首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 41 毫秒
1.
For preparing cell sheets effectively for cell sheet-based regenerative medicine, cell-adhesion strength to thermoresponsive cell culture surfaces need to be controlled precisely. To design new thermoresponsive surfaces via a terminal modification method, thermoresponsive polymer brush surfaces were fabricated through the surface-initiated reversible addition-fragmentation chain transfer (RAFT) radical polymerization of N-isopropylacrylamide (IPAAm) on glass substrates. The RAFT-mediated grafting method gave dithiobenzoate (DTB) groups to grafted PIPAAm termini, which can be converted to various functional groups. In this study, the terminal carboxylation of PIPAAm chains provided high cell adhesive property to thermoresponsive surfaces. Although cell adhesion is generally promoted by a decrease in the grafted PIPAAm amount, the decrease also decelerated thermally-induced cell detachment, whereas the influence of terminal modification was negligible on the cell detachment. Consequently, the terminally modified PIPAAm brush surfaces allowed smooth muscle cells (SMCs) to simultaneously adhere strongly and detach themselves rapidly. In this study, SMCs were unable to reach a confluent monolayer on as-prepared PIPAAm brush surfaces (grafted amount: 0.41 μg/cm(2)) without terminal carboxylation due to their insufficient cell-adhesion strength. On the other hand, though a decrease in the PIPAAm amount allowed SMCs to form a confluent cell monolayer on the PIPAAm brush surface, the SMCs were unable to be harvested as a monolithic cell sheet by low-temperature culture at 20 °C. Because of their unique property, only terminal-carboxylated PIPAAm brush surfaces achieved rapid harvesting of complete cell sheets by low-temperature culturing.  相似文献   

2.
Temperature-dependent regulation of affinity binding between bioactive ligands and their cell membrane receptors is an attractive approach for the dynamic control of cellular adhesion, proliferation, migration, differentiation, and signal transduction. Covalent conjugation of bioactive ligands onto thermoresponsive poly(N-isopropylacrylamide) (PIPAAm)-grafted surfaces facilitates the modulation of one-on-one affinity binding between bioactive ligands and cellular receptors by changing temperature. For the dynamic control of the multivalent affinity binding between heparin and heparin-binding proteins, thermoresponsive cell culture surface modified with heparin, which interacts with heparin-binding proteins such as basic fibroblast growth factor (bFGF), has been proposed. Heparin-functionalized thermoresponsive cell culture surface induces (1) the multivalent affinity binding of bFGF in active form and (2) accelerating cell sheet formation in the state of shrunken PIPAAm chains at 37°C. By lowering temperature to 20°C, the affinity binding between bFGF and immobilized heparin is reduced with increasing the mobility of heparin and the swollen PIPAAm chains, leading to the detachment of cultured cells. Therefore, heparin-functionalized thermoresponsive cell culture surface was able to enhance cell proliferation and detach confluent cells as a contiguous cell sheet by changing temperature. A cell cultivation system using heparin-functionalized thermoresponsive cell culture surface is versatile for immobilizing other heparin-binding proteins such as vascular endothelial growth factor, fibronectin, antithrombin III, and hepatocyte growth factor, etc. for tuning the adhesion, growth, and differentiation of various cell species.  相似文献   

3.
Acrylic acid (AAc) has been utilized to introduce reactive carboxyl groups to a temperature-responsive polymer, poly(N-isopropylacrylamide) (PIPAAm). However, AAc introduction shifts the copolymer phase transition temperatures higher and dampens the steep homopolymer phase transition with increasing AAc content. We previously synthesized 2-carboxyisopropylacrylamide (CIPAAm) having both a similar side chain structure to IPAAm and a functional carboxylate group in order to overcome these shortcomings. In the present study, these copolymers, grafted onto cell culture plastic, were assessed for cell adhesion control using their phase transition. AAc introduction to PIPAAm-grafted surfaces resulted in excessive surface hydration and hindered cell spreading in culture at 37 degrees C. In contrast, CIPAAm-containing copolymer-grafted surfaces exhibited relatively weak hydrophobicity similar to both homopolymer PIPAAm-grafted surfaces as well as commercial ungrafted tissue culture polystyrene dish surfaces. Cells adhered and spread well on these surfaces at 37 degrees C in culture. As observed previously on PIPAAm-grafted surfaces, cells were spontaneously detached from the copolymer-grafted surfaces by reducing culture temperature. Cell detachment was accelerated on the CIPAAm copolymer-grafted surfaces compared to pure IPAAm surfaces, suggesting that hydrophilic carboxyl group microenvironment in the monomer and polymer is important to accelerate grafted surface hydration below the lower critical solution temperature, detaching cells.  相似文献   

