首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To make bovine embryo sexing under farm conditions more feasible we developed a simplified protocol utilizing manual biopsy and detection of the Y chromosome directly from polymerase chain reaction (PCR) reaction tubes. Twenty-four embryos (morulae and blastocysts) were biopsied manually into 2 to 4 samples. One sample of each original embryo was diagnosed for sex, based on restriction fragment length polymorphism of PCR-amplified DNA of the ZFX/ZFY locus. The remaining 44 samples were diagnosed using the tube detection assay. In this assay the biopsies were pipetted into 0.5 -ml reaction tubes containing lysis mixture, incubated 10 to 60 min at 37 degrees C and inactivated 10 min at 98 degrees C. Then the PCR mixture was added containing buffer, DNA polymerase, ethidium bromide and primers designed to amplify the highly repeated btDYZ-1 region of the bovine Y chromosome. After 50 cycles of PCR, the reaction tubes were examined under UV illumination for pink fluorescence indicating the presence of Y-chromosomal DNA. All sexing results from the replicates were in agreement with the ZFX/ZFY assay, with 12 of the original embryos diagnosed as females and 12 as males. We conclude that highly efficient and accurate PCR-sexing of embryos can be accomplished without the use of micromanipulators, control primers and electrophoresis. The 2 reaction mixtures needed for sex diagnosis can be stored at -20 degrees C and -196 degrees C, respectively. The tube detection assay minimizes the risk of carryover contamination by previously amplified products as there is no need to open the tubes following PCR.  相似文献   

2.
Shi L  Yue W  Ren Y  Lei F  Zhao J 《Animal reproduction science》2008,105(3-4):398-403
The objective of this study was to obtain a fast, accurate and reliable method of determining the sex of goat embryos prior to implantation through amplification of the high-motility-group (HMG) box of the sex-determining region of the Y chromosome (SRY) gene of the goats. Goat specific primers were designed for duplex polymerase chain reaction (PCR). As an internal control gene, the goat beta-action gene sequence was simultaneously amplified together with the HMG box of goat SRY gene. Males showed both 1 SRY band and 1 beta-action band, but only 1 beta-action band was present in the agarose gel electrophoresis of females. The result indicated that the goat HMG-box sequence motif of SRY was male specific. Afterward, the optimized PCR procedure was applied in 30 embryo biopsies and the biopsied embryos were transferred into 30 recipient female goats. The sex of the 13 kids proved anatomically corresponded to the sex determined by PCR (100% accuracy). Thus, this study showed that this duplex PCR method can be applied to sex the goat pre-implantation embryos and to manipulate the sex ratio of offspring in goat breeding programs.  相似文献   

3.
The aim of this study was to test the accuracy of genotype diagnosis after pre-amplification of DNA extracted from biopsies obtained by microblade cutting of ovine embryos and to evaluate the viability of biopsied embryos after vitrification/warming and transfer to recipients. Sex and PrP genotypes were determined. Sex diagnosis was done by PCR amplification of ZFX/ZFY and SRY sequences after PEP-PCR while PrP genotype determination was performed after specific pre-amplification of specific target including codons 136, 154 and 171. Embryos were collected at Day 7 after oestrus. Blastocysts and expanded blastocysts were biopsied immediately after collection whereas compacted morulae were biopsied after 24 hr of in vitro culture. Eighty-nine biopsied embryos were frozen by vitrification. Fresh and vitrified whole embryos were kept as control. DNA of biopsies was extracted and pre-amplified. Sex diagnosis was efficient for 96.6% of biopsies and PrP genotyping was determined in 95.8% of codons. After embryo transfer, no significant difference was observed in lambing rate between biopsied, vitrified control and fresh embryos (54.5%, 60% and 66.6%, respectively). Embryo survival rate was not different between biopsied and whole vitrified embryos (P = 0.38). At birth, 96.7% of diagnosed sex and 95.4% of predetermined codons were correct. Lamb PrP profiles were in agreement with parental genotype. PEP-PCR coupled with sex diagnosis and nested PCR coupled with PrP genotype predetermination are very accurate techniques to genotype ovine embryo before transfer. These original results allow planning of selection of resistant genotype to scrapie and sex of offspring before transfer of cryopreserved embryo.  相似文献   

