首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A screening campaign of a diverse collection of ~250,000 small molecule compounds was performed to identify inhibitors of proline-rich tyrosine kinase 2 (Pyk2) with potential osteogenic activity in osteoblast cells. Compounds were prioritized based on selectivity following a counter-screen against focal adhesion kinase (FAK), a closely related kinase. 4-Amino and 5-aryl substituted pyridinone series were identified that showed strong biochemical potency against Pyk2 and up to 3700-fold selectivity over FAK. Modeling analysis suggested that structural differences in the substrate binding cleft could explain the high selectivity of these chemical series against FAK. Representative compounds from each series showed inhibition of Pyk2 autophosphorylation in 293T cells (IC50 ~0.11 μM), complete inhibition of endogenous Pyk2 in A7r5 cells and increased levels of osteogenic markers in MC3T3 osteoblast cells (EC50’s ~0.01 μM). These results revealed a new class of compounds with osteogenic-inducing activity in osteoblast cells and a starting point for the development of more potent and selective Pyk2 inhibitors.  相似文献   

2.
3.
C-terminal truncation mutants were made to investigate the role of the C-terminus in coupling proteinase-activated receptor-2 (PAR-2) to various signalling pathways. Membrane expression of the delta15, delta34, delta43, and delta34-43 mutants was similar; however, expression of deltatail was lost, as was agonist-mediated internalisation of deltatail, delta43, and delta34-43. Additionally, trypsin and SLIGKV-stimulated [3H]IP accumulation was abrogated in cells transiently expressing delta43 or delta34-43 truncations, but remained unaffected in cells expressing delta34 or delta15. PAR-2 agonist-stimulated intracellular Ca(2+) mobilisation and PYK-2 activity were also abolished by deltatail, delta43, and delta34-43 mutants. However, trypsin-stimulated stress-activated protein kinases (SAPKs) or extracellular signal-regulated kinase (ERK) activities were unaffected by the delta34-43 mutation, although activity was abrogated following delta43 or deltatail truncations, suggesting that Ca(2+) mobilisation, PYK-2, or receptor internalisation are not requied for activation of SAPKs or ERK. These studies identify a novel sequence within the PAR-2 C-terminus essential for InsP(3) generation and PYK-2 activity but not mitogen-activated protein kinase (MAPK) activation.  相似文献   

4.
In the hippocampus, extracellular signal-regulated kinase (ERK) and the non-receptor protein proline-rich tyrosine kinase 2 (PYK2) are activated by depolarization and involved in synaptic plasticity. Both are also activated under pathological conditions following ischemia, convulsions, or electroconvulsive shock. Although in non-neuronal cells PYK2 activates ERK through the recruitment of Src-family kinases (SFKs), the link between these pathways in the hippocampus is not known. We addressed this question using K(+)-depolarized rat hippocampal slices. Depolarization increased the phosphorylation of PYK2, SFKs, and ERK. These effects resulted from Ca(2+) influx through voltage-gated Ca(2+) channels and were diminished by GF109203X, a protein kinase C inhibitor. Inhibition of SFKs with PP2 decreased PYK2 tyrosine phosphorylation dramatically, but not its autophosphorylation on Tyr-402. Moreover, PYK2 autophosphorylation and total tyrosine phosphorylation were profoundly altered in fyn-/- mice, revealing an important functional relationship between Fyn and PYK2 in the hippocampus. In contrast, ERK activation was unaltered by PP2, Fyn knock-out, or LY294002, a phosphatidyl-inositol-3-kinase inhibitor. ERK activation was prevented by MEK inhibitors that had no effect on PYK2. Immunofluorescence of hippocampal slices showed that PYK2 and ERK were activated in distinct cellular compartments in somatodendritic regions and nerve terminals, respectively, with virtually no overlap. Activation of ERK was critical for the rephosphorylation of a synaptic vesicle protein, synapsin I, following depolarization, underlining its functional importance in nerve terminals. Thus, in hippocampal slices, in contrast to cell lines, depolarization-induced activation of non-receptor tyrosine kinases and ERK occurs independently in distinct cellular compartments in which they appear to have different functional roles.  相似文献   

