首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
Abstract If predators select for or against contaminant-degrading bacteria, it will affect bacterial survival and has important implications for bioremediation. Protozoa are important predators of bacteria. In order to determine whether protozoa preyed differentially on bacteria with different degradation abilities, two ciliates (Euplotes sp. and Cyclidium sp.) and three strains of PAH-degrading bacteria (Vibrio spp., degrading naphthalene, anthracene, or phenanthrene) were isolated from sediment from New York/New Jersey Harbor. By manipulating growth conditions, bacterial strains with different PAH-degradation abilities and different cell properties were produced. Stepwise regression models were used to analyze how clearance rates on suspended bacteria and grazing rates on bacteria attached to particles were affected by bacterial size, hydrophobicity, C:N ratio, protein content, and PAH-degradation ability. Clearance rates ranged from 0 to 49 nl ciliate−1 h−1 for Euplotes sp. and from 0 to 1.7 nl ciliate−1 h−1 for Cyclidium sp. Clearance rates of both ciliates were positively correlated with bacterial size, hydrophobicity, and protein content, and negatively correlated with C:N ratio. PAH degradation ability had no (for Euplotes sp.) or small (for Cyclidium sp.) effects on clearance rates. The models accounted for 63–75% of the variation in clearance rates on different bacteria. Only Euplotes sp. grazed on attached bacteria, at rates from 3 to 176 bacteria ciliate−1 h−1. A regression model with only C:N ratio and protein content explained 45% of the variation in grazing rates. These models indicate that multiple properties of bacteria affect their susceptibility to predation by ciliates, but PAH-degradation ability per se has little effect. Received: 5 May 1998; Accepted: 14 September 1998  相似文献   

2.
Bdellovibrio and like organisms (BALOs) form the group of predatory bacteria which require Gram-negative bacteria as prey. Genetic studies with Bdellovibrio bacteriovorus can be performed with vectors which are introduced into the predator via conjugation. The usefulness of the two vectors pSUP202 and pSUP404.2 as genetic tools were assessed. Both vectors were transferable into B. bacteriovorus by conjugative matings with an Escherichia coli K12 strain as donor. The transfer frequency was higher for vector pSUP404.2 (approx. 10−1–10−4) as for pSUP202 (approx. 10−5–10−6). Vector pSUP202 with a pMB1 origin is unstable in the predatory bacterium, whereas pSUP404.2 is stably maintained in the absence of selective antibiotics. pSUP404.2 harbors two plasmid replicons, the p15A ori and the RSF1010 replication region The copy number of pSUP404.2 was determined by quantitative PCR in B. bacteriovorus and averages seven copies per genome. pSUP404.2 harbors two resistance genes (chloramphenicol and kanamycin) which can be used for cloning either by selection for transconjugants or by insertional inactivation.  相似文献   

3.
A bacteriocinogenic factor of Enterobacter cloacae   总被引:24,自引:0,他引:24  
Summary Enterobacter cloacae strain DF13 produces a bacteriocin which is able to kill other strains of Enterobacter and Klebsiella. This property can be transmitted to Enterobacter cloacae strain O 2 (up to 90% of the acceptor population became bacteriocinogenic), to E. coli K12F- and E. coli K 12 Hfr. Transfer of chromosome material was never observed, suggesting that the production of the bacteriocin is determined by a plasmid. However all attempts to eliminate this plasmid failed. The plasmid F trp cys Col B Col V could be transferred from E. coli into Ent. cloacae DF13 and subsequently it could be eliminated by acridine orange treatment. Ent. cloacae DF13 harbours in addition two independently transferable R-factors, one determining resistance against streptomycin and sulfanilamide and the other resistance against penicillin.Most but not all Ent. cloacae O2 recombinants which have received only the bacteriocinogenic factor upon conjugation with Ent. cloacae DF 13, can transfer this property to Ent. cloacae O2 but not to E. coli. E. coli F- recombinants, which have received only the bacteriocinogenic factor cannot transfer this property. The results suggest that the bacteriocinogenic factor cannot mediate its own transfer, but can be transferred when another transmissible plasmid is present. This may be the R(str sul) factor, the F-factor in E. coli Hfr or a transfer factor () in Ent. cloacae O2.Closed circular DNA molecules were selectively isolated from these strains and investigated by electron microscopy and velocity sedimentation. Ent. cloacae DF13 harbours small closed circular DNA molecules ranging from 0.5 to 3.2 in contour length, 98% of which corresponds to a size class of 0.7±0.1 . Ent. cloacae O2 also harbours closed circular DNA ranging from 0.8 to 3.0 in contour length, with major size classes of 0.9 and 1.4 respectively. Circular DNA of a contour length of 3.0±0.2 (S20,w=26 S) corresponding to a molecular weight of 6.0×106 daltons was transferred to E. coli and Ent. cloacae O 2 concomitantly with the ability to produce the bacteriocin. A significant difference was observed in the number of copies of the plasmid between Ent. cloacae and E. coli.  相似文献   