4.
Abstract

Sex of preimplantation porcine embryos was determined by DNA amplification using porcine male(Y chromosome)‐specific DNA primers in the polymerase chain reaction (PCR). In order to determine the sensitivity of this sexing method, single porcine embryos ranging from unfertilized ova to the blastocyst stage were amplified in the PCR using the Y‐specific primers, and analyzed by ethidium bromide‐staining of polyacrylamide gels. The 192 bp product which denotes the presence of the Y chromosome was seen in the embryos. The unfertilized ova which is of female origin gave no product. These results are representative of PCR analysis of a total of 34 swine embryos.

Results obtained using the PCR for sexing were validated by karyotyping and confirmed by in situ hybridization with the porcine Y‐chromosome‐specific probe. In order to confirm the sex of the embryos determined by PCR, 10 day‐old porcine preimplantation embryos were biopsied to produce a small number of cells for sex determination via PCR, while the remainder of the embryo was prepared for in situ hybridization using the biotinylated probe. In situ hybridization performed on embryos shown to be male by PCR, showed pinpoint fluorescence within the nuclei, similar to that obtained when male porcine lymphocytes were hybridized. No evidence of fluorescence was seen when in situ hybridization was performed in parallel on embryos determined to be female by the PCR.

The PCR was found to be a relatively fast, accurate and reproducible means of sex determination of swine preimplantation embryos. This capability could have significant impact on animal breeding and production programs by using PCR as a screening tool for traits of economic importance.  相似文献   

5.
We present a polymerase chain reaction (PCR)-based procedure for rapid bovine embryo sexing and classifying embryos for the presence of exogenous DNA. Fourteen bovine blastocysts microinjected with gene construct DNA at the pronuclear stage were divided into quarters and subjected to amplification with construct-specific and sex gene-specific (ZFY/ZFX) primers in the same initial PCR reaction. Blastocysts carrying microinjected construct DNA could be identified by the presence of construct-specific PCR product in approximately 4 h. Approximately half of the microinjected and two of 16 non-microinjected blastocysts typed PCR-positive for the construct DNA. Owing to erroneous amplifications in the two non-microinjected control blastocysts, and the inability of the system to distinguish integrated from non-integrated copies of the microinjected construct, the number of construct-positive blastocysts determined in our assay most likely overestimates the number of true transgenic embryos. Nevertheless, using this assay, we were able to determine that approximately half of the microinjected embryos were negative for the transgene construct and thus could be eliminated from transfer to a recipient cow. Embryo sexing was achieved in less than 6 h by restriction fragment length polymorphism analysis of nestedZFY/ZFXPCR products reamplified from initial PCR reactions. In 11/14 microinjected blastocysts all sections assayed unambiguously as the same sex. In one embryo, only one section was analysed, while two other blastocysts whowed some discrepancies of sexing results between the sections analysed. The approach employed here to determine the sex and presence of microinjected construct DNA in bovine preimplantation embryos is rapid, accurate among different sections of an embryo and can be used to increase the efficiency of current transgenic cattle production procedures.  相似文献   

