首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Celery embryos and plantlets were found to be selectively released in a culture of immobilized Ca-alginate gel beads in which celery callus was entrapped under regeneration conditions. We studied the feasibility of use of this process for celery embryogenesis in an artificial seed system. The cells released from the gel beads were larger than those obtained in suspension culture. The optimal concentration of alginate gel for embryo and plantlet production was 2% for the immobilized cell culture. Considering the maintenance of the gel bead structure and detrimental effect of CaCl2 on plantlet development, 5 mM CaCl2 supplementation gave the best result in terms of the number of heart and torpedo embryos and plantlets. The ratio of the number of heart embryos, torpedo embryos and plantlets to total number of cells in the immobilized cell culture was higher than that in the suspension culture. Repeated batch culture with 5 mM CaCl2 provided long-term (more than 154 d) embryo and plantlet production without gel beads disruption. Productivity of plantlets in the immobilized cell culture with 5 mM CaCl2 was 2.2-fold as high as that in the suspension culture.  相似文献   

2.
Different factors which affect the stability of calcium alginate gel beads entrapping viable cells during fermentation were investigated. It was found that among others, the initial population of cells per ml of gel beads, the length of period of incubation in CaCl2 solution, and the concentration of sodium alginate used for the immobilization were the most important factors affecting the stability of the gel beads during fermentation. By using an initial cell population of about 105 cells per ml of 2.0% sodium alginate, and incubating the beads for at least 22 h in a CaCl2 solution after immobilization, the percentage of beads which developed cracks during fermentation was highly reduced. Also, without the addition of CaCl2 into the fermenting broth, the gel beads were stable for nine consecutive batch fermentations.  相似文献   

3.
Spherical gel beads of collagen/alginate were prepared by discharging droplets of a mixture containing collagen (1.07-1.9 mg/ml) and alginate (1.2-1.5% w/v) into 1.5% w/v CaCl2 solution at 4°C. Collagen in the gel beads was reconstituted by raising the temperature to 37°C after alginate was liquefied by citrate. Scanning electron microscopy of the beads revealed the characteristic fibrous structure of collagen. To demonstrate the application of this new technique in cell culture, GH3 rat pituitary tumor cells were entrapped and grown in the gel beads. The immobilized cells proliferated to a density of 1.95 x 106 cell/ml which is about an order of magnitude higher than that grown in the alginate beads.  相似文献   

4.
The optimum concentrations of sodium alginate (wt. %), calcium chloride (M) and yeast cells (wt. %), and curing time (h) for enhanced gel stability were obtained employing a full factorial search. The results indicate that the concentrations of sodium alginate and CaCl2, and the curing time of the beads were found to have a pronounced effect on the stability of the beads. The cell concentration, on the other hand, has an adverse influence either individually or in combination with other variables. The path of steepest ascent method has been used to optimize the variables and the resultant gel beads were evaluated for fermentation ability.  相似文献   

5.
Summary A method was developed for plant regeneration from alginate-encapsulated shoot tips of Phyllanthus amarus. Shoot tips excised from in vitro proliferated shoots were encapsulated in calcium alginate beads. The best gel complexation was achieved using 3% sodium alginate and 75 mM CaCl2·2H2O. Maximum percentage response for conversion of encapsulated shoot tips into plantlets was 90% after 5 wk of culture on Murashige and Skoog (MS) medium without plant growth regulator. The regrowth ability of encapsulated shoot tips was affected by the concentration of sodium alginate, storage duration, and the presence or absence of MS nutrients in calcium alginate beads. Plantlets with well-developed shoot and roots were transferred to pots containing an autoclaved mixture of soilrite and peat moss (1∶1). The conversion of encapsulated shoot tips into plantlets also occurred when calcium alginate beads were directly sown in autoclaved soilrite moistened with 1/4-MS salts. Encapsulation of vegetative propagules in calcium alginate beads can be used as an alternative to synthetic seeds derived from somatic embryos.  相似文献   