4.
Four from 18 strains of Erwinia herbicola tested had nitrogenase activity and grew with N2 as sole source of nitrogen under strict anaerobic conditions with a doubling time of 20–24 h. Nitrogenase activity started only 96–120 h after transfer to a special medium maintained under anaerobic conditions. A ten fold increase in protein per culture found after the maximum nitrogenase activity of 80–130 nmol C2H4. mg protein-1·min-1 was accompanied by a fall in pH of the medium (20 mM phosphate buffer and in 125 mM Tris-buffer) from pH 7.2 to 5.4 or less, but only to 6.8 in 100 mM phosphate buffer. In all cases we found a sharp curtailing of nitrogenase activity 48 h after the maximum. The bacteria utilized only 35–50% of the nitrogen fixed for growth. Erwinia herbicola strains differed from two strains of Enterobacter agglomerans in being unable to fix nitrogen on agar surfaces exposed to air. Specific nitrogenase activity in Erwinia herbicola is compared with data reported for other Enterobacteriaceae and is found to be higher than that reported for Klebsiella pneumoniae, Enterobacter cloacae or Citrobacter freundii.  相似文献   

5.
In laboratory cultures of ice nucleation-active (Ice+) Erwinia herbicola isolates, it has been difficult to achieve high-level expression of ice nuclei, especially nuclei active at temperatures warmer than −5°C (i.e., type 1 ice nuclei). Here we demonstrate that starvation for phosphate and exposure to low temperature triggers expression of ice nuclei in E. herbicola cultures. Starvation for nitrogen, sulfur, or iron was less effective. Under optimal conditions with two different strains, essentially all cells produced ice nuclei active at −10°C or warmer, with an average of 22% containing type 1 ice nuclei within 1 h of a low-temperature shift. These conditions did not greatly enhance the shedding of ice nucleation-active membrane vesicles that are known to be produced by Ice+ E. herbicola isolates. These results support the theory that the Ice+ phenotype may allow nutrient-limited epiphytes to trigger freezing damage, releasing nutrients from host plants. Received: 2 November 1997 / Accepted: 5 January 1998  相似文献   

6.
This study evaluated biodegradation of the insecticide deltamethrin (1 μg l−1) by pure cultures of neustonic (n = 25) and epiphytic (n = 25) bacteria and by mixed cultures (n = 1), which consisted of a mixture of 25 bacterial strains isolated from the surface microlayer (SM ≈ 250 μm) and epidermis of the Common Reed (Phragmites australis, (Cav.) Trin. ex Steud.) growing in the littoral zone of eutrophic lake Chełmżyńskie. Results indicate that neustonic and epiphytic bacteria are characterized by a similar average capacity to degrade deltamethrin. After a 15-day incubation, bacteria isolated from the surface microlayer reduced the initial concentration of deltamethrin by 60%, while the average effectiveness of the bacteria found on the Common Reed equaled 47%.  相似文献   

7.
The structure of ice nucleation (IN) genes was compared among 20 strains of Erwinia herbicola-group bacterium of plant- and insect-origin including E. herbicola M1 (IceE) and E. ananas IN10 (inaA) that had been previously reported. When the DNAs of N-domain or C-domain were amplified, PCR products with similar size were obtained in all strains, while the size of the PCR products from the whole genes containing the R domain varied remarkably within a range of 3.8 kb to 4.4 kb. RFLP analysis of the IN genes revealed that the size of the R-domains were varied within the region from the PvuII site to DraI site, and 20 IN genes were classified into 12 groups. Furthermore, all the strains identified as E. ananas based on six bacteriological properties were different from those of E. herbicola. These results suggest that the IN genes may be distributed only in E. ananas strains among “herbicola group bacteria.” Received: 18 March 1998 / Accepted: 28 April 1998  相似文献   