6.
Assessment of nuclear status is important when a biopsied single blastomere is used for embryo sexing. In this study we investigated the nuclear status of blastomeres derived from 8- to 16-cell stage in vitro fertilised bovine embryos to determine the representativeness of a single blastomere for embryo sexing. In 24 embryos analysed, the agreement in sex determination between a biopsied single blastomere and a matched blastocyst by polymerase chain reaction (PCR) was 83.3%. To clarify the discrepancies, karyotypes of blastomeres in 8- to 16-cell stage bovine embryos were analysed. We applied vinblastine sulfate at various concentrations and for different exposure times for metaphase plate induction in 8- to 16-cell stage bovine embryos. The 1.0 mg/ml vinblastine sulfate treatment for 15 h was selected as the most effective condition for induction of a metaphase plate (> 45%). Among 22 embryos under these conditions, only 8 of 10 that had a normal diploid chromosome complement showed a sex chromosomal composition of XX or XY (36.4%) and 2 diploid embryos showed mosaicism of the opposite sex of XX and XY in blastomeres of the embryo (9.1%). One haploid embryo contained only one X-chromosome (4.5%). Four of another 11 embryos with a mixoploid chromosomal complement contained a haploid blastomere with a wrong sex chromosome (18.2%). In conclusion, assessment of nuclear status of 8- to 16-cell stage bovine embryos revealed that morphologically normal embryos had a considerable proportion of mixoploid blastomeres and sex chromosomal mosaicism; these could be the cause of discrepancies in the sex between biopsied single blastomeres and matched blastocysts by PCR.  相似文献   

7.
A PCR-based method for sex determination of bovine DNA samples and embryo biopsies is presented. Using only one primer pair both the male-specific sequence FBNY (127 bp) and a sex-independent control PCR-fragment, the microsatellite marker FBN17 (136-140 bp) are generated in the same PCR reaction. Synteny mapping assigned the male-specific sequence to bovine chromosome Y (BTA Y), whereas FBN17 was mapped to bovine chromosome 2. Localisation of FBNY on BTA Y was confirmed by fluorescence in hybridisation of two BAC clones containing the male-specific sequence. There was no amplification of the male-specific target sequence FBNY in sheep, pig, goat, mice, man, and several wild species of the tribe Bovini. The bovine male-specific fragment was detected in dilutions containing as little as 10 pg genomic DNA and in blastomeres from embryo biopsies. The PCR assay presented here does require neither restriction endonuclease digestion of the PCR product nor additional nested PCR steps. Owing to the advantage of parallel amplification of the autosomal locus FBN17 no additional control fragment is necessary to detect PCR failure. The results of sex determination in embryo biopsies using FBNY were in agreement with the outcome from a reference assay used in commercial breeding programs.  相似文献   

8.
The proper elimination of unwanted or aberrant cells through apoptosis and subsequent phagocytosis (apoptotic cell clearance) is crucial for normal development in all metazoan organisms. Apoptotic cell clearance is a highly dynamic process intimately associated with cell death; unengulfed apoptotic cells are barely seen in vivo under normal conditions. In order to understand the different steps of apoptotic cell clearance and to compare ''professional'' phagocytes - macrophages and dendritic cells to ''non-professional'' - tissue-resident neighboring cells, in vivo live imaging of the process is extremely valuable. Here we describe a protocol for studying apoptotic cell clearance in live Drosophila embryos. To follow the dynamics of different steps in phagocytosis we use specific markers for apoptotic cells and phagocytes. In addition, we can monitor two phagocyte systems in parallel: ''professional'' macrophages and ''semi-professional'' glia in the developing central nervous system (CNS). The method described here employs the Drosophila embryo as an excellent model for real time studies of apoptotic cell clearance.  相似文献   

