首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The response to exercise stress is characterized by an increase in circulating catecholamines and rapid synthesis of the inducible member of the 70 kDa family of heat shock proteins (Hsp70). Cell culture studies indicate that Hsp70 expression is influenced by beta-adrenergic receptor intermediates including cyclic AMP (cAMP) and cAMP dependent protein kinase (PKA). Thus, in the present investigation, the effect of a beta-adrenergic agonist, isoproterenol (ISO; 10 mg/kg) and a beta-adrenergic antagonist, nadolol (NAD; 25 mg/kg), on the in vivo expression of Hsp70 in rodent cardiac and skeletal muscle following moderate (MOD; 17 m/min) and exhaustive (EXH; 30 m/min) exercise was examined. While ISO alone did not induce Hsp70 synthesis, ISO treatment potentiated Hsp70 expression following MOD in the white vastus and heart (395+/-29 and 483+/-29% greater than control respectively, P < 0.05). Furthermore, this effect was reversed with combined beta-adrenergic agonist and antagonist treatment (ISO+NAD) indicating that the isoproterenol induced increase in post-exercise Hsp70 expression was mediated via beta-adrenergic receptor activity. However, there were no differences in Hsp70 levels among treatment groups following EXH. The failure of NAD to attenuate Hsp70 accumulation following EXH suggests that beta-adrenergic receptor activity is not the main signal in the induction of Hsp70 following exercise. Hsp70 induction was dependent on exercise intensity and ISO administration prior to MOD resulted in Hsp70 levels similar to those observed following EXH. The results from the present investigation indicate that beta-adrenergic receptor stimulation does not induce Hsp70 synthesis per se, but may be one factor involved in the complex regulation of the stress response to exercise in vivo.  相似文献   

2.
Stimulation of beta-adrenoreceptors in rat parotid acinar cells in vitro by the beta-adrenergic agonist isoproterenol induces steady-state levels of c-fos mRNA and c-fos protein in these cells. A dramatic increase in the steady-state levels of c-fos mRNA was observed at 60 min, followed by a decrease at 2 h with a second peak at 4 h. c-fos induction in rat parotid acinar cells in vitro seems to be mediated by cAMP. Increased levels of p53 and c-myc mRNA were detected only at 60 min. c-abl and c-sis were also induced by isoproterenol but in a pattern different from that seen with c-fos. c-abl was the only oncogene in rat parotid gland which showed increased expression after chronic isoproterenol treatment of rats. In rat parotid acinar cells we observed no correlation between DNA synthesis and c-fos induction.  相似文献   

3.
The skeletal alpha-actin gene encodes a major component of the embryonic cardiac sarcomere that is strongly and selectively re-induced during beta-adrenoceptor-mediated hypertrophy in neonatal rat cardiac myocytes. We present evidence that beta-adrenergic induction of this gene is mediated, not by cAMP, but by a calcium-dependent pathway involving ryanodine-sensitive calcium stores. Nifedipine-induced blockade of the plasma membrane L-type calcium entry channel prevented induction of skeletal alpha-actin mRNA by isoproterenol. Activation of calcium entry by the dihydropyridine agonist Bay K8644 independently induced skeletal alpha-actin mRNA, as did cholera toxin-mediated activation of Gs. Induction of skeletal alpha-actin mRNA by compounds that directly elevate cAMP was weak relative to their effects on other cAMP-dependent phenomena and required calcium entry. In addition, selective inhibition of protein kinase A with KT5720 did not block beta-adrenergic induction of skeletal alpha-actin. Calcium ionophore A23187 did not induce skeletal actin, but prevented its induction by isoproterenol. Ryanodine had bimodal effects: 10(-10) M ryanodine induced skeletal alpha-actin mRNA, whereas 10(-6) M ryanodine prevented skeletal actin induction by beta-adrenergic stimuli. We postulate that beta-adrenergic stimulation of skeletal alpha-actin mRNA requires G-protein-coupled calcium channel activation and compartmentalized calcium release in a manner independent of the cAMP/protein kinase A signal pathway.  相似文献   