4.
Thermoresponsive surfaces are prepared via a spin-coating method with a block copolymer consisting of poly(N-isopropylacrylamide) (PIPAAm) and poly(butyl methacrylate) (PBMA) on polystyrene surfaces. The PBMA block suppresses the removal of deposited PIPAAm-based polymers from the surface. The polymer coating affects the temperature-dependent cellular behavior of the surfaces with respect to protein adsorption. By adjusting layer thicknesses, PBMA-b-PIPAAm-coated surfaces are optimized to regulate the adhesion/detachment of cells by temperature changes. Thus, thermoresponsive polymer-coated surfaces are able to harvest contiguous cell sheets with their basal extracellular matrix proteins.  相似文献   

5.
The development of large-scale suspension cell cultures using microcarriers has long been a focus of attention in the fields of pharmacy and biotechnology. Previously, we developed cell-detachable microcarriers based on temperature-responsive poly(N-isopropylacrylamide) (PIPAAm)-grafted beads, on which adhering cells can be noninvasively harvested by only reducing the temperature without the need for proteolytic enzyme treatment. In this study, to improve the cell harvest efficiency from bead surfaces while maintaining cell adhesion and proliferation properties, we prepared temperature-responsive cationic copolymer-grafted beads bearing a copolymer brush consisting of IPAAm, positively charged quaternary amine monomer (3-acrylamidopropyl trimethylammonium chloride; APTAC), and hydrophobic monomer (N-tert-butylacrylamide; tBAAm). The incorporation of positively charged APTAC into the grafted copolymer brush facilitated bead dispersibility in a cell culture system containing Chinese hamster ovary (CHO-K1) cells and consequently allowed for enhanced cell proliferation in the system compared to that of unmodified CMPS and conventional PIPAAm homopolymer-grafted beads. Additionally, P(IPAAm-co-APTAC-co-tBAAm) terpolymer-grafted beads exhibited the most rapid and efficient cell detachment behavior after the temperature was reduced to 20 °C, presumably because the highly hydrated APTAC promoted the overall hydration of the P(IPAAm-co-APTAC-co-tBAAm) chains. Therefore, P(IPAAm-co-APTAC-co-tBAAm) terpolymer-grafted microcarriers are effective in facilitating both cell proliferation and thermally induced cell detachment in a suspension culture system.  相似文献   

6.
Summary A centrifugal method has been evaluated for measuring the strength of Vero Green Monkey kidney cell adhesion to growth surfaces. The centrifugal force necessary to remove cells gave a quantitative measure of cell adhesion and hence the quality of the growth surface. After being subjected to high gravity forces, both the remaining attached cells and the detached cells were viable, indicating the detachment process did not simply rupture the cell. Electron microscope examination of growth surfaces after cell detachment suggested that remnants related to filopodia remained.  相似文献   

7.
The surface physicochemical properties of Listeria monocytogenes LO28 under different conditions (temperature and growth phase) were determined by use of microelectrophoresis and microbial adhesion to solvents. The effect of these parameters on adhesion and biofilm formation by L. monocytogenes LO28 on hydrophilic (stainless steel) and hydrophobic (polytetrafluoroethylene [PTFE]) surfaces was assessed. The bacterial cells were always negatively charged and possessed hydrophilic surface properties, which were negatively correlated with growth temperature. The colonization of the two surfaces, monitored by scanning electron microscopy, epifluorescence microscopy, and cell enumeration, showed that the strain had a great capacity to colonize both surfaces whatever the incubation temperature. However, biofilm formation was faster on the hydrophilic substratum. After 5 days at 37 or 20°C, the biofilm structure was composed of aggregates with a three-dimensional shape, but significant detachment took place on PTFE at 37°C. At 8°C, only a bacterial monolayer was visible on stainless steel, while no growth was observed on PTFE. The growth phase of bacteria used to inoculate surfaces had a significant effect only in some cases during the first steps of biofilm formation. The surface physicochemical properties of the strain are correlated with adhesion and surface colonization.  相似文献   

