首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
Peripheral administration of lipopolysaccharide (LPS) is associated with alterations in sleep and the electroencephalogram. To evaluate potential neuronal mechanisms for the somnogenic effects of LPS administration, we used unanesthetized rats to survey the firing patterns of neurons in various regions of rat basal forebrain (BF) and hypothalamus during spontaneous sleep and waking and during the epochs of sleep and waking that occurred after the intraperitoneal administration of LPS. In the brain regions studied, LPS administration was associated with altered firing rates in 39% of the neurons examined. A larger proportion of LPS-responsive units showed vigilance-related alterations in firing rates compared with nonresponsive units. Approximately equal proportions of LPS-responsive neurons showed increased and decreased firing rates after LPS administration, with some units in the lateral preoptic area of the hypothalamus showing particularly robust increases. These findings are consistent with other studies showing vigilance-related changes in neuronal activity in various regions of BF and hypothalamus and further demonstrate that peripheral LPS administration alters neuronal firing rates in these structures during both sleep and waking.  相似文献   

2.
1. The present review analyzes sensory processing during sleep and wakefulness from a single neuronal viewpoint. Our premises are that processing changes throughout the sleep–wakefulness cycle may be at least partially evidenced in single neurons by (a) changes in the phase locking of the response to the hippocampal theta rhythm, (b) changes in the discharge rate and firing pattern of the response to sound, and (c) changes in the effects of the neurotransmitters involved in the afferent and efferent pathways.2. The first part of our report is based on the hypothesis that the encoding of sensory information needs a timer in order to be processed and stored, and that the hippocampal theta rhythm could contribute to the temporal organization. We have demonstrated that the guinea pig's auditory and visual neuronal discharge exhibits a temporal relationship (phase locking) to the hippocampal theta waves during wakefulness and sleep phases.3. The concept that the neural network organization during sleep versus wakefulness is different and can be modulated by sensory signals and vice versa, and that the sensory input may be influenced by the CNS state, i.e., asleep or awake, is introduced. During sleep the evoked firing of auditory units increases, decreases, or remains similar to that observed during quiet wakefulness. However, there has been no auditory unit yet that stops firing as the guinea pig enters sleep. Approximately half of the cortical neurons studied did not change firing rate when passing into sleep while others increased or decreased. Thus, the system is continuously aware of the environment. We postulate that those neurons that changed their evoked firing during sleep are also related to still unknown sleep processes.4. Excitatory amino acid neurotransmitters participate in the synaptic transmission of the afferent and efferent pathways in the auditory system. In the inferior colliculus, however, the effects of glutamate's mediating the response to sound and the efferent excitation evoked by cortical stimulation failed to show differences in sleep and wakefulness.5. Considering that neonates and also infants spend most of the time asleep, the continuous arrival of sensory information to the brain during both sleep phases may serve to sculpt the brain by activity-dependent mechanisms of neural development, as has been postulated for wakefulness.  相似文献   

3.
Single unit activity was recorded from the area of the substantia nigra in freely moving cats. A sub-population of these neurons had the following characteristics: long action potential durations (2–4 msec); relatively slow discharge rates (2–6 spikes/sec); firing as single spikes along with periods of bursting activity in which spike amplitude successively decreased; suppression of unit activity by systemic injection of apomorphine and increased activity after systemic injection of haloperidol. These characteristics are similar to those of identified dopamine neurons recorded in chloral hydrate anesthetized or peripherally paralyzed rats. Therefore, based upon these physiological and pharmacological similarities, this study represents the first systematic report providing evidence for recording the activity of dopaminergic neurons in freely moving cats. In addition, when these cells were studied across the sleep-waking cycle they displayed little variation in firing rates between waking, slow wave sleep and REM sleep.  相似文献   

4.
Influence of electrical stimulation of the medial preoptic area of cats on characteristics of paradoxical sleep and activity of medial preoptic neurons were studied in the course of sleep-waking cycle. Low-frequency stimulation of this structure in the state of slow-wave sleep evoked short-latency electrocortical desynchronization and induced transition to paradoxical sleep or paradocical sleep-like state. The same stimulation during the whole period of paradoxical sleep results in a reduction of its duration, practically complete disappearance of tonic stage, and increase in the density of rapid eye movements in phasic stage. The vast majority of meurons in the medial preoptic area decreased their firing rates during quiet waking and slow-wave sleep and dramatically increased their activity during paradoxical sleep. More than 50% of such neurons displayed activation 20-70 s prior to the appearance of electrocorticographic correlates of paradoxical sleep. Some neurons were selectively active during paradoxical sleep. Approximately 50% of cells increased their firing rates a few seconds prior to and/or during series of rapid eye movements. The results suggest that the medial preoptic area contains the units of the executive system (network) of paradoxical sleep and are involved in the mechanisms of neocortical desynchronization.  相似文献   