8.
The carbon-flux via algal bloom events involves bacteria as an important mediator. The present study, carried out during the spring inter-monsoon month of April 2008 onboard CRV Sagar Manjusha-06 in the Eastern Arabian Sea, addresses the bloom-specific flow of carbon to bacteria via chromophoric dissolved organic matter (CDOM). Eleven stations monitored were located in the coastal, shelf and open-ocean areas off Ratnagiri (16°59′N, 73°17′E), Goa (15°30′N, 73°48′E) and Bhatkal (13°58′N, 74°33′E) coasts. Visible bloom of “saw-dust” color in the Ratnagiri shelf were microscopically examined and the presence of cyanobacteria Trichodesmium erythraeum and T. thieabautii with cell concentrations as high as 3.05 × 106 trichomes L−1 was recorded. Total bacterial counts (TBC) varied between 94.09 × 108 cells L−1 in the bloom to 1.34 × 108 cells L−1 in the non-bloom area. Chromophoric dissolved organic matter (CDOM) concentrations averaged 2.27 ± 3.02 m−1 (absorption coefficient 325 nm) in the bloom to 0.28 ± 0.07 m−1 in the non-bloom waters respectively. CDOM composition varied from a higher molecular size with lower aromaticity in the bloom to lower molecular size and increased aromaticity in the non-bloom areas respectively. Strong positive relationship of TBC with Chlorophyll a (R 2 = 0.65, p < 0.01) and CDOM concentrations (R 2 = 0.8373, p = 0.01) in the bloom area indicated hydrolysis and/or uptake of CDOM by bacteria. Absorption by mycosporine-like amino acid palythene (λ max = 360 nm) was recorded in the filtrate of bloom. Morphotypes of Trichodesmium-associated bacteria revealed a higher frequency of Gram-positive rods. The role of bacteria in relation to changing CDOM nature and as a factor in affecting oxygen content of the water column is discussed in context of the Arabian Sea.  相似文献   

9.
The participation of cyclic nucleotide-dependent intracellular signalling pathways in the pigment translocation induced by pigment-dispersing hormone (α -PDH) or pigment-concentrating hormone (PCH) was investigated in the erythrophores of the freshwater shrimp, Macrobrachium potiuna. Cholera toxin, forskolin and dibutyryl cyclic adenosine 3′5′ monophosphate (dbcAMP) were able to induce pigment dispersion with effective agonist concentrations for half maximal response (EC50 s) of 2.8 · 10−11 mol · l−1, 7.0 · 10−7 mol · l−1 and 3.3 · 10−7 mol · l−1, respectively. KT5720 (10−7 mol · l−1 and 10−6 mol · l−1) significantly shifted the dose response curve to α -PDH to the right. Dibutyryl cyclic guanosine 3′5′ monophosphate (dbcGMP) was ineffective in inducing either pigment aggregation or dispersion. 2′5′ dideoxyadenosine (DDA) and SQ22,536 essentially elicit a pigment-aggregating response in a dose-dependent manner. These effects were not due to the activation of purinergic receptors, since concentrations up to 10−4 mol · l−1 of adenosine and adenosine triphosphate (ATP), and up to 10−3 mol · l−1 of uracil triphosphate (UTP) did not elicit pigment aggregation. In order to verify if PCH decreased cyclic adenosine 3′5′ monophosphate (cAMP) levels, cumulative dose-response curves to PCH in the absence and presence of pertussis toxin and 8-MOM-IBMX were determined. However, neither drug significantly affected PCH activity. The levels of cAMP in the integument cells of M. potiuna were significantly increased (P < 0.05) by α -PDH (10−7 mol · l−1) and forskolin (10−6 mol · l−1), but were not affected by PCH (10−7 or 10−10 mol · l−1). In conclusion, α -PDH seems to elicit pigment dispersion through the activation of a Gs-protein coupled receptor resulting in cAMP increase and cAMP-dependent protein kinase (PKA) activation. Furthermore, although a decrease in cAMP was assumed to be responsible in turn for the action of PCH, such a decrease could not be directly demonstrated. Accepted: 11 August 1998  相似文献   

