首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Bacteriophage T7 was challenged with either of two toxic genes expressed from plasmids. Each plasmid contained a different gene downstream of a T7 promoter; cells harboring each plasmid caused an infection by wild-type T7 to abort. T7 evolved resistance to both inhibitors by avoidance of the plasmid expression system rather than by blocking or bypassing the effects of the specific toxic gene product. Resistance was due to a combination of mutations in the T7 RNA polymerase and other genes expressed at the same time as the polymerase. Mutations mapped to sites that are unlikely to alter polymerase specificity for its cognate promoter but the basis for discrimination between phage and plasmid promoters in vivo was not resolved. A reporter assay indicated that, relative to wild-type phage, gene expression from the plasmid was diminished several-fold in cells infected by the evolved phages. A recombinant phage, derived from the original mutant but lacking a mutation in the gene for RNA polymerase, exhibited intermediate activity in the reporter assay and intermediate resistance to the toxic gene cassettes. Alterations in both RNA polymerase and a second gene are thus responsible for resistance. These findings have broad evolutionary parallels to other systems in which viral inhibition is activated by viral regulatory signals such as defective-interfering particles, and they may have mechanistic parallels to the general phenomena of position effects and gene silencing. Received: 18 July 2000 / Accepted: 8 February 2001  相似文献   

3.
4.
5.
Summary T7 RNA polymerase is synthesized in vitro, dependent on T7 DNA. The in vitro synthesized T7 polymerase has the characteristic properties: resistance to rifampicin and streptolydigin and the typical template specificity.  相似文献   

6.
7.
Yarovoi SV  Pederson T 《Gene》2001,275(1):73-81
Although several systems are now available for the controlled expression of eukaryotic genes transcribed by RNA polymerase II, regulated expression has been more difficult to achieve in the case of genes transcribed by RNA polymerase III. In the present study the gene for bacteriophage T7 RNA polymerase, implanted with a eukaryotic nuclear localization signal, was linked to a 5'-flanking ecdysone-responsive promoter and stably transformed human cell lines were constructed in which the ecdysone promoter-T7 RNA polymerase gene had been integrated intact, as demonstrated by a polymerase chain reaction assay. Exposure of these cells to the ecdysone analog ponasterone A resulted in the appearance of a single protein having the expected size of T7 RNA polymerase in immunoblots of cell extracts probed with an affinity purified antibody raised against the C-terminus of T7 RNA polymerase. The induced T7 RNA polymerase was exclusively localized in the nucleus of induced cells and was undetectable in uninduced cells either by immunoblotting or immunofluorescence. The induced T7 RNA polymerase was present at numerous punctate foci dispersed throughout the nucleoplasmic regions of the nucleus and was also present in the nucleoli. Both of these observed intranuclear localizations have relevance to the potential applications of this system.  相似文献   

8.
9.
The coding sequence for bacteriophage T7 RNA polymerase has been cloned and expressed under control of a cognate T7 promoter, a configuration referred to as an autogene. Cloning a T7 autogene in a derivative of plasmid pBR322 in Escherichia coli was achieved by a combination of blocking initiation at the T7 promoter with bound lac repressor and inhibiting the polymerase itself by T7 lysozyme. Neither type of inhibition by itself was sufficient to control the autogene. Upon unblocking the T7 promoter with added inducer. T7 RNA polymerase produced its own mRNA, leading to autocatalytic production of polymerase protein. T7 autogenes may be useful for developing high-level gene expression systems in a variety of cell types, with little if any need for the host cell RNA polymerase.  相似文献   