6.
Anther-derived pre-embryogenic masses (PEMs) of callus, established via suspension cultures, were encapsulated to form synthetic seeds suitable for cryopreservation. The synchronised suspension culture proliferation necessitated the optimisation of plant growth regulators for different cultivars. The growth phase and density of the culture were also important as well as the exposure of cells to vitrification solution containing 0.75 M sucrose with 0.1 M CaCl2 and 2.0 % sodium alginate (pH 5.7). Pre-treatment of the encapsulated cells for 2 d with Nitsch and Nitsch (NN) medium containing 0.75 M sucrose solution followed by dehydration for 4 h in a laminar flow box provided maximum cell viability, which varied from 0 to 40 %. The embryo proliferation from the cryopreserved beads involved warming them and then transfer to NN medium containing glutamine (50 mg dm−3) and activated charcoal (2.5 %). The maximum number of embryos obtained was 31–53 per bead. Subculture into the same medium induced secondary embryogenesis, which was initiated from the meristematic region, radicle, and root cap. Proliferation and maturation of secondary embryos was faster than of primary embryos. No phenotypic variation or abnormal structures compared to the control were observed in the regenerated plantlets.  相似文献   

7.
Streptomyces rimosus Pfizer 18234–2 cells were immobilized in calcium alginate and used for the production of oxytetracycline. The influence of the incubation period, alginate concentration and storage in CaCl2 were investigated. From the results of the repeated batch fermentations of the shake flasks, a good level of antibiotic was maintained for a period of about 28 days using 4% calcium alginate. The cell leakage and cell concentration inside the beads were affected by the alginate concentration and storage in CaCl2 solution.  相似文献   

8.
Summary The dissolution of alginate gel beads in 20 g sodium citrate /l produces a linear decrease in bead diameter. The rate of dissolution is dependent on the concentration of CaCl2 within the gel beads. This method allows the controlled release of Saccharomyces cerevisiae from alginate gel beads and permits the simple and rapid determination of the radial distribution of cell concentration.  相似文献   

9.
A new type porous carrier was fabricated from a mixture of sodium alginate, bovine serum albumin and sodium bicarbonate. The porous space of the carrier is an assembly of void spaces. The carrier was successfully applied to the cultivation of suspension animal cells. In the culture, while both cells and carriers were held in suspension, the cells were entrapped hydrodynamically into the void spaces in the carriers. A culture of hybridoma cells using this carrier resulted in a cell density up to 5.7×107 cells per ml-carrier.  相似文献   

10.
Saccharomyces cerevisiae cells were immobilized in calcium alginate beads for use in the continuous production of ethanol. Yeasts were grown in medium supplemented with ethanol to selectively screen for a culture which showed the greatest tolerance to ethanol inhibition. Yeast beads were produced from a yeast slurry containing 1.5% alginate (w/v) which was added as drops to 0.05M CaCl2 solution. To determine their optimum fermentation parameters, ethanol production using glucose as a substrate was monitored in batch systems at varying physiological conditions (temperature, pH, ethanol concentration), cell densities, and gel concentration. The data obtained were compared to optimum free cell ethanol fermentation parameters. The immobilized yeast cells examined in a packed-bed reactor system operated under optimized parameters derived from batch-immobilized yeast cell experiments. Ethanol production rates, as well as residual sugar concentration were monitored at different feedstock flow rates.  相似文献   

11.
Resting cells of the yeast Rhodosporidium toruloides (UOFS Y-0471) were immobilised in calcium alginate beads for the enantioselective kinetic resolution of racemic-1,2-epoxyoctane. The initial activity exhibited by immobilised cells was almost 50% lower than that of the free counterpart but was extremely stable when compared to the free cells. The concentration of the immobilised biomass had no effect on apparent enzyme activity but did lead to a decrease in single cell activity. An increase in both the alginate and CaCl2 concentrations used for bead preparation led to a decrease in enzyme stability. An increase in the alginate concentration led to an increase in bead diameter. The stoichiometric equation for cross-linking of alginate was only obeyed when CaCl2 concentrations higher than 0.4 M were utilised for bead preparation.  相似文献   