10.
In this study, the mixture of mono- and di-rhamnolipids produced by Pseudomonas aeruginosa DS10-129 was characterized for its toxicity and modulatory effects on Cd availability to different bacteria. Gram-negative naturally bioluminescent Vibrio fischeri and recombinant bioluminescent Pseudomonas fluorescens, P. aeruginosa, Escherichia coli, and Gram-positive Bacillus subtilis were used as model organisms. Rhamnolipids reduced the bioluminescence of these bacteria in less than a second of exposure even in relatively low concentrations (30-min EC50 45–167 mg l−1). Toxicity of Cd to Gram-negative bacteria (30-min EC50 values 0.16 mg l−1 for E. coli, 0.96 mg l−1 for P. fluorescens, and 4.4 mg l−1 for V. fischeri) was remarkably (up to 10-fold) reduced in the presence of 50 mg l−1 rhamnolipids. Interestingly, the toxicity of Cd to Gram-positive B. subtilis (30-min EC50 value 0.49 mg l−1) was not affected by rhamnolipids. Rhamnolipids had an effect on desorption of Cd from soil: 40 mg l−1 rhamnolipids increased the water-extracted fraction of Cd twice compared with untreated control. However, this additionally desorbed fraction of Cd remained bound with rhamnolipids and was not available to bacteria. Hence, in carefully chosen concentrations (still effectively complexing heavy metals but not yet toxic to soil bacteria), rhamnolipids could be applied in remediation of polluted areas.  相似文献   

11.
Summary The present study was undertaken to assess and compare the toxic effects of papaverine hydrochloride and its metabolites. Primary cell cultures of rat hepatocytes were treated with papavarine (papaver), 3′-O-desmethyl (3′-OH), 4′-O-desmethyl (4′-OH), and 6-O-desmethyl (6-OH) papaverine at 1×10−5, 1×10−4, and 1×10−3 M for 4,8, 12, and 24-h periods. Cell injury was determined by: a) cell viability using the trypan blue exclusion test; b) cytosolic enzyme leakage of lactate dehydrogenase and aspartate aminotransferase; c) morphologic alterations; and d) lactate: pyruvate (L:P) ratios. Cell cultures showed concentration-and time-dependent responses. For example, a decrease in cell viability and an increase in enzyme leakage were observed after cell treatment with 1×10−4 and 1×10−3 M papaver for 8 h; 1×10−3 M 6-OH papaverine for 8 h and 1×10−4 M for 24 h; and 1×10−3 M 4′-OH papaverine for 24 h (P<0.05). Furthermore, changes in morphology correlated to cell viability and enzyme release in those cultures treated with papaver, 4′-OH and 6-OH papaverine. Some of these changes included size deformation, cell detachment from the dishes, and cell necrosis. On the other hand, an increase in L:P ratios (P<0.05) was detected with papaver as early as 8 h with 1×10−4 and 1×10−3 M and 12 h with 1×10−5 M; 6-OH showed an increase, in L:P ratios at 8 h with 1×10−3 M and 12 h with 1×10−4 M; these changes were evident with 4′-OH at 12 h with 1×10−3 M. In contrast, cells treated with 3′-OH papaverine did not show significant damage with any time period and concentration used in this study. The results of this study indicate that papaverine-derived metabolites are less cytotoxic than its parent compound, papaver. The toxicity was ranked as follows: papaver>6-OH>4′-OH>−3′-OH. This work was supported in part by grant ES04200-02 from the National Institute of Environmental Health Sciences, Bethesda, MD. Presented in part at the fall ASPET meeting in Salt Lake City, August, 1989. Daniel Acosta is a Burroughs Wellcome Scholar in Toxicology.  相似文献   

12.
Transformation of urea to ammonium is an important link in the nitrogen cycle in soil and water. Although microbial nitrogen transformations, such as nitrification and denitrification, are well studied in freshwater sediment and epiphytic biofilm in shallow waters, information about urea transformation in these environments is scarce. In this study, urea transformation of sedimentary, planktonic, and epiphytic microbial communities was quantified and urea transformation of epiphytic biofilms associated with three different common wetland macrophyte species is compared. The microbial communities were collected from a constructed wetland in October 2002 and urea transformation was quantified in the laboratory at in situ temperature (12°C) with the use of the 14C-urea tracer method, which measures the release of 14CO2 as a direct result of urease activity. It was found that the urea transformation was 100 times higher in sediment (12–22 mmol urea-N m−2 day−1) compared with the epiphytic activity on the surfaces of the submerged plant Elodea canadensis (0.1–0.2 mmol urea-N m−2 day−1). The epiphytic activity of leaves of Typha latifolia was lower (0.001–0.03 mmol urea-N m−2 day−1), while urea transformation was negligible in the water column and on the submerged leaves of the emergent plant Phragmites australis. However, because this wetland was dominated by dense beds of the submerged macrophyte E. canadensis, this plant provided a large surface area for epiphytic microbial activity—in the range of 23–33 m2 of plant surfaces per square meter of wetland. Thus, in the wetland system scale at the existing plant distribution and density, the submerged plant community had the potential to transform 2–7 mmol urea-N m−2 day−1 and was in the same magnitude as the urea transformation in the sediment.  相似文献   