8.
Bacterial initial adhesion to inert surfaces in aquatic environments is highly dependent on the surface properties of the substratum, which can be altered significantly by the formation of conditioning films. In this study, the impact of conditioning films formed with extracellular polymeric substances (EPS) on bacterial adhesion was investigated. Adhesion of wild type Pseudomonas aeruginosa PAO1 to slides coated with model EPS components (alginate, humic substances, and bovine serum albumin (BSA)) was examined. Surface roughness of conditioning film coated slides was evaluated by atomic force microscopy (AFM), and its effect on the bacterial initial adhesion was not significant. X-ray photoelectron spectroscopy (XPS) studies were performed to determine the elemental surface compositions of bacterial cells and substrates. Results showed that bacterial adhesion to bare slides and slides coated with alginate and humic substances increased as ionic strength increased. Conversely, BSA coating enhanced bacterial adhesion at low ionic strength but hindered adhesion at higher ionic strength. It was concluded that forces other than hydrophobic and electrostatic interactions were involved in controlling bacterial adhesion to BSA coated surfaces. A steric model for polymer brushes that considers the combined influence of steric effects and DLVO interaction forces was shown to adequately describe the observed bacterial adhesion behaviors.  相似文献   

9.
Newly developed fabrication technique of thermoresponsive surface using RAFT-mediated block copolymerization and photolithography achieved stripe-like micropatterning of poly(N-isopropylacrylamide) (PIPAAm) brush domains and poly(N-isopropylacrylamide)-b-poly(N-acryloylmorpholine) domains. Normal human dermal fibroblasts were aligned on the physicochemically patterned surfaces simply by one-pot cell seeding. Fluorescence images showed the well-controlled orientation of actin fibers and fibronectin in the confluent cell layers with associated extracellular matrix (ECM) on the surfaces. Furthermore, the aligned cells were harvested as a tissue-like cellular monolayer, called "cell sheet" only by reducing temperature below PIPAAm's lower critical solution temperature (LCST) to 20 °C. The cell sheet harvested from the micropatterned surface possessed a different shrinking rate between vertical and parallel sides of the cell alignment (approximately 3:1 of aspect ratio). This indicates that the cell sheet maintains the alignment of cells and related ECM proteins, promising to show the mechanical and biological aspects of cell sheets harvested from the functionalized thermoresponsive surfaces.  相似文献   

10.
For the development of well-defined highly dense thermo-responsive polymer grafted surface as an improved stationary phase for thermo-responsive chromatography, poly(N-isopropylacrylamide) (PIPAAm) brush-grafted porous polystyrene beads were prepared by surface-initiated atom transfer radical polymerization (ATRP). The PIPAAm grafted region of polystyrene beads was adjusted by the addition of isooctane as a poor solvent for polystyrene upon the reaction of ATRP initiator immobilization. Using a thermo-responsive HPLC column containing the prepared beads with PIPAAm brush grafted on the inside pores nearby the outer surfaces, angiotensin subtypes were effectively separated with aqueous mobile phase, because the densely grafted PIPAAm on nearby the outer surface effectively interacted with the peptides hydrophobically. Retention of basic peptide was achieved by the beads with basic mobile phase. These results indicated that the prepared beads with grafted PIPAAm nearby the outer surface became an effective chromatographic stationary phase for retaining basic peptides using wide pH range of mobile phase.  相似文献   

11.
Silica-based packing materials induce non-specific interactions with proteins in aqueous media because of the nature of their surface, mainly silanol groups. Therefore, the silica surface has to be modified in order to be used as stationary phase for the High Performance Size-Exclusion Chromatography (HPSEC) of proteins. For this purpose, porous silica beads were coated with hydrophilic polymer gels (dextrans of different molecular weights) carrying a calculated amount of diethylaminoethyl groups (DEAE). Actually, as shown by HPSEC, these dextran modified supports minimize non-specific adsorption for proteins and pullulans in aqueous solution. Then, in order to change the pore size in response to temperature, temperature responsive polymer of poly(N-isopropylacrylamide) (PIPAAm) was introduced into the surface of dextran-DEAE on porous silica beads. The structure of these supports before and after modification was alternately studied by Scanning Electronic Microscopy (SEM) and Scanning Force Microscopy (SFM). An adsorption of radiolabelled albumin was performed to complete our study. Silica modifications by dextran-DEAE and PIPAAm improve the neutrality of the support and minimize the non-specific interactions between the solid support and proteins in solution. At low temperature, the support having PIPAAm exhibits a high resolution domain in HPSEC and finally permits a better resolution of proteins and pullulans. At higher temperature, hydrophobic properties of PIPAAm produce interactions with some proteins and trigger off a slight delay of their elution time.  相似文献   