5.
Engagement of very late Ag-4 (integrin alpha(4)beta(1)) by ligands such as VCAM-1 markedly stimulates leukocyte migration mediated by LFA-1 (integrin alpha(L)beta(2)). This form of integrin trans-regulation in T cells requires the binding of paxillin to the alpha(4) integrin cytoplasmic domain. This conclusion is based on the abolition of trans-regulation in Jurkat T cells by an alpha(4) mutation (alpha(4)(Y991A)) that disrupts paxillin binding. Furthermore, cellular expression of an alpha(4)-binding fragment of paxillin that blocks the alpha(4)-paxillin interaction, selectively blocked VCAM-1 stimulation of alpha(L)beta(2)-dependent cell migration. The alpha(4)-paxillin association mediates trans-regulation by enhancing the activation of tyrosine kinases, focal adhesion kinase (FAK) and/or proline-rich tyrosine kinase-2 (Pyk2), based on two lines of evidence. First, disruption of the paxillin-binding site in the alpha(4) tail resulted in much less alpha(4)beta(1)-mediated phosphorylation of Pyk2 and FAK. Second, transfection with cDNAs encoding C-terminal fragments of Pyk2 and FAK, which block the function of the intact kinases, blocked alpha(4)beta(1) stimulation of alpha(L)beta(2)-dependent migration. These results define a proximal protein-protein interaction of an integrin cytoplasmic domain required for trans-regulation between integrins, and establish that augmented activation of Pyk2 and/or FAK is an immediate signaling event required for the trans-regulation of integrin alpha(L)beta(2) by alpha(4)beta(1).  相似文献   

6.
Surface Ig (sIg) expression is a critical checkpoint during avian B cell development. Only cells that express sIg colonize bursal follicles, clonally expand, and undergo Ig diversification by gene conversion. Expression of a heterodimer, in which the extracellular and transmembrane domains of murine CD8alpha or CD8beta are fused to the cytoplasmic domains of chicken Igalpha (chIgalpha) or Igbeta, respectively (murine CD8alpha (mCD8alpha):chIgalpha + mCD8beta:chIgbeta), or an mCD8alpha:chIgalpha homodimer supported bursal B cell development as efficiently as endogenous sIg. In this study we demonstrate that B cell development, in the absence of chIgbeta, requires both the Igalpha ITAM and a conserved non-ITAM Igalpha tyrosine (Y3) that has been associated with binding to B cell linker protein (BLNK). When associated with the cytoplasmic domain of Igbeta, the Igalpha ITAM is not required for the induction of strong calcium mobilization or BLNK phosphorylation, but is still necessary to support B cell development. In contrast, mutation of the Igalpha Y3 severely compromised calcium mobilization when expressed as either a homodimer or a heterodimer with the cytoplasmic domain of Igbeta. However, coexpression of the cytoplasmic domain of Igbeta partially complemented the Igalpha Y3 mutation, rescuing higher levels of BLNK phosphorylation and, more strikingly, supporting B cell development.  相似文献   

7.
Glucose serves as both a nutrient and regulator of physiological and pathological processes. Presently, we found that glucose and certain sugars rapidly activated extracellular signal-regulated kinase (ERK) by a mechanism that was: (a) independent of glucose uptake/metabolism and protein kinase C but nevertheless cytochalasin B-inhibitable; (b) dependent upon proline-rich tyrosine kinase-2 (PYK2), GRB2, SOS, RAS, RAF, and MEK1; and (c) amplified by overexpression of the Glut1, but not Glut2, Glut3, or Glut4, glucose transporter. This amplifying effect was independent of glucose uptake but dependent on residues 463-468, IASGFR, in the Glut1 C terminus. Accordingly, glucose effects on ERK were amplified by expression of Glut4/Glut1 or Glut2/Glut1 chimeras containing IASGFR but not by Glut1/Glut4 or Glut1/Glut2 chimeras lacking these residues. Also, deletion of Glut1 residues 469-492 was without effect, but mutations involving serine 465 or arginine 468 yielded dominant-negative forms that inhibited glucose-dependent ERK activation. Glucose stimulated the phosphorylation of tyrosine residues 402 and 881 in PYK2 and binding of PYK2 to Myc-Glut1. Our findings suggest that: (a) glucose activates the GRB2/SOS/RAS/RAF/MEK1/ERK pathway by a mechanism that requires PYK2 and residues 463-468, IASGFR, in the Glut1 C terminus and (b) Glut1 serves as a sensor, transducer, and amplifier for glucose signaling to PYK2 and ERK.  相似文献   