10.
11.
Overexpression of udk, an Escherichia coli gene encoding a uridine/cytidine kinase, interferes with T7 bacteriophage growth. We show here that inhibition of T7 phage growth by udk overexpression can be overcome by inhibition of host RNA polymerase. Overexpression of gene 2, whose product inhibits host RNA polymerase, restores T7 phage growth on hosts overexpressing udk. In addition, rifampicin, an inhibitor of host RNA polymerase, restores the burst size of T7 phage on udk-overexpressing hosts to normal. In agreement with these findings, suppressor mutants that overcome the inhibition arising from udk overexpression gain the ability to grow on hosts that are resistant to inhibition of RNA polymerase by gene 2 protein, and suppressor mutants that overcome a lack of gene 2 protein gain the ability to grow on hosts that overexpress udk. Mutations that eliminate or weaken strong promoters for host RNA polymerase in T7 DNA, and mutations in T7 gene 3.5 that affect its interaction with T7 RNA polymerase, also reduce the interference with T7 growth by host RNA polymerase. We propose a general model for the requirement of host RNA polymerase inhibition.  相似文献   

12.
T7噬菌体启动子能被T7RNA聚合酶和真核生物RNA聚合酶Ⅱ系统启动转录 ,为研究两个系统转录的关键碱基 ,将合成的T7噬菌体启动子 1 1变异体与报道基因CAT基因连在一起。体内CAT和体外狭缝RNA杂交实验显示 : 1 1碱基是T7RNA聚合酶和真核生物RNA聚合酶Ⅱ系统启动T7启动子的关键碱基之一。  相似文献   

13.
14.
15.
用表达T7RNA聚合酶细胞系拯救麻疹病毒微复制子   总被引:1,自引:0,他引:1  
构建稳定表达T7RNA聚合酶的细胞系,用于提高拯救麻疹病毒微复制子效率.PCR扩增T7RNA聚合酶基因,克隆到真核表达载体,转染Vero细胞,用G418筛选到稳定表达的细胞株Vero/pcDNA3-T7.用Westernblotting证明了T7RNA聚合酶在细胞中的表达.将T7启动子控制绿色荧光蛋白表达的质粒转染该细胞后,绿色荧光蛋白在细胞株中得到表达.反向插入报告基因的微复制子转染感染麻疹病毒的Vero/pcDNA3-T7细胞后,细胞中能够检测到报告基因的表达.用细胞系取代痘苗病毒系统,可以提高拯救效率.  相似文献   

16.
It was shown previously that E. coli RNA polymerase and T7 RNA polymerase being incubated with oligonucleotides of different length derived from RNA endonuclease hydrolysate bind selectively to certain oligonucleotides with the length larger than or equal to 5. The data presented demonstrate that T3 RNA polymerase also binds selectively from the isoplith mixtures certain oligonucleotides starting from pentanucleotides. Adding of excess of T3 RNA polymerase it was possible to exhaustively extract the recognizable oligonucleotides from the isoplith mixture. However, the exhausted by T3 RNA polymerase mixture of pentanucleotides still contained those which are bound selectively by T7 and E. coli RNA polymerases. The data suggest that various RNA-polymerases recognize different oligoribonucleotides. It was shown that T3 DNA inhibits the selective binding of penta-or heptaribonucleotides to T3 RNA polymerase competing obviously for the enzyme. The T3 RNA polymerase bound penta- or heptanucleotides inhibit DNA-dependent RNA synthesis carried out by the enzyme; the isoplith mixtures which do not contain T3 RNA polymerase bound oligonucleotides are deprived of the inhibitory properties. Only those isoplith mixtures contain T3 RNA polymerase bound oligonucleotides which were derived from symmetrically transcribed RNA which have obviously promoter simulating sequences. The data provide evidence that T2 RNA polymerase binds selectively the oligonucleotides mimicking the promotor recognition sites.  相似文献   

17.
Analysis of the nucleotide sequence at the 5′-triphosphate termini of RNA chains synthesized by T7 RNA polymerase from T7 DNA template indicates that nearly all RNA chains synthesized in this polymerase reaction contain the sequence, pppGpGp. In addition, studies carried out on T7 DNA-dependent 32PPi exchange into ribonucleoside triphosphates suggest that immediately following the guanine residues at the 5′-end of RNA formed in the T7 RNA polymerase reaction, there is one or more adenine residues. These results indicate a high degree of specificity of initiation of RNA synthesis by T7 RNA polymerase.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号