12.
Abstract

Plasma surface modification is an effective method for changing material properties to control cell behavior on a surface. This study investigates the efficiency of a plasma polymerized 4,7,10-trioxa-1,13-tridecanediamine (ppTTDDA) film coated on a polystyrene (PS) Petri dish, which is a biocompatible surface with carbon- and oxygen-based chemical species. The adhesion, proliferation, and migration properties of bovine aortic endothelial cells (BAECs) were profoundly enhanced in the ppTTDDA-coated PS Petri dishes without extracellular matrix (ECM) proteins, when compared with the uncoated PS Petri dishes. These observations indicate that ppTTDDA-coated PS Petri dishes can directly interact with cells, regardless of cell adhesion molecules. The increased cell affinity was attributed to the high concentration of carboxyl group on the surface of the ppTTDDA film. Such a carboxyl surface showed an excellent ability to promote culturing of BAECs. Plasma surface modification techniques are effective in improving biocompatibility and provide a surface environment for cell culture.  相似文献   

13.
Metastasis mechanisms depend on cell metabolism changes, migration and adhesion to different tissues. To understand their choice of interaction site, the tumoral cell adhesion to model surfaces was studied. The response of Caco-2 tumoral cells cultured on polyelectrolyte film-functionalized surfaces with or without adhesion proteins (fibronectin or collagen IV) was analyzed. Using the layer-by- layer method, multilayer films were prepared with cationic poly(allylamine hydrochloride) and anionic poly(sodium 4-styrenesulfonate) polyelectrolytes. Film surface wettability was evaluated. The electrochemical impedance spectroscopy analyses were carried out to control the elaborated surfaces on which Caco-2 tumoral cells were cultured. The cell velocity was studied by video-microscopy and a cell colorimetric assay (WST-1) was used to quantify cell viability. The film surface parameters as well as the protein nature and localization in the film were found to modulate cell response. Results demonstrated that the cancer cell motility and proliferation were higher when cultured onto pure collagen located above the polyelectrolyte film and that the reverse surprisingly was observed when proteins were inserted into the polyelectrolyte film. Data also showed that cell motility was correlated with a high charge transfer resistance (Rct) and a low surface free energy (SFE) polar component (electron donor character). This relationship was valid only for pure external proteins. Thus, fibronectin exhibited a low Rct and a high SFE polar component, which decreased cell motility and proliferation.  相似文献   

14.
The ability of cells to interact with each other and their surroundings in a co-ordinated manner depends on multiple adhesive interactions between neighbouring cells and their extracellular environment. These adhesive interactions are mediated by a family of cell surface proteins, termed cell adhesion molecules. Fortunately these adhesion molecules fall into distinct families with adhesive interactions varying in strength from strong binding involved in the maintenance of tissue architecture to more transient, less avid, dynamic interactions observed in leukocyte biology. Adhesion molecules are extremely versatile cell surface receptors which not only stick cells together but provide biochemical and physical signals that regulate a range of diverse functions, such as cell proliferation, gene expression, differentiation, apoptosis and migration. In addition, like many other cell surface molecules, they have been usurped as portals of entry for pathogens, including prions. How the mechanical and chemical messages generated from adhesion molecules are integrated with other signalling pathways (such as receptor tyrosine kinases and phosphatases) and the role that aberrant cell adhesion plays in developmental defects and disease pathology are currently very active areas of research. This review focuses on the biochemical features that define whether a cell surface molecule can act as an adhesion molecule, and discusses five specific examples of how cell adhesion molecules function as more than just 'sticky’ receptors. The discussion is confined to the signalling events mediated by members of the integrin, cadherin and immunoglobulin gene superfamilies. It is suggested that, by controlling the membrane organization of signalling receptors, by imposing spatial organization, and by regulating the local concentration of cytosolic adapter proteins, intercellular and cell-matrix adhesion is more than just glue holding cells together. Rather dynamic ‘conversations’ and the formation of multi-protein complexes between adhesion molecules, growth factor receptors and matrix macromolecules can now provide a molecular explanation for the long-observed but poorly understood requirement for a number of seemingly distinct cell surface molecules to be engaged for efficient cell function to occur.  相似文献   