12.
Summary A procedure which does not involve the use of an immiscible organic solvent phase is described for the entrapment of yeast cells in porous beads of polyacrylamide gel. The cells are rapidly dispersed at 4° C in an aqueous solution containing sodium alginate and acrylamide-N,Nmethylene-bis-acrylamide monomer, and the suspension is immediately dropped into a solution of calcium formate to give calcium alginate coated beads. Polyacrylamide gel forms within the bead. The calcium alginate is subsequently leached out of the composite bead with either sodium citrate or potassium phosphate buffer solution. Cells of Saccharomyces uvarum ATCC 26 602 entrapped in such polyacrylamide beads ferment cane molasses in batch mode at higher specific ethanol productivity than a free cell suspension. Their volumetric productivity in continuous fermentation is higher than that of Ca2+-alginate immobilized cells.NCL Communication No. 4383  相似文献   

13.
Kwon YJ  Peng CA 《BioTechniques》2002,33(1):212-4, 216, 218
Valuable products obtainedfrom the cultivation of anchorage-dependent mammalian cells require large-scale processes to obtain commercially useful quantities. It is generally accepted that suspension culture is the ideal mode of operation. Because anchorage-dependent cells need surfaces to be able to attach and spread, the incorporation of microcarriers to suspension culture is indispensable. Since the dextran-based microcarrier wasfirst introduced, many different types of microcarriers have been developed and commercialized. In this study, alginate-based microcarriers were made in the following order: (i) calcium-alginate gel beads prepared by dropping a blend of sodium alginate and propylene glycol alginate (PGA) into calcium chloride solution, (ii) the PGA section of gel beads cross-linked with gelatin in alkaline solution (i.e., via the transacylation reaction between the ester group of PGA and amino group of gelatin), and (iii) gelatin membrane around the beads further cross-linked by glutaraldehyde. The glutaraldehyde-treated gelatintransacylated PGA/alginate microcarrier showed superior features in high stability under phosphate-containing solution, density close to that of culture medium, and transparency. Moreover, the Chinese hamster ovary CHO-KI and amphotropic retrovirus producer PA317 cells cultivated on the newly synthesized microcarriers exhibited similar growth kinetics of these two types of cell lines cultured on commercial polystyrene microcarriers. However, cell morphology was easily monitored on the transparent microcarriers made in this study.  相似文献   

14.
Summary High numbers of embryos are difficult to obtain in liquid cultures of sweet potato (Ipomoea batatas (L.) Lam.) because discrete cell aggregates, produced through calli fragmentation, do not support embryo growth. In an effort to demonstrate that embryo development is possible from discrete cell aggregates, we compared embryo formation from cell aggregates 250–355 μm in diameter cultured either in suspension in liquid medium, on agar solidified medium, or immobilized on alginate beads floated in liquid medium. Embryos were initiated but remained arrested in their globular stage on cell aggregates cultured in suspension. Embryos developed to the torpedo stage from cell aggregates cultured on solidified medium and from cell aggregates anchored on alginate beads. Thus, embryos continued to develop beyond the globular stage when a structural polarity, which led probably to the establishment of a physiological polarity, was created. The production of sweet potato embryos in liquid culture can be improved by using alginate beads or culture conditions and protocols leading to the release during calli fragmentation of polarized individual cell aggregates. This work was supported in part by a IFAS/Gas Research Institute cooperative grant. Florida Agriculture Experiment Station Journal Series 9297  相似文献   

15.
Cryopreservation of a Catharanthus cell suspension was performed after encapsulation in alginate beads. Encapsulated cells were precultured in sucrose-enriched medium for several days, dried over silica gel, and directly cooled in liquid nitrogen. After rewarming in air at room temperature, alginate beads were placed on semi-solid culture medium. Following regrowth, beads transferred to liquid medium generated a new cell suspension. Cell survival and regrowth from cryopreserved encapsulated cells depended on preculture duration and residual water content after air-drying.Jean Dereuddre unexpectedly passed away on 16 February 1995.  相似文献   

16.
《Process Biochemistry》2014,49(5):840-844
The effective system of reusing mycelial fructosyltransferase (FTase) immobilized with two polymers, chitosan and alginate were evaluated for continuous production of fructooligosaccharides (FOS). The alginate beads were successfully developed by maintaining spherical conformation of using 0.3% (w/v) sodium alginate with 0.1% (w/v) of CaCl2 solution for highest transfructosylating activity. The characteristics of free and immobilized FTase were investigated and results showed that optimum pH and temperature of FTase activity were altered by immobilized materials. A successive production of FOS by FTase entrapped alginate beads was observed at an average of 62.96% (w/w) up to 7 days without much losing its activity. The data revealed by HPLC analysis culminate 67.75% (w/w) of FOS formation by FTase entrapped alginate beads and 42.79% (w/w) by chitosan beads in 36 h of enzyme substrate reaction.  相似文献   