9.
Nonelectrophoretic PCR-sexing of bovine embryos in a commercial environment   总被引:5,自引:0,他引:5  
Techniques for sex determination of bovine embryos have evolved from karyotyping of older preimplantation embryos some 25 years ago to the current variety of widely used polymerase chain reaction (PCR) protocols. Although highly accurate, most PCR protocols for sex determination have included an electrophoresis step. The present work is a retrospective study utilizing a unique PCR protocol to sex bovine embryos without use of electrophoresis in a commercial embryo transfer program. Both in vivo and in vitro-derived embryos were produced by conventional techniques and biopsied between 7 and 8 days of age with a steel blade attached to a mechanical micromanipulator. Males constituted 49.0% of 3964 in vivo and 53.0% of 1181 in vitro-derived embryos subjected to PCR. Based on ultrasound fetal sexing and on calvings, the accuracy of sex determination was 98.7% for male embryos and 94.4% for females, with no samples producing an undetermined outcome. Pregnancy rates following transfer of biopsied Grade 1 embryos were lower than control, intact embryos as follows: 8, 6 and 16% points for in vivo, in vitro and in vivo frozen embryos, respectively. Pregnancy rates were similar for all stages of in vivo-derived embryos, whereas the pregnancy rate was significantly lower for in vitro-derived morulae compared to all stages of blastocysts. The sex ratio was significantly skewed in favor of females among in vitro-derived morulae, and in favor of males among in vitro expanded blastocysts. The sex ratio of in vivo expanded blastocysts was significantly skewed in favor of female embryos. No seasonal variation in either pregnancy rate or sex ratio was detected. There was no evidence that DNA contamination influenced the PCR assay during the duration of the study. The assay was sensitive to single blastomeres from male embryos, whereas it was not sensitive to Percoll-centrifuged or accessory sperm cells.  相似文献   

10.
Development of new technology related to in vitro embryo production has allowed for the commercial use of this method of reproduction. In the present work, we evaluate the efficiency of this technology compared with conventional embryo production based on results obtained with a standard procedure, including the sexing of embryos. The donor animals were mature nonlactating dairy cows (n = 92) kept under a constant environment and feeding program in an ET center. Ultrasound guided transvaginal ovum pick-up following 48 h pre-treatment with FSH has been used for the IVF-IVC protocol. A total of 437 oocyte recovery sessions performed on 92 cows yielded 4145 oocytes, which were used in an IVF-IVC protocol. Using the conventional approach, 156 embryo collections on 49 cows yielded 1652 ova and embryos. All Quality 1 and 2 embryos were sexed by a PCR procedure, and embryos of the desired sex were transferred to synchronized recipients located at the center. The results obtained in the IVF protocol showed that 4 oocyte collections per cow performed within 60 d, yielded 38 oocytes, which resulted in 18.8 viable embryos, of which 7.05 were female. After transfer of the female embryos, an average of 3.8 recipients were pregnant at 60 d. One embryo collection under the conventional approach yielded an average of 1.2 female pregnancies, which was confirmed during the same 60-d time period. These results indicate that IVF procedures can effectively replace conventional embryo production methods when a predetermined number of pregnancies of known sex are needed within a short period of time.  相似文献   

11.
Embryo biopsy has been used to detect inherited disorders and to improve the phenotype by analyzing of linkages between marker loci and the desired characteristics. Unfortunately, early procedures required the removal of a large portion (one-half) of the embryo for analysis, and the transfer of bisected equine embryos has not been particularly successful. Recent discovery of the polymerase chain reaction (PCR) has made possible the detection of specific DNA sequences from only a few cells. We investigated whether the removal of a small biopsy would allow for successful PCR and normal embryonic development. In the study reported here, 14 microbladebiopsied Day 6 to 7 equine embryos were transferred nonsurgically into recipient mares. The sex of each embryo was determined from the biopsy by means of restriction fragment length polymorphism analysis of the ZFY/ZFX loci after PCR amplification. The embryos were sexed as 8 females and 6 males on the basis of PCR assay results. Two embryos were biopsied using a needle aspiration technique, but no PCR amplification products resulted from these attempts. Eight intact control embryos were transferred to recipient mares using the same method. Pregnancy rates were 3 14 and 6 8 for the microblade biopsy and control groups, respectively. All of the microblade biopsy group pregnancies were females. One was aborted for cytogenetic analysis. Two were born after normal gestation. With improved pregnancy rates, this technique could be used for preimplantation diagnostics of equine embryos. As gene mapping advances and associations between particular DNA sequences and inherited traits become established, a rapid PCR technique could be used to select embryos before transfer.  相似文献   