8.
9.
Interleukin-7 (IL-7) receptor signaling begins with activation of the Janus tyrosine kinases Jak1 and Jak3, which are associated with the receptor complex. To identify potential targets of these kinases, we examined Pyk2 (a member of the focal adhesion kinase family) using an IL-7-dependent murine thymocyte line, D1. We demonstrate that stimulation of D1 (or normal pro-T) cells by IL-7 rapidly increased tyrosine phosphorylation and enzymatic activity of Pyk2, with kinetics slightly lagging that of Jak1 and Jak3 phosphorylation. Conversely, IL-7 withdrawal resulted in a marked decrease of Pyk2 phosphorylation. Pyk2 was found to be physically associated with Jak1 prior to IL-7 stimulation and to increase its association with IL-7Ralpha chain following IL-7 stimulation. Pyk2 appeared to be involved in cell survival, because antisense Pyk2 accelerated the cell death process. Activation of Pyk2 via the muscarinic and nicotinic receptors using carbachol or via intracellular Ca(2+) rise using ionomycin/phorbol myristate acetate promoted survival in the absence of IL-7. These data support a role for Pyk2 in coupling Jak signaling to the trophic response.  相似文献   

10.
Stimulation of the interleukin-2 (IL-2) receptor results in phosphorylation and activation of cytosolic Raf-1 serine/threonine kinase. Herein, we report that enzymatically active Raf-1 is physically associated with the IL-2 receptor beta chain (p75) in T-cell blasts. Following stimulation with IL-2, Raf-1 dissociates from the IL-2 receptor complex and translocates to the cytosol. Genistein, a protein tyrosine kinase inhibitor, prevents the dissociation of enzymatically active Raf-1 from the ligand-stimulated IL-2 receptor complex. These data favor a model of IL-2 receptor activation in which an IL-2-activated protein tyrosine kinase phosphorylates the IL-2 receptor and/or receptor-bound Raf-1. Following tyrosine phosphorylation, enzymatically active Raf-1 dissociates from the IL-2 receptor and translocates into the cytosol.  相似文献   

11.
The consumption of cacao-derived (i.e., cocoa) products provides beneficial cardiovascular effects in healthy subjects as well as individuals with endothelial dysfunction such as smokers, diabetics, and postmenopausal women. The vascular actions of cocoa are related to enhanced nitric oxide (NO) production. These actions can be reproduced by the administration of the cacao flavanol (-)-epicatechin (EPI). To further understand the mechanisms behind the vascular action of EPI, we investigated the effects of Ca(2+) depletion on endothelial nitric oxide (NO) synthase (eNOS) activation/phosphorylation and translocation. Human coronary artery endothelial cells were treated with EPI or with bradykinin (BK), a well-known Ca(2+)-dependent eNOS activator. Results demonstrate that both EPI and BK induce increases in intracellular calcium and NO levels. However, under Ca(2+)-free conditions, EPI (but not BK) is still capable of inducing NO production through eNOS phosphorylation at serine 615, 633, and 1177. Interestingly, EPI-induced translocation of eNOS from the plasmalemma was abolished upon Ca(2+) depletion. Thus, under Ca(2+)-free conditions, EPI can stimulate NO synthesis independent of calmodulin binding to eNOS and of its translocation into the cytoplasm. We also examined the effect of EPI on the NO/cGMP/vasodilator-stimulated phosphoprotein (VASP) pathway activation in isolated Ca(2+)-deprived canine mesenteric arteries. Results demonstrate that under these conditions, EPI induces the activation of this vasorelaxation-related pathway and that this effect is inhibited by pretreatment with nitro-L-arginine methyl ester, suggesting a functional relevance for this phenomenon.  相似文献   

12.
Jak3 is responsible for growth signals by various cytokines such as interleukin (IL)-2, IL-4, and IL-7 through association with the common gamma chain (gammac) in lymphocytes. We found that T cells from Jak3-deficient mice exhibit impairment of not only cytokine signaling but also early activation signals and that Jak3 is phosphorylated upon T cell receptor (TCR) stimulation. TCR-mediated phosphorylation of Jak3 is independent of IL-2 receptor/gammac but is dependent on Lck and ZAP-70. Jak3 was found to be assembled with the TCR complex, particularly through direct association with CD3zeta via its JH4 region, which is a different region from that for gammac association. These results suggest that Jak3 plays a role not only in cell growth but also in T cell activation and represents cross-talk of a signaling molecule between TCR and growth signals.  相似文献   