4.
Mutant clones resistant to ACTH-induced desensitization of adenylyl cyclase (Y1DR) were previously isolated from the Y1 mouse adrenocortical tumor cell line. In this study, both parental Y1 cells (Y1DS) and a Y1DR mutant were transfected with a gene encoding the mouse beta 2-adrenergic receptor, and transfectants isolated from both Y1DS and Y1DR cells were shown to express beta 2-adrenergic receptors. These transfectants responded to the beta-adrenergic agonist isoproterenol with increases in adenylyl cyclase activity and steroidogenesis and changes in cell shape. The transfectants were analyzed to determine whether the Y1DR mutation was specific for ACTH-induced desensitization of adenylyl cyclase or also affected desensitization of adenylyl cyclase via the beta 2-adrenergic receptor. Treatment of intact Y1DS transfectants with isoproterenol caused a rapid desensitization of the adenylyl cyclase system to further stimulation by the beta-adrenergic agonist. Treatment of intact cells with isoproterenol did not affect ACTH-stimulated adenylyl cyclase activity, indicating that desensitization was agonist specific or homologous. Y1DR transfectants were resistant to the desensitizing effects of isoproterenol in intact cells as well as in cell homogenates. These results indicate that the mutation in Y1DR transfectants affects a component that is common to the pathways of isoproterenol-induced desensitization and ACTH-induced desensitization of adenylyl cyclase. As determined using the hydrophilic beta-receptor antagonist CGP-12177, isoproterenol caused a rapid sequestration of cell surface receptors in both Y1DS and Y1DR transfectants. From these results we infer that the DR phenotype does not arise from mutations affecting receptor sequestration and that receptor number does not limit the response to isoproterenol in these transfectants.  相似文献   

5.
Treatment of cultured Kupffer cells with the beta-adrenergic agonist isoproterenol (10 microM) for a short period of time (30 min) attenuated the subsequent platelet-activating factor (PAF)-induced arachidonic acid release and cyclooxygenase-derived eicosanoid (e.g. thromboxane B2 and prostaglandin E2) production. This effect of isoproterenol was highly specific since the alpha-adrenergic agonist phenylephrine and the beta-adrenergic antagonist propranolol had no effect on the stimulatory effect of 1-O-alkyl-2-acetyl-sn-glycero-3-phosphocholine (AGEPC). The inhibitory effect of isoproterenol on the AGEPC-induced arachidonic acid release was demonstrated through the use of a specific beta-adrenergic subtype agonist and antagonist to be mediated by beta 2-adrenergic receptors on Kupffer cells. These inhibitory effects of isoproterenol can be mimicked by dibutyryl cAMP but not by dibutyryl cGMP, suggesting that a cAMP-dependent mechanism is likely involved in the regulatory action of isoproterenol. Ligand binding studies indicated that short term (i.e. 30 min) treatment of the cultured Kupffer cells with either isoproterenol or dibutyryl cAMP had no effect on the specific [3H]PAF binding. However, long term incubation (9-24 h) with dibutyryl cAMP caused down-regulation of the PAF receptors in rat Kupffer cells. Forskolin (0.1 mM), an adenylyl cyclase activator, down-regulated the surface expression of the AGEPC receptors more rapidly, decreasing the specific [3H]AGEPC binding by approximately 40% within 2 h. The receptor regulatory effect of dibutyryl cAMP and forskolin was time- and concentration-dependent. These observations suggest that a cAMP-dependent mechanism coupled with beta 2-adrenergic receptors may have important regulatory effects on the PAF receptor and post-receptor signal transducing mechanisms for PAF in hepatic Kupffer cells.  相似文献   

6.
The beta-adrenergic agonist isoproterenol inhibited the glycogenolytic response of platelet-activating factor (AGEPC, 1-O-hexadecyl-2-acetyl-sn-glycero-3-phosphocholine) in perfused livers derived from fed rats. AGEPC-stimulated hepatic vasoconstriction, measured by increases in portal vein pressure, also was inhibited by prior isoproterenol infusion. Isoproterenol-mediated inhibition of these hepatic responses to AGEPC was not apparent when isoproterenol (10 microM) was coinfused with the beta-receptor antagonist propranolol (75 microM) or when isoproterenol was replaced with the alpha-adrenergic agonist phenylephrine (10 microM). alpha-Agonist-induced glycogenolysis and vasoconstriction in the perfused liver was unaffected by isoproterenol infusion. Glucagon (2.3 nM) had no effect on the glycogenolytic or vasoconstrictive responses of the liver to AGEPC despite the fact that glucagon increased hepatic cAMP levels to a far greater extent than isoproterenol. Additionally, inhibition of the hepatic responses to AGEPC by isoproterenol occurred in perfused livers from mature rats (i.e. greater than 300 g) in which liver parenchymal cells lack functional beta-adrenergic receptors. The data presented in this study illustrate a specific inhibition of AGEPC-induced hepatic glycogenolysis and vasoconstriction by beta-adrenergic stimulation of the perfused liver. This inhibition appears to be mediated by interaction of isoproterenol with nonparenchymal cells within the liver. These findings are consistent with the concept that AGEPC stimulates hepatic glycogenolysis by an indirect mechanism involving hepatic vasoconstriction.  相似文献   

