首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Phagocytosis is a fundamental process through which innate immune cells engulf bacteria, apoptotic cells or other foreign particles in order to kill or neutralize the ingested material, or to present it as antigens and initiate adaptive immune responses. The pH of phagosomes is a critical parameter regulating fission or fusion with endomembranes and activation of proteolytic enzymes, events that allow the phagocytic vacuole to mature into a degradative organelle. In addition, translocation of H+ is required for the production of high levels of reactive oxygen species (ROS), which are essential for efficient killing and signaling to other host tissues. Many intracellular pathogens subvert phagocytic killing by limiting phagosomal acidification, highlighting the importance of pH in phagosome biology. Here we describe a ratiometric method for measuring phagosomal pH in neutrophils using fluorescein isothiocyanate (FITC)-labeled zymosan as phagocytic targets, and live-cell imaging. The assay is based on the fluorescence properties of FITC, which is quenched by acidic pH when excited at 490 nm but not when excited at 440 nm, allowing quantification of a pH-dependent ratio, rather than absolute fluorescence, of a single dye. A detailed protocol for performing in situ dye calibration and conversion of ratio to real pH values is also provided. Single-dye ratiometric methods are generally considered superior to single wavelength or dual-dye pseudo-ratiometric protocols, as they are less sensitive to perturbations such as bleaching, focus changes, laser variations, and uneven labeling, which distort the measured signal. This method can be easily modified to measure pH in other phagocytic cell types, and zymosan can be replaced by any other amine-containing particle, from inert beads to living microorganisms. Finally, this method can be adapted to make use of other fluorescent probes sensitive to different pH ranges or other phagosomal activities, making it a generalized protocol for the functional imaging of phagosomes.  相似文献   

2.
After the gastrointestinal tract, the lung is the second largest surface for interaction between the vertebrate body and the environment. Here, an effective gas exchange must be maintained, while at the same time avoiding infection by the multiple pathogens that are inhaled during normal breathing. To achieve this, a superb set of defense strategies combining humoral and cellular immune mechanisms exists. One of the most effective measures for acute defense of the lung is the recruitment of neutrophils, which either phagocytose the inhaled pathogens or kill them by releasing cytotoxic chemicals. A recent addition to the arsenal of neutrophils is their explosive release of extracellular DNA-NETs by which bacteria or fungi can be caught or inactivated even after the NET releasing cells have died. We present here a method that allows one to directly observe neutrophils, migrating within a recently infected lung, phagocytosing fungal pathogens as well as visualize the extensive NETs that they have produced throughout the infected tissue. The method describes the preparation of thick viable lung slices 7 hours after intratracheal infection of mice with conidia of the mold Aspergillus fumigatus and their examination by multicolor time-lapse 2-photon microscopy. This approach allows one to directly investigate antifungal defense in native lung tissue and thus opens a new avenue for the detailed investigation of pulmonary immunity.  相似文献   

3.
Intracellular pH is tightly regulated and differences in pH between the cytoplasm and organelles have been reported1. Regulation of cellular pH is crucial for homeostatic control of physiological processes that include: protein, DNA and RNA synthesis, vesicular trafficking, cell growth and cell division. Alterations in cellular pH homeostasis can lead to detrimental functional changes and promote progression of various diseases2. Various methods are available for measuring intracellular pH but very few of these allow simultaneous measurement of pH in the cytoplasm and in organelles. Here, we describe in detail a rapid and accurate method for the simultaneous measurement of cytoplasmic and organellar pH by using confocal microscopy on living cells3. This goal is achieved with the use of two pH-sensing ratiometric dyes that possess selective cellular compartment partitioning. For instance, SNARF-1 is compartmentalized inside the cytoplasm whereas HPTS is compartmentalized inside endosomal/lysosomal organelles. Although HPTS is commonly used as a cytoplasmic pH indicator, this dye can specifically label vesicles along the endosomal-lysosomal pathway after being taken up by pinocytosis3,4. Using these pH-sensing probes, it is possible to simultaneously measure pH within the endocytic and cytoplasmic compartments. The optimal excitation wavelength of HPTS varies depending on the pH while for SNARF-1, it is the optimal emission wavelength that varies. Following loading with SNARF-1 and HPTS, cells are cultured in different pH-calibrated solutions to construct a pH standard curve for each probe. Cell imaging by confocal microscopy allows elimination of artifacts and background noise. Because of the spectral properties of HPTS, this probe is better suited for measurement of the mildly acidic endosomal compartment or to demonstrate alkalinization of the endosomal/lysosomal organelles. This method simplifies data analysis, improves accuracy of pH measurements and can be used to address fundamental questions related to pH modulation during cell responses to external challenges.  相似文献   