5.
The nucleus pontis oralis contains several populations of neurons showing distinct sleep-waking discharge patterns. PS-on, PS-off cells, and neurons that discharged in association with phasic movements during paradoxical sleep and/or waking, were found. The findings suggest that different populations of the nucleus pontis oralis neurons take a distinct part in paradoxical sleep control.  相似文献   

6.
Acetylcholine (ACh) release from the dorsal hippocampus was continuously monitored in freely moving rats during a light period using an intracerebral dialysis technique. A dialysate was collected every 6 min and polygraph recordings including cortical and hippocampal electroencephalograms, electromyogram, and electrooculogram were simultaneously made to determine the stage of sleep-wakefulness. The content of ACh was measured by high-performance liquid chromatography with electrochemical detection. ACh output showed profound and state-dependent fluctuations. ACh levels during waking increased approximately 300% compared to slow wave sleep. In contrast, the rate of ACh release during paradoxical sleep was as high as during waking and appeared to be even higher. These results revealed that the intracerebral dialysis technique provides a useful method to monitor changes in spontaneous neurotransmitter release during the sleep-waking cycle.  相似文献   

7.
The impulse discharge of single on-off neurons and a graded field potential, the proximal negative response (PNR), were simultaneously recorded with an extracellular microelectrode in the inner frog retina. Normalized amplitude-intensity functions for the on-response of the PNR and the neuron's post-stimulus time histogram (PSTH) were nearly coincident and typically showed a dynamic range spanning approximately 2 log units of intensity. Thus a nearly linear relation is found between the amplitude of the PNR and the neuron's PSTH. A neuron's PSTH amplitude and maximum instantaneous frequency of discharge were usually highly correlated, but occasional marked disparities indicate that temporal jitter of the first spike latency is an additional, relatively independent variable influencing PSTH amplitude. It typically changes by a factor of 20–30 over the intensity range. These and other findings have implications for the functional significance of the PNR and the PSTH, for a possible linear link between amacrine and on-off ganglion cells, and for a mechanism of intensity coding in which temporal jitter of latency exerts a major role.  相似文献   

8.
To the best of our knowledge, there is no simple way to induce neural networks to shift from waking mode into sleeping mode. Our best guess is that a whole group of neurons would be involved and that the process would develop in a period of time and a sequence which are mostly unknown. The quasi-total sensory deprivation elicits a new behavioral state called somnolence. Auditory stimulation as well as total auditory deprivation alter sleep architecture. Auditory units exhibiting firing shifts on passing to sleep (augmenting or diminishing) are postulated to be locked to sleep-related networks. Those ( approximately 50%) that did not change during sleep are postulated to continue informing the brain as in wakefulness. A rhythmic functional plasticity of involved networks is postulated. A number of auditory and visual cells have demonstrated a firing phase locking to the hippocampal theta rhythm. This phase locking occurs both during wakefulness and sleep phases. The theta rhythm may act as an organizer of sensory information in visual and auditory systems, in all behavioral states adding a temporal dimension to the sensory processing. Sensory information from the environment and body continuously modulates the central nervous system activity, over which sleep phenomenology must develop. It also produces a basal tonus during wakefulness and sleep, determining changes in the networks that contribute to sleep development and maintenance and, eventually, it also leads to sleep interruption.  相似文献   

9.
In the present study three groups of cochlear ganglion neurons were detected which differed in respect to their tone-evoked and spontaneous activity: auditory units which showed an irregular spontaneous discharge, non-auditory neurones with regular activity and such with an irregular spontaneous discharge pattern. Electrically-elicited contractions of the middle-ear muscle influenced the tone-evoked and/or the spontaneous activity of the auditory and the non-auditory neurones with irregular spontaneous discharge but not, however, the regularly firing units. Similar results were obtained with imposed perilymph movements in the cochlea (evoked via the vestibular system. Fractions of all three groups of cochlear ganglion neurones were responsive to direct deformations of the membraneous lagena. Several (auditory and non-auditory) units with irregular discharge were excited during a basilar membrane displacement towards scala vestibuli whereas a basilar membrane motion towards scala tympani resulted in a decrease of the discharge rate. A few units showed a different reaction. The results provide evidence that the neurones with periodic spontaneous discharge innervate the lagena and that this sense organ has no auditory significance in birds. The peripheral origin of the 'non-auditory' neurones with irregular spontaneous activity remains undecided and might be the macula lagenae or the apical portion of the basilar papilla.  相似文献   