17.
The optimum critical parameters for immobilization of Streptomyces clavuligerus on alginate gel matrix for cephamycin C production, i.e. sodium alginate (wt. %), CaCl2 (M) and cell concentration (wt. %), curing time (h.), for enhanced gel stability, were obtained employing a full factorial search. The results indicate that the concentrations of CaCl2 and inoculum size were found to have a pronounced effect on cephamycin C fermentation. On the other hand, the higher concentration of sodium alginate exerted an adverse influence either individually or in combination with other variables. The path steepest ascent method has been used to optimize the variables. The optimum concentrations of matrix components were 3.218% sodium alginate, 0.996 M CaCl2, 19.06% cell concentration and 17.16 h. of curing time supported higher cephamycin C production, at 48 h. of fermentation.  相似文献   

18.
Synechococcus elongatus cells were immobilized in alginate beads, and the effects of increasing the cross-linker concentration from 2 to 4 % CaCl2 were evaluated, as well as the effects of coating the beads with either glycerol or poly(ethylene glycol) methyl ether methacrylate (PEGMA)—not previously reported for immobilized microalgae—to improve the holding time of the immobilized cells. S. elongatus cells remain metabolically active after coating with glycerol or PEGMA. There is an inverse relation between the glycerol concentration and the chlorophyll a content for the alginate beads cross-linked with 2 % CaCl2. PEGMA diminishes the rate of liberation of cells as its concentration increases, although results suggest the ability of S. elongatus to degrade PEGMA, which increases the growth rate of the liberated cells, because of PEGMA being used as carbon source.  相似文献   

19.
Summary Sodium alginate, which gels in the presence of calcium ions, is commonly used for culture of anchorage-independent cells, such as chondrocytes. Normally, the gel appears microscopically homogeneous but, depending on the conditions of gelation, it may contain a varying number of small channels that extend inward from the surface. We have examined the influence of these channels on the morphology of cultured chondrocytes entrapped in alginate beads. Growth-plate or articular chondrocytes cultured in alginate normally proliferate and form rounded cell clusters but, in alginate beads containing numerous channels, many chondrocytes become aligned and form columns similar to those in the growth plate in vivo. As the pattern of cellular growth and morphology in alginate is profoundly influenced by the presence of channels in the gel, further studies were conducted to determine what specific conditions of gelation affect their formation. The channels are especially numerous when both the alginate and the gelling solutions lack sodium ions or other monovalent cations. The channels are cavities in the gel formed by particulate blocking of the rapid diffusion of calcium ions from the gelling solution into the boundary of the calcium alginate solution, and hence they extend inward from cells at the surface of the alginate gel. An understanding of the conditions under which these channels develop makes it possible either to avoid their formation or, alternatively, to enhance the number of channels in order to encourage proliferating cells to grow in radial columns, rather than in a less organized pattern characteristic of most culture systems.  相似文献   

20.
《Process Biochemistry》2014,49(10):1682-1690
Double enzymes (alcalase and trypsin) were effectively immobilized in a composite carrier (calcium alginate–chitosan) to produce immobilized enzyme beads referred to as ATCC. The immobilization conditions for ATCC were optimized, and the immobilized enzyme beads were characterized. The optimal immobilization conditions were 2.5% of sodium alginate, 10:4 sodium alginate to the double enzymes, 3:7 chitosan solution to CaCl2 and 2.5 h immobilization time. The ATCC beads had greatly enhanced stability and good usability compared with the free form. The ATCC residual activity was retained at 88.9% of DH (degree of hydrolysis) after 35 days of storage, and 36.0% of residual activity was retained after three cycles of use. The beads showed a higher zein DH (65.8%) compared with a single enzyme immobilized in the calcium alginate beads (45.5%) or free enzyme (49.3%). The ATCC kinetic parameters Vmax and apparent Km were 32.3 mL/min and 456.62 g−1, respectively. Active corn peptides (CPs) with good antioxidant activity were obtained from zein in the ethanol phase. The ATCC might be valuable for preparing CPs and industrial applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号