4.
Some dynamic biofilm models for dental caries development are limited as they require multiple experiments and do not allow independent biofilm growth units, making them expensive and time-consuming. This study aimed to develop and test an in vitro dynamic microcosm biofilm model for caries lesion development and for dose-response to chlorhexidine. Microcosm biofilms were grown under two different protocols from saliva on bovine enamel discs for up to 21 days. The study outcomes were as follows: the percentage of enamel surface hardness change, integrated hardness loss, and the CFU counts from the biofilms formed. The measured outcomes, mineral loss and CFU counts showed dose-response effects as a result of the treatment with chlorhexidine. Overall, the findings suggest that biofilm growth for seven days with 0.06 ml min?1 salivary flow under exposure to 5% sucrose (3 × daily, 0.25 ml min?1, 6 min) was suitable as a pre-clinical model for enamel demineralization and antimicrobial studies.  相似文献   

5.
Extracellular polymeric substances (EPS) in a biofilm were quantified by measuring the total cell volume from a 3-D image of the biofilm using confocal laser scanning microscope after staining cells with a fluorescent dye specific for nucleic acids. The EPS content was the difference between the volatile solids in the biofilm and the total cell mass, which could be quantified from the measured cell volume.  相似文献   

6.
Naïve T cells continuously traffic to secondary lymphoid organs, including peripheral lymph nodes, to detect rare expressed antigens. The migration of T cells into lymph nodes is a complex process which involves both cellular and chemical factors including chemokines. Recently, the use of two-photon microscopy has permitted to track T cells in intact lymph nodes and to derive some quantitative information on their behavior and their interactions with other cells. While there are obvious advantages to an in vivo system, this approach requires a complex and expensive instrumentation and provides limited access to the tissue. To analyze the behavior of T cells within murine lymph nodes, we have developed a slice assay 1, originally set up by neurobiologists and transposed recently to murine thymus 2. In this technique, fluorescently labeled T cells are plated on top of an acutely prepared lymph node slice. In this video-article, the localization and migration of T cells into the tissue are analyzed in real-time with a widefield and a confocal microscope. The technique which complements in vivo two-photon microscopy offers an effective approach to image T cells in their natural environment and to elucidate mechanisms underlying T cell migration.  相似文献   

7.
    
Tissue transglutaminase 2 (tTG2) is an intestinal digestive enzyme which deamidates already partially digested dietary gluten e.g. gliadin peptides. In genetically predisposed individuals, tTG2 triggers autoimmune responses that are characterized by the production of tTG2 antibodies and their direct deposition into small intestinal wall 1,2. The presence of such antibodies constitutes one of the major hallmarks of the celiac disease (CD). Epidermal transglutaminase (eTG) is another member of the transglutaminase family that can also function as an autoantigen in a small minority of CD patients. In these relatively rare cases, eTG triggers an autoimmune reaction (a skin rash) clinically known as dermatitis herpetiformis (DH). Although the exact mechanism of CD and DH pathogenesis is not well understood, it is known that tTG2 and eTG share antigenic epitopes that can be recognized by serum antibodies from both CD and DH patients 3,4.In this study, the confocal microscopy examination of biopsy samples from skin lesions of two rhesus macaques (Macaca mulatta) with dermatitis (Table 1, Fig. 1 and 2) was used to study the affected tissues. In one animal (EM96) a spectral overlap of IgA and tTG2 antibodies (Fig. 3) was demonstrated. The presence of double-positive tTG2+IgA+ cells was focused in the deep epidermis, around the dermal papillae. This is consistent with lesions described in DH patients 3. When EM96 was placed on a gluten-free diet, the dermatitis, as well as tTG2+IgA+ deposits disappeared and were no longer detectable (Figs. 1-3). Dermatitis reappeared however, based on re-introduction of dietary gluten in EM96 (not shown). In other macaques including animal with unrelated dermatitis, the tTG2+IgA+ deposits were not detected. Gluten-free diet-dependent remission of dermatitis in EM96 together with presence of tTG2+IgA+ cells in its skin suggest an autoimmune, DH-like mechanism for the development of this condition. This is the first report of DH-like dermatitis in any non-human primate.  相似文献   