15.
Poly(N-isopropylacrylamide)-coN-(1-phenylethyl) acrylamide [P(NIPAAm-co-PEAAm)] thermo-responsive thin films with a lower critical solution temperature (LCST) adjusted to fit marine applications were used to investigate the effect of changes in the wetting properties of a surface on the adhesion of the diatom Navicula perminuta, an organism which forms slime films on surfaces immersed in an aquatic environment. Although the strength of attachment of cells was affected by whether the film was collapsed or expanded, no significant decrease in adhesion strength occurred upon temperature decrease. The effects were attributed to possible strong interactions between the hydrophobic segments of the responsive film when collapsed with components in the adhesive complex.  相似文献   

16.
The adhesion force and specificity in the first experimental evidence for cell-cell recognition in the animal kingdom were assigned to marine sponge cell surface proteoglycans. However, the question whether the specificity resided in a protein or carbohydrate moiety could not yet be resolved. Here, the strength and species specificity of cell-cell recognition could be assigned to a direct carbohydrate-carbohydrate interaction. Atomic force microscopy measurements revealed equally strong adhesion forces between glycan molecules (190-310 piconewtons) as between proteins in antibody-antigen interactions (244 piconewtons). Quantitative measurements of adhesion forces between glycans from identical species versus glycans from different species confirmed the species specificity of the interaction. Glycan-coated beads aggregated according to their species of origin, i.e., the same way as live sponge cells did. Live cells also demonstrated species selective binding to glycans coated on surfaces. These findings confirm for the first time the existence of relatively strong and species-specific recognition between surface glycans, a process that may have significant implications in cellular recognition.  相似文献   

17.
Extracellular DNA (eDNA) is an important structural component of biofilms formed by many bacteria, but few reports have focused on its role in initial cell adhesion. The aim of this study was to investigate the role of eDNA in bacterial adhesion to abiotic surfaces, and determine to which extent eDNA-mediated adhesion depends on the physicochemical properties of the surface and surrounding liquid. We investigated eDNA alteration of cell surface hydrophobicity and zeta potential, and subsequently quantified the effect of eDNA on the adhesion of Staphylococcus xylosus to glass surfaces functionalised with different chemistries resulting in variable hydrophobicity and charge. Cell adhesion experiments were carried out at three different ionic strengths. Removal of eDNA from S. xylosus cells by DNase treatment did not alter the zeta potential, but rendered the cells more hydrophilic. DNase treatment impaired adhesion of cells to glass surfaces, but the adhesive properties of S. xylosus were regained within 30 minutes if DNase was not continuously present, implying a continuous release of eDNA in the culture. Removal of eDNA lowered the adhesion of S. xylosus to all surfaces chemistries tested, but not at all ionic strengths. No effect was seen on glass surfaces and carboxyl-functionalised surfaces at high ionic strength, and a reverse effect occurred on amine-functionalised surfaces at low ionic strength. However, eDNA promoted adhesion of cells to hydrophobic surfaces irrespective of the ionic strength. The adhesive properties of eDNA in mediating initial adhesion of S. xylosus is thus highly versatile, but also dependent on the physicochemical properties of the surface and ionic strength of the surrounding medium.  相似文献   