7.
The effect of isoproterenol (IPR) on bone-marrow cAMP content was investigated in vivo and in vitro. In unirradiated CFW mice, the bone-marrow cAMP content was found to be elevated by the administration of noradrenaline, adrenaline and isoproterenol. After IPR administration, the increase in cAMP was biphasic with maxima at 1 and 15 min. An increase in cAMP content was also noted in bone-marrow of sublethally-irradiated mice, but no further increase was observed 15 min after the administration of IPR. Elevation of cAMP by either IPR or radiation was prevented by pretreatment with the beta-adrenergic blocking agent--propranolol. IPR was also effective in increasing the cAMP content when added to suspension of bone-marrow cells. This effect was abolished by propranolol. IPR did not increase cAMP levels in bone-marrow cells isolated from irradiated animals. The results suggest that the differentiated bone-marrow cells have beta-adrenergic receptors.  相似文献   

8.
Conditions have been developed for desensitizing the beta-adrenergic receptor-coupled adenylate cyclase of turkey erythrocytes in a cell-free system. Desensitization is observed when cell lysates are incubated with isoproterenol or cAMP analogs for 30 min at 37 degrees C. Maximally effective concentrations of isoproterenol produce a 41.0 +/- 1.55% loss of iosproterenol-stimulated and a 15.0 +/- 2.35% loss of fluoride-stimulated enzyme activity. cAMP causes a 26.5 +/- 1.5% fall in isoproterenol-stimulated and a 21.5 +/- 4.4% fall in fluoride-sensitive activity. Desensitization by isoproterenol is dose-dependent, stereospecific, and blocked by the beta-adrenergic antagonist propranolol. Cell-free desensitization required ATP, Mg2+, and factor(s) present in the soluble fraction of the cell. Nonphosphorylating analogs of ATP did not support desensitization. Desensitization by agonist or cAMP in the cell-free system caused structural alterations in the beta-adrenergic receptor peptides apparent as an altered mobility of the photoaffinity labeled receptor peptides on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. As with the desensitization reaction, supernatant factors and ATP were also required for the agonist or cAMP-promoted receptor alterations. These data indicate that beta-adrenergic agonists promote a cAMP-mediated process which leads to receptor alterations and desensitization. The reactions involved in this process require ATP and soluble cellular factors. Additional processes must also occur to account for decreases in fluoride-sensitive enzyme activity. The availability of this cell-free system should facilitate elucidation of the molecular mechanisms involved in these processes.  相似文献   

9.
We investigated the role of cyclic AMP (cAMP) in alpha 2- and possible beta-adrenergic regulation of arylalkylamine-N-acetyltransferase (NAT), the penultimate enzyme in the biosynthesis of melatonin. The study was performed on primary cultures of dispersed chick pineal cells. Electron microscopy indicated that approximately 70% of the dispersed cells were modified photoreceptors. A similar proportion of melatoninergic cells was detected by immunocytochemical labeling of hydroxyindole-O-methyltransferase, the final enzyme in the biosynthesis of melatonin. Adrenergic agonists caused a sustained 50% inhibition of forskolin-augmented cAMP levels and NAT activity, with an alpha 2-adrenergic potency order of UK 14,304 greater than or equal to clonidine greater than norepinephrine greater than phenylephrine. Noradrenergic inhibition of 3-isobutyl-1-methylxanthine-augmented cAMP levels and NAT activity was reversed by yohimbine (an alpha 2-adrenergic antagonist) but not by prazosin (an alpha 1-adrenergic antagonist). The alpha-adrenergic inhibition of cAMP accumulation and NAT activity was prevented by pertussis toxin. Addition of propranolol (a beta-adrenergic antagonist) was necessary to observe an inhibitory effect of norepinephrine on cAMP levels but not on NAT activity. Similarly, the beta-adrenergic agonist isoproterenol transiently increased cAMP levels but did not affect NAT activity. The data indicate that the alpha 2-adrenergic inhibition of NAT activity in chick pineal cells is strongly correlated with an inhibition of cAMP accumulation. The lack of beta-adrenergic effect on NAT suggests that beta-adrenoceptors might be on a subset of cells that do not produce melatonin or that the beta-adrenergic-induced increase in cAMP levels is too transient to affect NAT.  相似文献   