8.
We have used confocal microangiography to examine and describe the vascular anatomy of the developing zebrafish, Danio rerio. This method and the profound optical clarity of zebrafish embryos make it possible to view the entire developing vasculature with unprecedented resolution. A staged series of three-dimensional images of the vascular system were collected beginning shortly after the onset of circulation at 1 day postfertilization through early- to midlarval stages at approximately 7 days postfertilization. Blood vessels in every region of the animal were imaged at each stage, and detailed "wiring patterns" were derived describing the interconnections between every major vessel. We present an overview of these data here in this paper and in an accompanying Web site "The interactive atlas of zebrafish vascular anatomy" online at (http://eclipse.nichd.nih.gov/nichd/lmg/redirect.html). We find a highly dynamic but also highly stereotypic pattern of vascular connections, with different sets of primitive embryonic vessels severing connections and rewiring in new configurations according to a reproducible plan. We also find that despite variation in the details of the vascular anatomy, the basic vascular plan of the developing zebrafish shows strong similarity to that of other vertebrates. This atlas will provide an invaluable foundation for future genetic and experimental studies of vascular development in the zebrafish.  相似文献   

9.
    
The molecular constitution of in situ hemoglobin (Hb) and their distribution in living erythrocyte were investigated versus pH using the technique of confocal Raman microscopy. Both Raman point spectra and line mapping measurements were performed on living erythrocytes in suspensions with pH values from 4.82 to 9.70. It was found that the Hb inside a living erythrocyte would dissociate into monomer/dimer when the cells are in low and high pH environments. In contrast to the homogeneous distribution of the Hbs in the cells in neutral suspension, there are more Hbs distributing around the cell membrane or binding to the membrane as pH increases. While in low pH, as the cell become spherical, most of the Hbs distribute to the central part of the cell. In summary, our investigation suggests that the variation of the external pH not only brings changes in the morphology and membrane structure of an erythrocyte, but also affects the constitution and distribution of its intracellular Hbs, thereby the flexibility of the cell membrane and the oxygenation ability of the Hb. © 2009 Wiley Periodicals, Inc. Biopolymers 93: 348–354, 2010. This article was originally published online as an accepted preprint. The “Published Online” date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com  相似文献   

