首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到8条相似文献,搜索用时 4 毫秒
1.
Hippocampal and cortical neurons have been used extensively to study central nervous system (CNS) neuronal polarization, axon/dendrite outgrowth, and synapse formation and function. An advantage of culturing these neurons is that they readily polarize, forming distinctive axons and dendrites, on a two dimensional substrate at very low densities. This property has made them extremely useful for determining many aspects of neuronal development. Furthermore, by providing glial conditioning for these neurons they will continue to develop, forming functional synaptic connections and surviving for several months in culture. In this protocol we outline a technique to dissect, culture and transfect embryonic mouse hippocampal and cortical neurons. Transfection is accomplished by electroporating DNA into the neurons before plating via nucleofection. This protocol has the advantage of expressing fluorescently-tagged fusion proteins early in development (~4-8hrs after plating) to study the dynamics and function of proteins during polarization, axon outgrowth and branching. We have also discovered that this single transfection before plating maintains fluorescently-tagged fusion protein expression at levels appropriate for imaging throughout the lifetime of the neuron (> 2 months in culture). Thus, this methodology is useful for studying protein localization and function throughout CNS development with little or no disruption of neuronal function.  相似文献   

2.
3.
Dendritic spines are protrusions emerging from the dendrite of a neuron and represent the primary postsynaptic targets of excitatory inputs in the brain. Technological advances have identified these structures as key elements in neuron connectivity and synaptic plasticity. The quantitative analysis of spine morphology using light microscopy remains an essential problem due to technical limitations associated with light''s intrinsic refraction limit. Dendritic spines can be readily identified by confocal laser-scanning fluorescence microscopy. However, measuring subtle changes in the shape and size of spines is difficult because spine dimensions other than length are usually smaller than conventional optical resolution fixed by light microscopy''s theoretical resolution limit of 200 nm.Several recently developed super resolution techniques have been used to image cellular structures smaller than the 200 nm, including dendritic spines. These techniques are based on classical far-field operations and therefore allow the use of existing sample preparation methods and to image beyond the surface of a specimen. Described here is a working protocol to apply super resolution structured illumination microscopy (SIM) to the imaging of dendritic spines in primary hippocampal neuron cultures. Possible applications of SIM overlap with those of confocal microscopy. However, the two techniques present different applicability. SIM offers higher effective lateral resolution, while confocal microscopy, due to the usage of a physical pinhole, achieves resolution improvement at the expense of removal of out of focus light. In this protocol, primary neurons are cultured on glass coverslips using a standard protocol, transfected with DNA plasmids encoding fluorescent proteins and imaged using SIM. The whole protocol described herein takes approximately 2 weeks, because dendritic spines are imaged after 16-17 days in vitro, when dendritic development is optimal. After completion of the protocol, dendritic spines can be reconstructed in 3D from series of SIM image stacks using specialized software.  相似文献   

4.
Degeneration of mesencephalic dopaminergic (mesDA) neurons is the pathological hallmark of Parkinson’s diseae. Study of the biological processes involved in physiological functions and vulnerability and death of these neurons is imparative to understanding the underlying causes and unraveling the cure for this common neurodegenerative disorder. Primary cultures of mesDA neurons provide a tool for investigation of the molecular, biochemical and electrophysiological properties, in order to understand the development, long-term survival and degeneration of these neurons during the course of disease. Here we present a detailed method for the isolation, culturing and maintenance of midbrain dopaminergic neurons from E12.5 mouse (or E14.5 rat) embryos. Optimized cell culture conditions in this protocol result in presence of axonal and dendritic projections, synaptic connections and other neuronal morphological properties, which make the cultures suitable for study of the physiological, cell biological and molecular characteristics of this neuronal population.  相似文献   

5.
Neurites, both dendrites and axons, are neuronal cellular processes that enable the conduction of electrical impulses between neurons. Defining the structure of neurites is critical to understanding how these processes move materials and signals that support synaptic communication. Electron microscopy (EM) has been traditionally used to assess the ultrastructural features within neurites; however, the exposure to organic solvent during dehydration and resin embedding can distort structures. An important unmet goal is the formulation of procedures that allow for structural evaluations not impacted by such artifacts. Here, we have established a detailed and reproducible protocol for growing and flash-freezing whole neurites of different primary neurons on electron microscopy grids followed by their examination with cryo-electron tomography (cryo-ET). This technique allows for 3-D visualization of frozen, hydrated neurites at nanometer resolution, facilitating assessment of their morphological differences. Our protocol yields an unprecedented view of dorsal root ganglion (DRG) neurites, and a visualization of hippocampal neurites in their near-native state. As such, these methods create a foundation for future studies on neurites of both normal neurons and those impacted by neurological disorders.  相似文献   

6.
目的:血管平滑肌细胞在人类心血管疾病中具有重要的作用,而作为重要的遗传学研究模式生物的小鼠血管平滑肌材料有限,因此建立一种简单高效的小鼠血管平滑肌原代细胞分离培养方法很重要。方法:分离小鼠主动脉中膜层,胶原酶消化法获得原代平滑肌细胞,免疫荧光方法检测细胞的纯度和分化状态;分离平滑肌细胞特异的报告小鼠的平滑肌细胞,LacZ染色鉴定。结果:用该方法分离的原代平滑肌细胞生长迅速,3d后即可达5×106个。免疫荧光显示,细胞传至第3代后纯度在98%以上,细胞传至8代分化状态没有改变。LacZ染色鉴定报告小鼠分离的3代平滑肌细胞98%以上显示特异的蓝染。两种实验证明,应用此方法分离原代平滑肌细胞可以满足平滑肌体外功能实验的需求。结论:与传统的组织块培养法相比,该方法操作简便、经济,可以获得更多高纯度的血管平滑肌细胞。  相似文献   

7.
Keyword index     
《Journal of neurochemistry》2003,87(6):1579-1582
  相似文献   

8.
Keyword index     
《Journal of neurochemistry》2002,83(6):1543-1546
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号