10.
The activity of 194 neurons was recorded in three subdivisions of the medial geniculate body (74 neurons in the ventral, 62 in the medial and 44 neurons in the dorsal subdivision, i.e. vMGB, mMGB and dMGB) of guinea pigs anesthetized with ketamine-xylazine. The discharge properties of neurons were evaluated by means of peristimulus time histograms (PSTHs), interval histograms (INTHs) and auto-correlograms (ACGs). In the whole MGB, the most frequent PSTH responses to pure tone stimuli were onset (43%) or chopper (32%). The onset responses were mostly present in the vMGB, whereas chopper responses dominated in the dMGB. In the whole MGB Poisson-like and bimodal INTHs were found in 46% and 40% of neurons, respectively. The mMGB revealed fewer bimodal and more symmetrical types of INTH. In the whole MGB, 60% of units were found to have ACGs typical for short bursts (<100 ms), 23% for long bursts (>100 ms) and 15% of units fired without bursts. Neurons in the vMGB were characterized by short bursting, whereas those in the mMGB and dMGB expressed more activity in the long bursts. The results demonstrate that the type of information processing in the vMGB, which belongs to the "primary" auditory system, is different from that in two other subdivisions of the MGB.  相似文献   

11.
Simultaneously recorded spike trains were obtained using microwire bundles from unrestrained, drug-free cats during different sleep-waking states in forebrain areas associated with cardiac and respiratory activity. Cardiac and respiratory activity was simultaneously recorded with the spike trains. We applied the recurring discharge patterns detection procedure described in a companion paper (Frostig et al. 1990) to the spike and cardiorespiratory trains. The pattern detection procedure was applied to detect only precise (in time and structure) recurring patterns. Recurring discharge patterns were detected in all simultaneously recorded groups. Recurring discharge patterns were composed of up to ten spikes per pattern and involved up to four simultaneously recorded spike trains. Fourty-two percent of the recurring patterns contained cardiac and/or respiratory events in addition to neuronal spikes. When patterns were compared over different sleep-waking states it was found the the same units produced different patterns in different states, that patterns were significantly more compact in time during quiet sleep, and that changes in the discharge rates accompanying changes in sleep-waking states were not correlated with changes in pattern rate.  相似文献   

12.
Accurate timing of action potentials is required for neurons in auditory brainstem nuclei to encode the frequency and phase of incoming sound stimuli. Many such neurons express "high threshold" Kv3-family channels that are required for firing at high rates (> -200 Hz). Kv3 channels are expressed in gradients along the medial-lateral tonotopic axis of the nuclei. Numerical simulations of auditory brainstem neurons were used to calculate the input-output relations of ensembles of 1-50 neurons, stimulated at rates between 100-1500 Hz. Individual neurons with different levels of potassium currents differ in their ability to follow specific rates of stimulation but all perform poorly when the stimulus rate is greater than the maximal firing rate of the neurons. The temporal accuracy of the combined synaptic output of an ensemble is, however, enhanced by the presence of gradients in Kv3 channel levels over that measured when neurons express uniform levels of channels. Surprisingly, at high rates of stimulation, temporal accuracy is also enhanced by the occurrence of random spontaneous activity, such as is normally observed in the absence of sound stimulation. For any pattern of stimulation, however, greatest accuracy is observed when, in the presence of spontaneous activity, the levels of potassium conductance in all of the neurons is adjusted to that found in the subset of neurons that respond better than their neighbors. This optimization of response by adjusting the K(+) conductance occurs for stimulus patterns containing either single and or multiple frequencies in the phase-locking range. The findings suggest that gradients of channel expression are required for normal auditory processing and that changes in levels of potassium currents across the nuclei, by mechanisms such as protein phosphorylation and rapid changes in channel synthesis, adapt the nuclei to the ongoing auditory environment.  相似文献   