12.
The effect of cleavage-stage group culture (CGC; embryos cultured in groups of three or more for the first 3 days and then individually to blastocyst) was compared to extended single embryo culture (ESC; embryos cultured individually to the blastocyst stage). While implantation and ongoing pregnancy rates were similar between groups, the blastocyst utilization rate (number of blastocysts suitable for freezing and thawing/total number of embryos cultured to Day 5 and 6) was significantly higher when embryos were cultured in CGC for women ≤35 yrs thereby increasing the number of embryos available for clinical use for the younger women. This strategy of group culture to Day 3 would seem an ideal protocol to capitalize on an overall embryo quality in two particular settings, namely programmes wishing to (i) undertake Day 3 transfers, and (ii) keep embryos separate from Day 3 to Day5/6 for the purposes of selection. The culture system can also be applied to the embryos of older women without adverse effect, enabling the same system to be used for all embryos.  相似文献   

13.
To examine sex and development relationships in porcine embryos in early gestation, 10 gilts were killed on Day 4, 5, or 6 post mating (first day of standing estrus = Day 0). Embryos recovered immediately after slaughter were cultured in Medium 199 with colcemid (0.05mug/ml), fixed on slides, and stained with 4% Giemsa. The number of cells in each specimen was counted from the slides, and, whenever cell dispersion allowed, sex was determined by presence or absence of the Y-chromosome in at least 2 spreads from each embryo. Three gilts slaughtered on Day 4 yielded 2- and 4-cell stage embryos (n = 38), but no data on sex could be obtained due to lack of mitosis or readable metaphase spreads. Three Day 5 litters had individual specimens ranging from 8 to 14 cells (n = 8), 32 to 64 cells (n = 10), and 13 to 31 cells (n = 11), with the sex determined in 15 of these. Cell numbers ranged from 18 to 165 (n = 14), 16 to 32 (n = 9), 36 to 82 (n = 12), and 16 to 30 (n = 9) in the 4 gilts slaughtered on Day 6, with the sex determined in 26 of these. Embryos within each litter were divided into low, medium and high cell numbers by 3 equal divisions of the range of cell numbers. Three Day-5 embryos and 1 Day-6 embryo were lost during preparation; neither the cell numbers nor the sex could be determined in 4 Day-5 and in 3 Day-6 embryos. The overall sex ratio approximated 1:1, but on Day 5, the ratios for males to females were 0:5, 1:3 and 6:0 for the low, medium and high cell number groups, respectively. Embryos of undetermined sex in these same groups numbered 3, 1 and 3, respectively. On Day 6 the distribution was 1:11, 4:2 and 8:0 in favor of the males, while embryos of undetermined sex in the low, medium and high cell number groups numbered 5, 7 and 2, respectively. Chi-square analysis of the combined Day-5 and Day-6 results indicated the presence of significantly more females among embryos with low cell numbers and more males in the high cell number group (P < 0.01).  相似文献   

14.
Buffalo Y-chromosome specific repetitive DNA (BuRY.I) was cloned and sequenced in order to develop a sensitive method for sexing of buffalo preimplantation stage embryos using polymerase chain reaction (PCR). A highly sensitive and reliable sex determination assay using a primary (BRY.I), nested (BuRYN.I) and multiplex (BuRYN.I, ZFX/ZFY) PCR was developed. The BRY.I and BuRYN.I primers are targeted to amplify Y-specific sequences, while the ZFX/ZFY loci was amplified to serve as a positive control for both male and female samples. Accuracy of the sex determination assay was initially verified with genomic DNA obtained from blood of known gender. Further sensitivity and reproducibility of the assay was examined using DNA obtained from 1 or 2 blastomeres to demi embryos. Altogether, 80 IVF-derived embryos ranging from the 2 to 4 cell to the blastocyst stage were used for sex determination. Definite and clear signals following PCR amplification were obtained from all embryo samples. Accuracy of assays was determined by comparing results from a single cell with those of blastocyst stage embryos, thereby indicating that 1 or 2 blastomeres from a preimplantation buffalo embryo is sufficient for sex determination by PCR. No misidentification was observed within the embryo samples using nested (BuRY.I), primary (BRY.I) and multiplex (BuRYN.I; ZFX/ZFY) PCR, suggesting that this technique is a highly reliable method for sexing buffalo embryos.  相似文献   