10.
The distribution of patterns of activity in different brain structures has been related to the encoding and processing of sensory information. Consequently, it is important to be able to image the distribution of these patterns to understand basic brain functions. The spatial resolution of voltage-sensitive dye (VSD) methods has recently been enhanced considerably by the use of video imaging techniques. The main factor that now hampers the resolution of VSD patterns is the inherent limitation of the optical systems. Unfortunately, the intrinsic characteristics of VSD images impose important limitations that restrict the use of general deconvolution techniques. To overcomes this problem, in this study an image restoration procedure has been implemented that takes into consideration the limiting characteristics of VSD signals. This technique is based on applying a set of imaging processing steps. First, the signal-to-noise (S/N) ratio of the images was improved to avoid an increase in the noise levels during the deconvolution procedures. For this purpose, a new filter technique was implemented that yielded better results than other methods currently used in optical imaging. Second, focal plane images were deconvolved using a modification of the well-known nearest-neighbor deconvolution algorithm. But to reduce the light exposure of the preparation and simplify image acquisition procedures, adjacent image planes were modeled according to the in-focus image planes and the empirical point spread function (PSF) profiles. Third, resulting focal plane responses were processed to reduce the contribution of optical responses that originate in distant image planes. This method was found to be satisfactory under simulated and real experimental conditions. By comparing the restored and unprocessed images, it was clearly demonstrated that this method can effectively remove the out-of-focus artifacts and produce focal plane images of better quality. Evaluations of the tissue optical properties allowed assessment of the maximum practical optical section thickness using this deconvolution technique in the optical system tested. Determination of the three-dimensional PSF permitted the correct application of deconvolution algorithms and the removal of the contaminating light arising from adjacent as well as distant optical planes. The implementation of this deconvolution approach in salamander olfactory bulb allowed the detailed study of the laminar distribution of voltage-sensitive changes across the bulb layer. It is concluded that (1) this deconvolution procedure is well suited to deconvolved low-contrast images and offers important advantages over other alternatives; (2) this method can be properly used only when the tissue optical properties are first determined; (3) high levels of light scattering in the tissue reduce the optical section capabilities of this technique as well as other deconvolution procedures; and (4) use of the highest numerical aperture in the objectives is advisable because this improves not only the light-collecting efficiency to detect poor-contrast images, but also the spatial frequency differences between adjacent image planes. Under this condition it is possible to overcome some of the limitations imposed by the light scattering/birefringence of the tissue.  相似文献   

11.
A simple technique providing a means for rapid genetic differentiation of chlamydial strains is described. The technique is based on a single-step sequence-specific separation of PCR-amplified DNA fragments by electrophoresis in an agarose gel containing a DNA ligand - bisbenzimide-PEG. A hypervariable region at the 5' end of the omp2 gene of Chlamydiaceae species encoding the 60-kDa cysteine-rich outer membrane protein was selected as a target for PCR. The appropriate fragments were amplified from strains of Chlamydia trachomatis, Chlamydophila pneumoniae, and Chlamydophila psittaci, and the PCR products originating from different species were electrophoretically separated in the presence of the DNA ligand. We therefore demonstrated that PCR with a single pair of primers followed by simple agarose gel electrophoresis with bisbenzimide-PEG can be applied to the differentiation of three members of the family Chlamydiaceae which are commonly recognized as human pathogens.  相似文献   

12.
    
In the present study a new luminescent dye 3‐N‐(2‐pyrrolidinylacetamido)benzanthrone (AZR) was synthesized. Spectroscopic measurements of the novel benzanthrone 3‐aminoderivative were performed in seven organic solvents showing strong fluorescence. The capability of the prepared dye for visualization has been tested on flax, red clover and alfalfa to determinate the embryo in plant callus tissue cultures. Callus cells were stained with AZR and further analysed utilizing confocal laser scanning fluorescence microscopy. Performed experiments show high visualization effectiveness of newly synthesized fluorescent dye AZR that is efficient in fast and relatively inexpensive diagnostics of callus embryos that are problematic due to in vitro culture specificity.  相似文献   

13.
The ability to measure the pH of the apoplast in situ is of special interest as a test of the cell wall acidification theory. Optical sectioning of living seedlings of corn roots using the laser scanning confocal microscope (LSCM) permits us to make pH measurements in living tissue. The pH of the apoplast of corn roots was measured by this method after infiltration with CI-NERF, a pH-sensitive dye, along with Texas Red Dextran 3000, a pH-insensitive dye, as an internal standard. In the elongation zone of corn roots, the mean apoplastic pH was 4.9. Upon gravitropic stimulation, the pH on the convex side of actively bending roots was 4.5. The lowering of the apoplastic pH by 0.4 units appears to be sufficient to account for the increased growth on that side. This technique provides site-specific evidence for the acid growth theory of cell elongation. The LSCM permits measurements of the pH of living tissues, and has a sensitivity of approximately 0.2 pH units.  相似文献   