13.
Fractionations are 20- to 100-ms pauses indiaphragm activity that occur spontaneously during rapid-eye-movement(REM) sleep, sometimes in association with pontogeniculooccipital (PGO)waves. Auditory stimuli can elicit fractionations or PGOwaves during REM sleep, non-REM (NREM) sleep, and waking; however,their interrelationship has not been investigated. To determine whetherthe two phenomena are produced by a common phasic-event generator inREM sleep, we examined PGO waves and fractionations that were elicitedby auditory stimuli (tones) presented to freely behaving cats across states. Tones elicited PGO waves and two types of fractionations: short-latency fractionation responses (SFRs; 10- to 60-ms latencies) and long-latency fractionation responses (LFRs; 60- to 120-ms latencies). Both a PGO wave and a SFR were elicited in60-70% of trials across states, but each could be elicited alone.The latencies and durations of elicited SFRs were similar acrossstates, but the latencies of elicited PGO waves in REM sleep (mean 62.5 ms) were significantly longer than in waking or NREM sleep. Elicited SFRs consistently occur with shorter latencies than do PGO waves, incontrast to spontaneous fractionations, which have a variable relationship to PGO waves and usually occur 10-40 ms after the onset of the PGO wave. The LFR then, elicited mostfrequently during REM sleep, resembles a spontaneous fractionation inits temporal relationship to the PGO wave and may reflect the bias toward motoneuronal inhibition characterizing REM sleep but not NREMsleep or waking. We conclude that, although PGO waves and SFRs sharesome features, like LFRs they probably are generated by differentneuronal populations. In three cats there was no correlation betweenPGO waves and fractionations, whereas in one cat they were associatedin REM sleep (LFRs and SFRs) and waking (SFRs only). Thus the majorityof evidence argues against the existence of a common phasic-eventgenerator in REM sleep.

  相似文献   

14.
Single units of the goldfish torus semicircularis (TS) were recorded in response to pure tones. Response areas (RA) were obtained by recording the number of spikes evoked by tones in a range of frequencies and levels within the units' dynamic range. RAs gave estimates of best sensitivity (BS), characteristic frequency (CF), most excitatory frequency at each level (BF), and Q10dB. Peri-stimulus-time histograms (PSTH), interspike interval histograms (ISIH), and period histograms were obtained at various frequencies and levels to describe the units' temporal response patterns.The distribution of CF is nonuniform with modes at 155, 455, and 855 Hz. The distribution of the coefficient of synchronization to standard tones is also nonuniform, revealing a dichotomy between units with little or no phase-locking and those that phase-lock strongly. PSTHs for units without significant phase-locking vary widely and include patterns resembling those of the mammalian auditory brainstem. Compared with saccular afferents, torus units tend to have lower spontaneous rates, greater sensitivity, and sharper tuning. Unlike saccular afferents, BF is independent of level for most torus units. Some torus units are similar to saccular afferents while others reveal significant transformations of information between the periphery and the midbrain.Abbreviations BF best frequency - BS best sensitivity - CF characteristic frequency - ISIH inter-spike interval histogram - PSTH peri-stimulus-time histogram - RA response area - TS torus semicircularis  相似文献   

15.
Changes in spontaneous unit activity in the primary visual cortex during the sleep-waking cycle were studied in chronic experiments on dark-adapted cats. In the cell population studied activity in states of wakefulness and of paradoxical sleep did not differ significantly either in mean discharge frequency or in pattern. Activity of most cells in a state of slow sleep differed significantly from that in states of wakefulness and paradoxical sleep by the development of a "burst-pause" pattern in the unit discharges.A. N. Severtsov Institute of Evolutionary Morphology and Ecology of Animals, Moscow. Translated from Neirofiziologiya, Vol. 8, No. 4, pp. 343–349, July–August, 1976.  相似文献   

16.
Intravenous sodium cyanide (NaCN) administration lowers ventral medullary surface (VMS) activity in anesthetized cats. Sleep states modify spontaneous and blood pressure-evoked VMS activity and may alter VMS responses to chemoreceptor input. We studied VMS activation during peripheral chemoreceptor stimulation by intravenous NaCN using optical procedures in six cats instrumented for recording sleep physiology during sham saline and control site trials. Images of scattered 660-nm light were collected at 50 frames/s with an optical device after 80-100 microg total bolus intravenous NaCN delivery during waking and sleep states. Cyanide elicited an initial ventilatory decline, followed by large inspiratory efforts and an increase in respiratory rate, except in rapid eye movement sleep, in which an initial breathing increase occurred. NaCN evoked a pronounced decrease in VMS activity in all states; control sites and sham injections showed little effect. The activity decline was faster in rapid eye movement sleep, and the activity nadir occurred later in waking. Sleep states alter the time course but not the extent of decline in VMS activity.  相似文献   