13.
Reactive oxygen species (ROS) are generated as by-products of respiration and are used as signal transducing intermediates in out-in signaling pathways. ROS are also generated during inflammatory responses and it has been shown that hydrogen peroxide may trigger activation of B-lymphocytes, similar to cross-linking of surface immunoglobulins. On the other hand, both exogenous and endogenous generated ROS are a major source of nuclear and mitochondrial DNA (mtDNA) damage. The base excision repair (BER) enzyme APE/Ref-1 normally repairs small nuclear DNA lesion such as oxidized or alkylated bases. It is not clear though whether DNA repair mechanisms able to abolish oxidative damage from nuclear DNA are present into mitochondria too. Here we show by confocal microscopy and Western blot analysis that in the B-lymphocyte Raji cell line a fraction of APE/Ref-1 rapidly re-localizes into mitochondria following H(2)O(2) activation. Targeting of APE/Ref-1 to mitochondria is not associated with cytochrome-c loss or apoptosis induction. These findings indicate that the APE/Ref-1 translocates to mitochondria in response to oxidative stress and thereby it might exert a protective function.  相似文献   

14.
Human CD2 regulates T cell activation and adhesion via mechanisms yet to be fully understood. This study focuses on CD2BP1, a CD2 cytoplasmic tail-binding protein preferentially expressed in hematopoetic cells. Structural and functional analyses suggest that CD2BP1 acts as a scaffold protein, participating in regulation of the actin cytoskeleton. In this study, using a murine Ag-specific primary T cell transduction system to assess CD69, IL-2, and IFN-gamma expression, we provide evidence that CD2BP1 directly and negatively impacts T cell activation via isolated CD2 triggering or TCR stimulation dependent on coordinate CD2 engagement. Disruption of protein tyrosine phosphatase-PEST and/or CD2BP1 association with the CD2 signalsome rescues T cells from the inhibitory effect of CD2 crosslinking. The overexpression of CD2BP1 selectively attenuates phospholipase Cgamma1, ERK1/2, and p38 phosphorylation without abrogating CD2-independent TCR stimulation. This study provides new insight on the regulation of T cell activation and may have implications for autoimmune processes known to be associated with CD2BP1 mutations.  相似文献   

15.
The ability of insulin to activate the insulin receptor protein kinase is shown to be completely dependent on prior beta subunit tyrosine autophosphorylation. Autophosphorylation in the presence of insulin is a highly concerted reaction; tryptic digestion of insulin receptor beta subunits derived from preparations whose kinase activation ranges from under 5% to 100% of maximal yields the same array of [32P]Tyr(P)-containing peptides over the entire range. Of special note is the significant contribution of multiply phosphorylated forms of tryptic peptides corresponding to proreceptor residues 1144-1152 (from the "tyrosine kinase" domain) and 1314-1329 (near the carboxyl terminus) to overall beta subunit phosphorylation at kinase activations of 5% and under. Thus, partially activated/autophosphorylated receptor preparations consist of mixtures of unactivated unphosphorylated receptors and activated fully (or nearly fully) phosphorylated receptors. The latter can be selectively removed by adsorption to antiphosphotyrosine antibodies. This abrupt multiple phosphorylation of individual receptor molecules explains why, in the presence of insulin, overall beta subunit tyrosine phosphorylation tracks closely with kinase, up to approximately 90% activation. Insulin stimulates phosphorylation into all domains (involving at least 6 of the 13 tyrosines on the intracellular portion of the beta subunit) but does not cause the appearance of "new" 32P-labeled species. Rather, insulin directs 32P incorporation preferentially into those domains most productive of kinase activation. Phosphorylation of the tyrosine residues at 1146, 1150, and 1151 correlates most closely with kinase activation. These residues show the largest 32P incorporation during rapid kinase activation; moreover, in comparisons of receptors with similar overall autophosphorylation but very different activations (or similar activations but different extents of autophosphorylation), achieved by omitting insulin or varying [ATP], the phosphorylation of peptide 1144-1152 tracks closely with kinase activation, and phosphorylation of sites and Mr 4000-5000 tryptic peptide (presumably Tyr 953 and/or 960) tract nearly as well. By contrast the extent of phosphorylation of the carboxy-terminal peptide is frequently dissociated from the extent of kinase activation. Phosphorylation of this latter domain probably underlies a beta subunit function other than tyrosine kinase activity.  相似文献   