15.
We describe the first complete embryo transfer program, including flushing of embryos from the oviducts via the uterine horns, transfer of embryos into the Fallopian tubes or the uterine horns and recording of the number of piglets born live. The described procedure is minimally invasive and allows the use of pigs simultaneously for embryo collection and production of normal pregnancies. A 30 degrees forward oblique endoscope provided optimal visualization of the reproductive organs and free access to the organs for embryo flushing and transfer. In contrast to surgical and nonsurgical methods, endoscopy allows to pre-examine the genital tract for reproductive abnormalities and successful ovulation. A total of 95 prepuberal gilts or cyclic sows were used in this trial. Embryos or oocytes were collected from hormonally treated pigs via endoscopy(n = 17) on Day 3 and via laparotomy or post mortem after slaughter (control group, n = 38) on Day 3 and 6 after insemination. One (unilateral collection, n = 7) or both oviducts (bilateral collection, n = 10) were flushed endoscopically. We recovered 114 (average 16/pig) and 279 (average 28/pig) oocytes or embryos with fertilization rates of 89% and 72%, respectively. In the control group 834 oocytes or embryos were collected at Day 3 and 6 after insemination (fertilization rate 64%, total 534 embryos, 33 at 2-, 367 at 4-, 2 at 8-cell stage, 24 morulae and 108 blastocysts). Of 836 embryos recovered by endoscopy, surgery or slaughter 528 Day 3 embryos at 2- to 4-cell stage were transferred into (one) oviducts (n = 27 pigs, about 20/pig) resulting in 9 pregnant pigs diagnosed at Day 28 by sonography. Of the 9, 8 carried a total of 49 piglets to term. A total of 195 Day 6 embryos were transferred into uterine horns (n = 12 pigs, about 16/pig), resulting in 5 pregnant pigs carrying a total of 38 offspring to term. The use of endoscopy in assisted reproduction of pigs has the advantages of allowing easy access to the ovary, oviduct and uterus, clear view of the organ manipulation without exposure and exteriorization of viscera during surgery.  相似文献   

16.
One of the advantages of studying zebrafish is the ease and speed of manipulating protein levels in the embryo. Morpholinos, which are synthetic oligonucleotides with antisense complementarity to target RNAs, can be added to the embryo to reduce the expression of a particular gene product. Conversely, processed mRNA can be added to the embryo to increase levels of a gene product. The vehicle for adding either mRNA or morpholino to an embryo is microinjection. Microinjection is efficient and rapid, allowing for the injection of hundreds of embryos per hour. This video shows all the steps involved in microinjection. Briefly, eggs are collected immediately after being laid and lined up against a microscope slide in a Petri dish. Next, a fine-tipped needle loaded with injection material is connected to a microinjector and an air source, and the microinjector controls are adjusted to produce a desirable injection volume. Finally, the needle is plunged into the embryo''s yolk and the morpholino or mRNA is expelled.  相似文献   