17.
Electrographic manifestations (the electrocorticogram — ECoG) of the stages of sleep and waking in the neuronally isolated cortex were studied in freely moving cats. The intensity of the electrographic manifestations of sleep-waking in the isolated cortex depends on the time elapsing after isolation: Whereas they are indistinct in the first weeks, after 4–6 months all stages of sleep and waking found in the normal animal can be recorded in the isolated cortex. The electrographic manifestations during various stages of sleep and waking in the isolated cortex are observed simultaneously with the appearance of the ECoG features of sleep in the opposite, control hemisphere. Of all the stages of sleep and waking, the most variable activity in the isolated cortex is observed in the theta and delta bands, the ways by which sleep activity arises in the isolated cortex are discussed.Scientific-Research Institute of Experimental Medicine, Academy of Sciences of the USSR, Leningrad. Translated from Neirofiziologiya, Vol. 8, No. 6, pp. 559–567, November–December, 1976.  相似文献   

18.
Infrasound sensitive neurones in the pigeon cochlear ganglion   总被引:1,自引:0,他引:1  
Summary The cochlear ganglion of the pigeon contains neurones sensitive to sound frequencies below 20 Hz (infrasound). They are characterized by a high spontaneous discharge rate (mean 115 imp/s). In contrast to ordinary auditory units, the mean discharge rate of these neurones is not increased by infrasound or sound stimuli, but modulated by these stimuli at levels comparable to the behavioural thresholds of pigeon reported by Kreithen and Quine (1979).  相似文献   

19.
A specially adapted microelectrode driver device has been used to record the spontaneous activity of neurons in the olfactory bulb of awake rabbits. Several parameters of this activity were studied in 78 neurons of conscious animals. A second experiment was performed to investigate anaesthetic-induced modifications of the spike discharge initially recorded in awake animals. 1. In unanaesthetized animals, the interspike interval distribution of all cells was found to be stable over short as well as long periods of time. 2. A periodical change in firing probability, correlated with respiratory activity, was observed in a high percentage of neurons. During inspiration, the discharge was markedly increased ("well synchronized" neurons, n = 2), slightly increased ("poorly synchronized" neurons, n = 15); or unchanged ("not synchronized" neurons, n = 8). 3. The passage from the awake to the anaesthetized state resulted in more regular cell activity with sudden changes from one steady firing level to another, without affecting the cell classification. As anaesthesia wore off, the cell units recovered the characteristic discharge pattern initially observed.  相似文献   

20.
Computer simulations of a network model of an isofrequency patch of the dorsal cochlear nucleus (DCN) were run to explore possible mechanisms for the level-dependent features observed in the cross-correlograms of pairs of type IV units in the cat and nominal type IV units in the gerbil DCN. The computer model is based on the conceptual model (of a cat) that suggests two sources of shared input to DCN's projection neurons (type IV units): excitatory input from auditory nerves and inhibitory input from interneurons (type II units). Use of tonal stimuli is thought to cause competition between these sources resulting in the decorrelation of type IV unit activities at low levels. In the model, P-cells (projection neurons), representing type IV units, receive inhibitory input from I-cells (interneurons), representing type II units. Both sets of model neurons receive a simulated excitatory auditory nerve (AN) input from same-CF AN fibers, where the AN input is modeled as a dead-time modified Poisson process whose intensity is given by a computationally tractable discharge rate versus sound pressure level function. Subthreshold behavior of each model neuron is governed by a set of normalized state equations. The computer model has previously been shown to reproduce the major response properties of both type IV and type II units (e.g., rate-level curves and peri-stimulus time histograms) and the level-dependence of the functional type II-type IV inhibitory interaction. This model is adapted for the gerbil by simulating a reduced population of I-cells. Simulations were carried out for several auditory nerve input levels, and cross-correlograms were computed from the activities of pairs of P-cells for a complete (cat model) and reduced (gerbil model) population of I-cells. The resultant correlograms show central mounds (CMs), indicative of either shared excitatory or inhibitory input, for both spontaneous and tone-evoked driven activities. Similar to experimental results, CM amplitudes are a non-monotonic function of level and CM widths decrease as a function of level. These results are consistent with the hypothesis that shared excitatory input correlates the spontaneous activities of type IV units and shared inhibitory input correlates their driven activities. The results also suggest that the decorrelation of the activities of type IV units can result from a reduced effectiveness of the AN input as a function of increasing level. Thus, competition between the excitatory and inhibitory inputs is not required.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号