10.
Catecholamine administration elevates plasma cyclic AMP (cAMP) levels but the source of the cAMP is unknown. To determine possible sources, plasma cAMP levels were determined in blood vessels across the head, liver, kidney and lung in anesthetized dogs infused with the beta-adrenergic agonist, isoproterenol. Only the head showed an increased release of cAMP into the blood. The kidneys removed cAMP from the blood while liver and lung showed no change. This in vivo demonstration of release of cAMP from the head represents contributions from brain and facial muscles and may be a useful approach to study brain involvement in the action of various hormones and drugs.  相似文献   

11.
Many studies have demonstrated a biphasic effect of peroxynitrite in the myocardium, but few studies have investigated this biphasic effect on beta-adrenergic responsiveness and its dependence on contractile state. We have previously shown that high 3-morpholinosydnonimine (SIN-1) (source of peroxynitrite, 200 micromol/L) produced significant anti-adrenergic effects during maximal beta-adrenergic stimulation in cardiomyocytes. In the current study, we hypothesize that the negative effects of high SIN-1 will be greatest during high contractile states, whereas the positive effects of low SIN-1 (10 micromol/L) will predominate during low contractility. Isolated murine cardiomyocytes were field stimulated at 1 Hz, and [Ca(2+)](i) transients and shortening were recorded. After submaximal isoproterenol (ISO) (beta-adrenergic agonist, 0.01 micromol/L) stimulation, 200 micromol/L SIN-1 induced two distinct phenomena. Cardiomyocytes undergoing a large response to ISO showed a significant reduction in contractility, whereas cardiomyocytes exhibiting a modest response to ISO showed a further increase in contractility. Additionally, 10 micromol/L SIN-1 always increased contractility during low ISO stimulation, but had no effect during maximal ISO (1 micromol/L) stimulation. SIN-1 at 10 micromol/L also increased basal contractility. Interestingly, SIN-1 produced a contractile effect under only one condition in phospholamban-knockout cardiomyocytes, providing a potential mechanism for the biphasic effect of peroxynitrite. These results provide clear evidence for a biphasic effect of peroxynitrite, with high peroxynitrite modulating high levels of beta-adrenergic responsiveness and low peroxynitrite regulating basal function and low levels of beta-adrenergic stimulation.  相似文献   

12.
Desensitization of turkey erythrocyte adenylate cyclase by exposure of these cells to the beta-adrenergic agonist isoproterenol leads to a decrease in subsequent adenylate cyclase stimulation by isoproterenol, F-, or Gpp(NH)p without any apparent loss or down regulation of receptors (B.B. Hoffman et al. J. Cyclic Nucl. Res. 5: 363-366, 1979). We now report that the desensitization is associated with a functional "uncoupling" of the beta-adrenergic receptor. This is evidenced by an impaired ability of receptors to form a high affinity, guanine nucleotide sensitive complex with agonist as assessed by computer analysis of radioligand binding data. The changes in adenylate cyclase responsiveness as well as the alterations in receptor affinity for agonists are reproduced by incubation of turkey erythrocytes with the cAMP analog 8-Bromo-adenosine 3':5'- cyclic monophosphate. These findings suggest that one possible mechanism for the development of desensitization in adenylate cyclase systems may be a cAMP mediated alteration of a component(s) of the beta-adrenergic receptor-adenylate cyclase complex which results in impaired receptor-cyclase coupling.  相似文献   

