and this H2A/H2B gene pair is separated by a bidirectionally transcribed intergenic promoter region containing consensus TATA and CCAAT boxes and an OTF-1 element. These results demonstrate that cell cycle regulated and constitutively expressed histone mRNAs can be encoded by the same gene, and indicate that alternative 3' end processing may be an important mechanism for regulation of histone mRNA. Such control further increases the versatility by which cells can modulate the synthesis of replication-dependent as well as variant histone proteins during the cell cycle and at the onset of differentiation.  相似文献   

14.
15.
16.
17.
18.
We have investigated the expression of a recently described, solitary human H3 histone gene. Using RNase protection assays, the corresponding mRNA could only be detected in RNA preparations from human testis, whereas several human cell lines and somatic tissues did not exhibit expression of this gene.In situhybridization of sections from human testis revealed expression to be confined to primary spermatocytes. In addition to H1t, this novel H3 gene, which is located on chromosome 1, is the second tissue-specific human histone gene that has been found to be expressed solely in the testis.  相似文献   

19.
Ca(2+)/calmodulin-dependent protein kinase IV and calspermin are two proteins encoded by the Camk4 gene. Both are highly expressed in the testis, where in situ hybridization studies in rat testes have demonstrated that CaMKIV mRNA is localized to pachytene spermatocytes, while calspermin mRNA is restricted to spermatids. We have examined the expression patterns of both CaMKIV and calspermin in mouse testis and unexpectedly find that CaMKIV is expressed in spermatogonia and spermatids but excluded from spermatocytes, while calspermin is found only in spermatids. CaMKIV and calspermin expression in the testis are stage-dependent and appear to be coordinately regulated. In germ cells, we find that CaMKIV is associated with the chromatin. We further demonstrate that a fraction of CaMKIV in spermatids is hyperphosphorylated and specifically localized to the nuclear matrix. These novel findings may implicate CaMKIV in chromatin remodeling during nuclear condensation of spermatids.  相似文献   

20.
Summary In situ hybridization and immunogold labeling were performed to examine the temporal and spatial expression pattern of pathogenesis-related protein 1 (CABPR1) mRNA and PR-1 protein in pepper (Capsicum annuum L.) stem tissues infected by virulent and avirulent isolates ofPhytophthora capsici. CABPR1 mRNA accumulation was confirmed in the infected pepper stem tissue by Northern blot analysis and in situ hybridization. Northern blot analysis showed that the temporal expression ofCABPR1 mRNA varied greatly between compatible and incompatible interactions. An earlier expression of theCABPR1 gene, 6 h after inoculation, was observed in the incompatible interaction. In situ hybridization results revealed thatCABPR1 mRNA was expressed in the phloem areas of vascular bundles in infected pepper stem tissues, but especially strongly in the incompatible interaction. PR-1 protein was predominantly found in the intercellular spaces of pepper stem cells in the compatible and incompatible interactions 24 h after inoculation. Strikingly, the immunogold labeling was associated with fibrillar and electron-dense material localized in the intercellular space. Dense labeling of PR-1 protein was also seen at the interface of the pathogen and the host cell wall, whereas few gold particles were detected over the host cytoplasm. However, PR-1 protein was not detected over the fungal cell wall in either interaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号