14.
The chronic nature of many diseases is attributed to the formation of bacterial biofilms which are recalcitrant to traditional antibiotic therapy. Biofilms are community-associated bacteria attached to a surface and encased in a matrix. The role of the extracellular matrix is multifaceted, including facilitating nutrient acquisition, and offers significant protection against environmental stresses (e.g. host immune responses). In an effort to acquire a better understanding as to how the bacteria within a biofilm respond to environmental stresses we have used a protocol wherein we visualize bacterial biofilms which have formed in an 8-well chamber slide. The biofilms were stained with the BacLight Live/Dead stain and examined using a confocal microscope to characterize the relative biofilm size, and structure under varying incubation conditions. Z-stack images were collected via confocal microscopy and analyzed by COMSTAT. This protocol can be used to help elucidate the mechanism and kinetics by which biofilms form, as well as identify components that are important to biofilm structure and stability.  相似文献   

15.
Aims: To investigate the structural organization and dynamics of exopolysaccharides (EPS) matrix and microcolonies formation by Streptococcus mutans during the biofilm development process. Methods and Results: Biofilms of Strep. mutans were formed on saliva‐coated hydroxyapatite (sHA) discs in the presence of glucose or sucrose (alone or mixed with starch). At specific time points, biofilms were subjected to confocal fluorescence imaging and computational analysis. EPS matrix was steadily formed on sHA surface in the presence of sucrose during the first 8 h followed by a threefold biomass increase between 8 and 30 h of biofilm development. The initial formation and further development of three‐dimensional microcolony structure occurred concomitantly with EPS matrix synthesis. Tridimensional renderings showed EPS closely associated with microcolonies throughout the biofilm development process forming four distinct domains (i) between sHA surface and microcolonies, (ii) within, (iii) covering and (iv) filling the spaces between microcolonies. The combination of starch and sucrose resulted in rapid formation of elevated amounts of EPS matrix and faster assembly of microcolonies by Strep. mutans, which altered their structural organization and susceptibility of the biofilm to acid killing (vs sucrose‐grown biofilms; P < 0·05). Conclusions: Our data indicate that EPS modulate the development, sequence of assembly and spatial distribution of microcolonies by Strep. mutans. Significance and Impact of the Study: Simultaneous visualization and analysis of EPS matrix and microcolonies provide a more precise examination of the structural organization of biofilms than labelling bacteria alone, which could be a useful approach to elucidate the exact mechanisms by which Strep. mutans influences oral biofilm formation and possibly identify novel targets for effective antibiofilm therapies.  相似文献   

16.
We have developed an anaerobic biofilm culture system. The system is inexpensive, simple to use and, unlike an anaerobic glovebox, requires no dedicated space. As a test of the system, Porphyromonas gingivalis was cultured under low oxygen (1–2 ppm) and under anaerobic conditions (≤0.1 ppm O2). In the presence of small amounts of oxygen, the organism attached and formed an initial biofilm over the course of 4 h, but the biofilm was unable to maintain its growth and had lost biomass after 18 h. Also, ambiguous results were obtained when the biofilm was stained with a viability stain. Under anaerobic conditions, the biofilm was able to continue growth — biomass was greater after 18 h than after 4 h, and the anaerobic biofilm had a less ambiguous staining pattern than did the low-O2-grown biofilm.  相似文献   

17.
目的 研究金诺芬对表皮葡萄球菌及其生物膜的作用。方法 利用微量稀释法药敏试验检测金诺芬对表皮葡萄球菌浮游菌生长的影响,并利用结晶紫染色和激光共聚焦显微镜观察金诺芬对表皮葡萄球菌生物膜形成的影响。结果 金诺芬对表皮葡萄球菌的MIC和MBC分别为0.125~0.250 μg/mL和2.000~4.000 μg/mL。同时,4 μg/mL金诺芬还能显著抑制表皮葡萄球菌标准菌株和临床菌株生物膜的形成(P<0.05)。通过激光共聚焦显微镜观察发现金诺芬能有效抑制生物膜的形成,降低生物膜的聚集,并增加死亡细菌的比例。结论 金诺芬能显著抑制表皮葡萄球菌浮游菌的增殖和生物膜的形成。  相似文献   