16.
Eicosapentaenoic acid (EPA), but not its metabolites (docosapentaenoic acid and docosahexaenoic acid), stimulated nitric oxide (NO) production in endothelial cells in situ and induced endothelium-dependent relaxation of bovine coronary arteries precontracted with U46619. EPA induced a greater production of NO, but a much smaller and more transient elevation of intracellular Ca(2+) concentration ([Ca(2+)]i), than did a Ca(2+) ionophore (ionomycin). EPA stimulated NO production even in endothelial cells in situ loaded with a cytosolic Ca(2+) chelator 1,2-bis-o-aminophenoxythamine-N',N',N'-tetraacetic acid, which abolished the [Ca(2+)]i elevations induced by ATP and EPA. The EPA-induced vasorelaxation was inhibited by N(omega)-nitro-L-arginine methyl ester. Immunostaining analysis of endothelial NO synthase (eNOS) and caveolin-1 in cultured endothelial cells revealed eNOS to be colocalized with caveolin in the cell membrane at a resting state, while EPA stimulated the translocation of eNOS to the cytosol and its dissociation from caveolin, to an extent comparable to that of the eNOS translocation induced by a [Ca(2+)]i-elevating agonist (10 microM bradykinin). Thus, EPA induces Ca(2+)-independent activation and translocation of eNOS and endothelium-dependent vasorelaxation.  相似文献   

17.
Platelets represent a target of reactive oxygen species produced under oxidative stress conditions. Controversial data on the effect of these species on platelet functions have been reported so far. In this study we evaluated the effect of a wide range of H(2)O(2) concentrations on platelet adhesion to immobilized fibrinogen and on pp72(syk) and pp125(FAK) tyrosine phosphorylation. Our results demonstrate that: (1) H(2)O(2) does not affect the adhesion of unstimulated or apyrase-treated platelets to immobilized fibrinogen; (2) H(2)O(2) does not affect pp72(syk) phosphorylation induced by platelet adhesion to fibrinogen-coated dishes; (3) H(2)O(2) reduces, in a dose-dependent fashion, pp125(FAK) phosphorylation of fibrinogen-adherent platelets; (4) concentrations of H(2)O(2) near to physiological values (10-12 microM) are able to strengthen the subthreshold activation of pp125(FAK) induced by epinephrine in apyrase-treated platelets; (5) H(2)O(2) doses higher than 0.1 mM inhibit ADP-induced platelet aggregation and dense granule secretion. The ability of H(2)O(2) to modulate pp125(FAK) phosphorylation suggests a role of this molecule in physiological hemostasis as well as in thrombus generation.  相似文献   

18.
19.
Reaction of the T cell membrane with monoclonal antibodies to T3 can initiate cellular activation, and this is associated with increased intracellular Ca2+ and inositol-trisphosphate (IP3) release. We therefore studied the possible involvement of Ca2+/phospholipid-dependent kinase (C-kinase) in these phenomena. Quantitative assays of exogenous substrate phosphorylation in unstimulated cells showed Ca2+/phospholipid-dependent kinase activity in the cytosol, but no comparable activity in the particulate fractions corresponding to membrane and cytoskeleton material. At concentrations of soluble anti-T3 that partially activate T cells in the absence of macrophages, there was a 50 to 60% decrease in C-kinase activity in the cytosol, with a comparable increase in activity in the membrane fraction. A similar transfer of activity was also induced with the known C-kinase activator, 12-O-tetradecanoyl-phorbol-13-acetate, although redistribution was more rapid in onset, more complete, and more sustained. Redistribution of enzyme activity was additionally confirmed by qualitative assays of endogenous substrate phosphorylation. Labeling of intact cells followed by immunoprecipitation analysis with anti-T3 indicated signal-dependent phosphorylation of two components of the T3 complex and an unidentified 94,000 substrate that was resistant to reduction and alkylation. These findings are consistent with an important role for C-kinase in transduction of membrane events by the T3-Ti complex.  相似文献   

20.
Human bone morphogenetic protein-2 is a representative of the transforming growth factor-beta (TGF-beta) superfamily of cytokines. It was produced in high-cell-density cultivations of recombinant Escherichia coli leading to the formation of inclusion bodies with aggregated inactive protein so that the protein had to be solubilized and renatured. Thus, the biological activity of the recombinant protein had to be determined. To avoid time-consuming cell-based assays or radioactive labelling of proteins enzyme-linked immunoreceptor assays were developed. They were based on the specific interaction between the biologically active protein and its receptors, of which the extracellular ligand binding domains were tagged with the Fc part of human IgG and expressed in insect cells. The amount of bound ligand, corresponding to the biologically active recombinant protein, was determined via enzyme-labelled antibodies. Application to various batches of protein showed that not only the amount of active protein could be quantified but also the quality of the protein preparations could be evaluated in significantly shorter analysis times than with conventional cell-based assays.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号