18.
The receptor-mediated adhesion of cells to ligand-coated surfaces is important in many physiological and biotechnological processes. Previously, we measured the detachment of antibody-coated spheres from counter-antibody- and protein A-coated substrates using a radial-flow detachment assay and were able to relate mechanical adhesion strength to chemical binding affinity (Kuo and Lauffenburger, Biophys. J. 65:2191-2200 (1993)). In this paper, we use "adhesive dynamics" to simulate the detachment of antibody-coated hard spheres from a ligand-coated substrate. We modeled the antibody-ligand (either counter-antibody or protein A) bonds as adhesive springs. In the simulation as in the experiments, beads attach to the substrate under static conditions. Flow is then initiated, and detachment is measured by the significant displacement of previously bound particles. The model can simulate the effects of many parameters on cell detachment, including hydrodynamic stresses, receptor number, ligand density, reaction rates between receptor and ligand, and stiffness and reactive compliance of the adhesive springs. The simulations are compared with experimental detachment data, thus relating measured bead adhesion strength to molecular properties of the adhesion molecules. The simulations accurately recreated the logarithmic dependence of adhesion strength on affinity of receptor-ligand recognition, which was seen in experiments and predicted by analytic theory. In addition, we find the value of the reactive compliance, the parameter which relates the strain of a bond to its rate of breakage, that gives the best match between theory and experiment to be 0.01. Finally, we analyzed the effect of varying either the forward or reverse rate constants as different ways to achieve the same affinity, and showed that adhesion strength depends uniquely on the equilibrium affinity, not on the kinetics of binding. Given that attachment is independent of affinity, detachment and attachment are distinct adhesive phenomena.  相似文献   

19.
Cell adhesion to a scaffold is a prerequisite for tissue engineering. Many studies have been focused on enhancing cell adhesion to synthetic materials that are used for scaffold fabrication. Previously, we showed that immobilization of biotin molecules to chondrocyte surfaces enhanced cell adhesion to avidin-coated biodegradable polymers such as poly-L-lactic acid, poly-D,L-lactic acid and polycaprolactone. However, the endocytosis of cell membrane biotin molecules decreases binding strength between biotinylated-chondrocytes (B-chondrocytes) and avidin-coated substrata, and therefore decreases cell spreading and discourages long-term chondrocytes culture. In this study, we proposed two strategies to solve the shortcoming of the avidin-biotin binding system. First, the avidin-biotin binding system is combined with the intrinsic integrin-dependent adhesion systems in order to enhance long-term cell culture. Second, the incubation temperature is lowered in order to slow down the endocytosis process. We found that the avidin-biotin binding system in combination with FN-integrin binding system enhanced cell adhesion, cell spreading and cell growth. Decrease of cell culture temperature to 4 degrees C enhanced the adhesion of B-chondrocytes to the avidin-coated surfaces, but decreased cell viability and proliferation, compared to culture temperature of 37 degrees C. Whether there is an optimal seeding temperature between 4 and 37 degrees C for both adhesion and proliferation of B-chondrocytes needs further investigation. Our results indicated that modulation of the adhesion conditions could further enhance the efficacy of the avidin-biotin binding system in mediating cell adhesion, and subsequent tissue culture.  相似文献   

20.
It is proposed that patching, capping and endocytosis, and cell locomotion are manifestations of a single process whereby the cell discards foreign materials. Capping results from the binding to the cell surface of particulate (or molecular) objects which cannot function as immovable substratum. This might be described as unsuccessful or abortive cell adhesion in that the particles adhere to the cell rather than the cell adhering to the substratum. Lateral particle movements on the cell surface membrane are effected by the submembranous microfilament-microtubule system, resulting in capping without displacement of the cell. Successful adhesion of the cell to a substratum renders capping and endocytosis impossible and the cell attempts to discard the substratum by mechanisms analogous to capping. The cell achieves this by lateral movement and detachment of the trailing edge.The concept of abortive adhesion leading to capping has been amplified by the development of molecular models of normal and neoplastic cell adhesion in vitro in the presence and absence of serum. In these models, the normal cells have molecule A (adhesion sites) on their surface; they can spread on the substratum in the absence of serum. In the presence of serum, the A molecules on the normal cell surface bind with B molecules in serum, which may be substratum-bound or free in suspension. Binding of free B molecules with cell surface A molecules results in blockage of adhesion sites; these are cleared via capping. New adhesion sites (A molecules) are produced at the active edges of the cell. Binding of cell surface A molecules with the substratum bound B molecules results in cell adhesion. Transformed cells do not have A molecules on their surface; they cannot spread in the absence of serum. The transformed cells may recruit A molecules from the serum to attain deformability and spreading.These models also relate to capping of gold or resin particles, cell locomotion and regulation of cell division, and lectin-induced agglutination of transformed cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号