13.
This study evaluated the physiological effects of compounds that increase adenosine 3',5'-cyclic monophosphate (cAMP) on changes in pulmonary capillary permeability and vascular resistance induced by ischemia-reperfusion (I-R) in isolated blood-perfused rabbit lungs. cAMP was elevated by 1) beta-adrenergic stimulation with isoproterenol (ISO, 10(-5) M), 2) post-beta-receptor stimulation of adenylate cyclase with forskolin (FSK, 10(-5) M), 3) and dibutyryl cAMP (DBcAMP, 1 mM), a cAMP analogue. Vascular permeability was assessed by determining the capillary filtration coefficient (Kf,c), and capillary pressure was measured using the double occlusion technique. The total, arterial, and venous vascular resistances were calculated from measured pulmonary arterial, venous, and capillary pressures and blood flow. Reperfusion after 2 h of ischemia significantly (P less than 0.05) increased Kf,c (from 0.115 +/- 0.028 to 0.224 +/- 0.040 ml.min-1.cmH2O-1.100 g-1). These I-R-induced changes in capillary permeability were prevented when ISO, FSK, or DBcAMP was added to the perfusate at reperfusion (0.110 +/- 0.022 and 0.103 +/- 0.021, 0.123 +/- 0.029 and 0.164 +/- 0.024, and 0.153 +/- 0.030 and 0.170 +/- 0.027 ml.min-1.cmH2O-1.100 g-1, respectively). I-R significantly increased total, arterial, and venous vascular resistances. These increases in vascular resistance were also blocked by ISO, FSK, and DBcAMP. These data suggest that beta-adrenergic stimulation, post-beta-receptor activation of adenylate cyclase, and DBcAMP prevent the changes in pulmonary vascular permeability and vascular resistances caused by I-R in isolated rabbit lungs through a mechanism involving an increase in intracellular levels of cAMP.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
We measured the effects of a beta-adrenergic agonist, isoproterenol, on chloride transport and volume regulation of lamprey (Lampetra fluviatilis) erythrocytes in isotonic (288 mosm L(-1)) and hypotonic (192 mosm L(-1)) medium. Isoproterenol at a high concentration (10(-5) M) did not influence chloride transport in isotonic medium but markedly increased chloride fluxes in hypotonic conditions: unidirectional flux increased from 100 mmol kg dcw(-1) h(-1) in the absence to 350 mmol kg dcw(-1) h(-1) (dcw=dry cell weight) in the presence of isoproterenol. Simultaneously, the half-time for volume recovery decreased from 27 to 9 min. Isoproterenol caused an increase in cellular cyclic AMP (cAMP) concentration. The stimulation of chloride transport in hypotonic conditions could be induced by application of the permeable cAMP analogue, 8-bromo-cyclic AMP, suggesting that the effect of beta-adrenergic stimulation on chloride transport occurs downstream of cAMP production. As isoproterenol did not affect unidirectional rubidium fluxes in hypotonic conditions, the transport pathway influenced by beta-adrenergic stimulation is most likely the swelling-activated chloride channel. Because the beta-adrenergic agonist only influenced the transport in hypotonic conditions despite the fact that cAMP concentration also increased in isotonic conditions, the activation may involve a volume-dependent conformational change in the chloride channel.  相似文献   

15.
16.
We have examined the regulation of two key enzymes that control polyamine biosynthesis-L-ornithine decarboxylase (ODC) and S-adenosylmethionine decarboxylase (SAMDC) - by agents increasing cAMP in S49 lymphoma cells. Incubation of wild type S49 cells with beta-adrenergic agonists (terbutaline or isoproterenol) inhibited ODC and SAMDC activities rapidly (less than 2 hr). more quickly than these agents arrested the cells in the G1 phase of the cell cycle. The beta-adrenergic antagonist propranolol blocked inhibition of ODC activity produced by isoproterenol, but only if added simultaneously or less than 4 hr after the agonist. Incubation of wild type S49 cells with cholera toxin or PGE1 also inhibited ODC activity. Decreases in ODC activity produced by beta-adrenergic agonists, cholera toxin, PGE1 or dibutyryl cAMP were all enhanced by the phosphodiesterase inhibitor Ro 20-1724. Results of studies of ODC and SAMDC activity in S49 variants having lesions in the pathway of cAMP generation and action were as follows: kin- cells (which lack cAMP-dependent protein kinase activity) showed no inhibition of ODC by any agent; AC- cells (which have absent nucleotide coupling units in their adenylate cyclase system) only demonstrated inhibition in response to dibutyryl cAMP; UNC cells (which have deficient coupling of hormone receptors and adenylate cyclase) only demonstrated inhibition in response to dibutyryl cAMP and cholera toxin, and beta-depleted cells (which have a decreased number of beta-adrenergic receptors) responded as did wild type cells except for absent response to isoproterenol. We conclude that inhibition of ODC and SAMDC activity in S49 cells is an early response to agents that increase cAMP and that this action occurs via the "classical" pathways of activation of adenylate cyclase and protein kinase. These results in S49 cells contrast with evidence in other systems in which cAMP has been suggested to enhance polyamine biosynthesis, perhaps through alternative mechanisms.  相似文献   