18.
7-Epiclusianone (7-epi), a novel naturally occurring compound isolated from Rheedia brasiliensis, effectively inhibits the synthesis of exopolymers and biofilm formation by Streptococcus mutans. In the present study, the ability of 7-epi, alone or in combination with fluoride (F), to disrupt biofilm development and pathogenicity of S. mutans in vivo was examined using a rodent model of dental caries. Treatment (twice-daily, 60s exposure) with 7-epi, alone or in combination with 125 ppm F, resulted in biofilms with less biomass and fewer insoluble glucans than did those treated with vehicle-control, and they also displayed significant cariostatic effects in vivo (p < 0.05). The combination 7-epi + 125 ppm F was as effective as 250 ppm F (positive-control) in reducing the development of both smooth- and sulcal-caries. No histopathological alterations were observed in the animals after the experimental period. The data show that 7-epiclusianone is a novel and effective antibiofilm/anticaries agent, which may enhance the cariostatic properties of fluoride.  相似文献   

19.
  总被引:2,自引:0,他引:2  
The extracellular matrix (ECM) represents a major barrier for delivery of therapeutic drugs, and the transport is determined by the ECM composition, structure, and distribution. Because of the high interstitial fluid pressure in tumors, diffusion becomes the main transport mechanism through ECM. The purpose of this work was to study the impact of the structure of the collagen network on diffusion, by studying to what extent the orientation and chemical modification of the collagen network influenced diffusion. Collagen gels with a concentration of 0.2-2.0% that is comparable with the amount of collagen in the tumor ECM were used as a model system for ECM. Collagen gels were aligned in a low-strength magnetic field and geometrical confinement, and chemically modified by adding decorin or hyaluronan. Diffusion of dextran 2-MDa molecules in the collagen gels was measured using fluorescence recovery after photobleaching. Alignment of the collagen fibers in our gels was found to have no impact on the diffusion coefficient. Adding decorin reduced the diameter of the collagen fibers, but no effect on diffusion was observed. Hyaluronan also reduced the fiber diameter, and high concentration of hyaluronan (2.5 mg/ml) increased the diffusion coefficient. The results indicate that the structure of the collagen network is not a major factor in determining the diffusion through the ECM. Rather, increasing the concentration of collagen was found to reduce the diffusion coefficient. Concentration of the collagen network is more important than the structure in determining the diffusion coefficient.  相似文献   

20.
Human immunodeficiency virus type 1 (HIV-1) infection occurs most efficiently via cell to cell transmission2,10,11. This cell to cell transfer between CD4+ T cells involves the formation of a virological synapse (VS), which is an F-actin-dependent cell-cell junction formed upon the engagement of HIV-1 envelope gp120 on the infected cell with CD4 and the chemokine receptor (CKR) CCR5 or CXCR4 on the target cell 8. In addition to gp120 and its receptors, other membrane proteins, particularly the adhesion molecule LFA-1 and its ligands, the ICAM family, play a major role in VS formation and virus transmission as they are present on the surface of virus-infected donor cells and target cells, as well as on the envelope of HIV-1 virions1,4,5,6,7,13. VS formation is also accompanied by intracellular signaling events that are transduced as a result of gp120-engagement of its receptors. Indeed, we have recently showed that CD4+ T cell interaction with gp120 induces recruitment and phosphorylation of signaling molecules associated with the TCR signalosome including Lck, CD3ζ, ZAP70, LAT, SLP-76, Itk, and PLCγ15.In this article, we present a method to visualize supramolecular arrangement and membrane-proximal signaling events taking place during VS formation. We take advantage of the glass-supported planar bi-layer system as a reductionist model to represent the surface of HIV-infected cells bearing the viral envelope gp120 and the cellular adhesion molecule ICAM-1. The protocol describes general procedures for monitoring HIV-1 gp120-induced VS assembly and signal activation events that include i) bi-layer preparation and assembly in a flow cell, ii) injection of cells and immunofluorescence staining to detect intracellular signaling molecules on cells interacting with HIV-1 gp120 and ICAM-1 on bi-layers, iii) image acquisition by TIRF microscopy, and iv) data analysis. This system generates high-resolution images of VS interface beyond that achieved with the conventional cell-cell system as it allows detection of distinct clusters of individual molecular components of VS along with specific signaling molecules recruited to these sub-domains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号