17.
The chicken embryo provides an excellent model system for studying gene function and regulation during embryonic development. In ovo electroporation is a powerful method to over-express exogenous genes or down-regulate endogenous genes in vivo in chicken embryos1. Different structures such as DNA plasmids encoding genes2-4, small interfering RNA (siRNA) plasmids5, small synthetic RNA oligos6, and morpholino antisense oligonucleotides7 can be easily transfected into chicken embryos by electroporation. However, the application of in ovo electroporation is limited to embryos at early incubation stages (younger than stage HH20 - according to Hamburg and Hamilton)8 and there are some disadvantages for its application in embryos at later stages (older than stage HH22 - approximately 3.5 days of development). For example, the vitelline membrane at later stages is usually stuck to the shall membrane and opening a window in the shell causes rupture of the vessels, resulting in death of the embryos; older embryos are covered by vitelline and allantoic vessels, where it is difficult to access and manipulate the embryos; older embryos move vigorously and is difficult to control the orientation through a relatively small window in the shell.In this protocol we demonstrate an ex ovo electroporation method for gene transfer into chicken embryos at late stages (older than stage HH22). For ex ovo electroporation, embryos are cultured in Petri dishes9 and the vitelline and allantoic vessels are widely spread. Under these conditions, the older chicken embryos are easily accessed and manipulated. Therefore, this method overcomes the disadvantages of in ovo electroporation applied to the older chicken embryos. Using this method, plasmids can be easily transfected into different parts of the older chicken embryos10-12.  相似文献   

18.
This protocol presents a method to perform quantitative, single-cell in situ analyses of protein expression to study lineage specificationin mouse preimplantation embryos. The procedures necessary for embryo collection, immunofluorescence, imaging on a confocal microscope, and image segmentation and analysis are described. This method allows quantitation of the expression of multiple nuclear markers and the spatial (XYZ) coordinates of all cells in the embryo. It takes advantage of MINS, an image segmentation software tool specifically developed for the analysis of confocal images of preimplantation embryos and embryonic stem cell (ESC) colonies. MINS carries out unsupervised nuclear segmentation across the X, Y and Z dimensions, and produces information on cell position in three-dimensional space, as well as nuclear fluorescence levels for all channels with minimal user input. While this protocol has been optimized for the analysis of images of preimplantation stage mouse embryos, it can easily be adapted to the analysis of any other samples exhibiting a good signal-to-noise ratio and where high nuclear density poses a hurdle to image segmentation (e.g., expression analysis of embryonic stem cell (ESC) colonies, differentiating cells in culture, embryos of other species or stages, etc.).  相似文献   

19.
Craniofacial birth defects occur in 1 out of every 700 live births, but etiology is rarely known due to limited understanding of craniofacial development. To identify where signaling pathways and tissues act during patterning of the developing face, a ''face transplant'' technique has been developed in embryos of the frog Xenopus laevis. A region of presumptive facial tissue (the "Extreme Anterior Domain" (EAD)) is removed from a donor embryo at tailbud stage, and transplanted to a host embryo of the same stage, from which the equivalent region has been removed. This can be used to generate a chimeric face where the host or donor tissue has a loss or gain of function in a gene, and/or includes a lineage label. After healing, the outcome of development is monitored, and indicates roles of the signaling pathway within the donor or surrounding host tissues. Xenopus is a valuable model for face development, as the facial region is large and readily accessible for micromanipulation. Many embryos can be assayed, over a short time period since development occurs rapidly. Findings in the frog are relevant to human development, since craniofacial processes appear conserved between Xenopus and mammals.  相似文献   

20.
A fast and reliable method for bovine sexing has been developed through amplification of the bovine high motility group (HMG) box of the sex-determining region of the Y chromosome gene (SRY). Oligonucleotide primers were designed according to the conserved bovine SRY HMG box sequence motif. In agarose gel electrophoresis, a normal bull showed 1 SRY band, and a normal cow showed no SRY band. After optimization, the PCR procedure for sex determination was applied to 14 embryo biopsies. The biopsied embryos were transferred into 14 recipient cows on the same day (day 7 of the estrus cycle) that the embryos were collected and sex of the calf was confirmed after parturition. Nine calves were born and anatomical sex corresponded to those sex determined by PCR in all cases (100% accuracy). Thus, this study showed for the first time that the present method can be applied in bovine breeding programs to facilitate manipulation of the sex ratio of offspring and also allows a quick diagnosis for the XY-bovine offspring by amplification of the HMG box of the bovine SRY gene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号