17.
Intracardiac cAMP levels are modulated by hormones and neuromediators with specific effects on contractility and metabolism. To understand how the same second messenger conveys different information, mutants of the rat olfactory cyclic nucleotide-gated (CNG) channel alpha-subunit CNGA2, encoded into adenoviruses, were used to monitor cAMP in adult rat ventricular myocytes. CNGA2 was not found in native myocytes but was strongly expressed in infected cells. In whole cell patch-clamp experiments, the forskolin analogue L-858051 (L-85) elicited a non-selective, Mg2+ -sensitive current observed only in infected cells, which was thus identified as the CNG current (ICNG). The beta-adrenergic agonist isoprenaline (ISO) also activated ICNG, although the maximal efficiency was approximately 5 times lower than with L-85. However, ISO and L-85 exerted a similar maximal increase of the L-type Ca2+ current. The use of a CNGA2 mutant with a higher sensitivity for cAMP indicated that this difference is caused by the activation of a localized fraction of CNG channels by ISO. cAMP-dependent protein kinase (PKA) blockade with H89 or PKI, or phosphodiesterase (PDE) inhibition with IBMX, dramatically potentiated ISO- and L-85-stimulated ICNG. A similar potentiation of beta-adrenergic stimulation occurred when PDE4 was blocked, whereas PDE3 inhibition had a smaller effect (by 2-fold). ISO and L-85 increased total PDE3 and PDE4 activities in cardiomyocytes, although this effect was insensitive to H89. However, in the presence of IBMX, H89 had no effect on ISO stimulation of ICNG. This study demonstrates that subsarcolemmal cAMP levels are dynamically regulated by a negative feedback involving PKA stimulation of subsarcolemmal cAMP-PDE.  相似文献   

18.
19.
Agonist-promoted down-regulation of beta-adrenergic receptor mRNA was investigated in S49 mouse lymphoma variants with mutations in elements of hormone-sensitive adenylate cyclase. In wild-type cells steady-state levels of beta-adrenergic receptor mRNA were established by DNA-excess solution hybridization to be 1.72 +/- 0.08 (n = 8) amol/microgram total cellular RNA. Receptor mRNA levels declined 35-45% in response to stimulation by the beta-adrenergic agonist (-)isoproterenol or forskolin as described previously in DDT1 MF-2 cells (Hadcock, J. R., and Malbon, C. C. (1988) Proc. Natl. Acad. Sci. U. S. A. 85, 5021-5025). Agonist-promoted cAMP accumulation and down-regulation of receptor mRNA were analyzed in three variants with mutations in Gs alpha (H21a, unc, cyc-) and a single variant lacking cAMP-dependent protein kinase activity (kin-). H21a (Gs alpha coupled to receptor, but not to adenylate cyclase), unc (Gs alpha uncoupled from receptor), and cyc- (lacking Gs alpha) variants accumulated cAMP and down-regulated beta AR mRNA in response to forskolin. In unc and cyc- cells isoproterenol failed to stimulate cAMP; accumulation and down-regulation of receptor mRNA was not observed. H21a cells, in contrast, displayed agonist-promoted regulation of beta-adrenergic receptor mRNA but only basal levels of cAMP accumulation in response to isoproterenol. The kin- cells displayed cAMP accumulation in response to forskolin as well as to isoproterenol but no down-regulation of receptor mRNA or receptor expression. Taken together these data demonstrate several features of agonist-promoted down-regulation of mRNA: (i) cAMP-dependent protein kinase activity is required for down-regulation of mRNA (kin-), although elevated cAMP accumulation is not (H21a); (ii) functional receptor-Gs coupling is required (H21a), and clones lacking Gs alpha (cyc-) or receptor Gs coupling (unc) lack the capacity to down-regulate mRNA in response to agonist; and (iii) in the presence of basal levels of cAMP and cAMP-dependent protein kinase activity, functional receptor-Gs coupling (H21a) to some other effector other than adenylate cyclase may be propagating the signal.  相似文献   

20.
Glucagon and prostaglandin E1 stimulate adenylate cyclase in Madin-Darby canine kidney cells with an approximate EC50 of 3*10(-8) and 1*10(-7) M respectively. The rise in cAMP is accompanied by a transient rise in intracellular Ca++ measured with the fluorescent calcium indicator Indo-1. A comparable increase in intracellular Ca2+ without a rise in cAMP occurs with the cholinergic agonist carbamylcholine. Stimulation of adenylate cyclase by the beta-adrenergic agonist isoproterenol or directly by forskolin has no effect on intracellular Ca++. By all criteria studied the rise in intracellular Ca++ and the increase in cAMP are independent from each other.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号