13.
Chloride (Cl) conductances were studied in primary cultures of the bright part of rabbit distal convoluted tubule (DCTb) by the whole cell patch clamp technique. The bath solution (33°C) contained (in mm): 140 NaCl, 1 CaCl2, 10 N-2-hydroxy-ethylpiperazine-N′-2-ethanesulfonic acid (HEPES), pH 7.4 and the pipette solution 140 N-methyl-d-glucamine (NMDG)-Cl, 5 MgATP, 1 ethylene-glycol-bis(b-aminoethyl ether)-N,N,N,N′-tetraacetic acid (EGTA), 10 HEPES, pH 7.4. We identified a Cl current activated by 10−5 m forskolin, 10−3 m 8-bromo adenosine 3′,5′-cyclic monophophosphate (8 Br-cAMP), 10−6 m phorbol 12-myristate 13-acetate (PMA), 10−3 m intracellular adenosine 3′,5′-cyclic monophophosphate (cAMP) and 10−7 m calcitonin. The current-voltage relationship was linear and the relative ion selectivity was Br > Cl≫ I > glutamate. This current was inhibited by 10−3 m diphenylamine-2-carboxylate (DPC) and 10−4 m 5-nitro-2-(3-phenylpropylamino)-benzoate (NPPB) and was insensitive to 10−3 m 4,4′-diisothiocyanostilbene-2,2′-disulfonic acid (DIDS). These characteristics are similar to those described for the cystic fibrosis transmembrane conductance regulator (CFTR) Cl conductance. In a few cases, forskolin and calcitonin induced an outwardly rectifying Cl current blocked by DIDS. To determine the exact location of the Cl conductance 6-methoxy-1-(3-sulfonatopropyl) quinolinium (SPQ) fluorescence experiments were carried out. Cultures seeded on collagen-coated permeable filters were loaded overnight with 5 mm SPQ and the emitted fluorescence analyzed by laser-scan cytometry. Cl removal from the apical solution induced a Cl efflux which was stimulated by 10−5 m forskolin, 10−7 calcitonin and inhibited by 10−5 m NPPB. In 140 mm NaBr, forskolin stimulated an apical Br influx through the Cl pathway. Forskolin and calcitonin had no effect on the basolateral Cl permeability. Thus in DCTb cultured cells, exposure to calcitonin activates a Cl conductance in the apical membrane through a cAMP-dependent mechanism. Received: 5 July 1995/Revised: 21 December 1995  相似文献   

14.
Oxyanions of elements from group VI of the periodic table, i.e., analogs of SO4 2−, destroyed adenosine 5′-triphosphate (ATP) in cells of sulfate-respiring bacteria (Desulfovibrio spp.), probably via the ATP sulfurylase reaction. The approximate order of effectiveness was CrO4 2−> MoO4 2−=WO4 2−>SeO4 2−. Cultures of aerobically grown or nitrate-respiring bacteria were less susceptible and with fermentatively grownEscherichia coli the oxyanions even appeared to stimulate ATP levels. The selective depletion of ATP in sulfate-respiring bacteria might provide the basis for a rapid and simple assay of their biomass in mixed cultures or environmental samples.  相似文献   

15.
Omnivores such as the greater bilby (Macrotis lagotis) consume a variety of dietary items and often are faced with large changes in the nutrient composition of their food. This paper explores the basis for the dietary flexibility of the bilby by comparing digestive performance and digesta retention patterns of captive bilbies fed either an insect diet (mealworm larvae) or a plant diet (mixed seeds). Mean retention times (MRTs) of particle and solute markers in the gastrointestinal tract did not differ significantly between the two diets, but MRT of the particle marker was significantly longer than that of the solute marker on both the mealworm (particle: 23.5 h; solute: 17.9 h) and mixed seed (particle 33.0 h; solute: 30.2 h) diets. Lack of selective retention of solutes and small particles in the bilby gastrointestinal tract probably restricts them to relatively low-fibre diets, such as those based on seeds rather than leaves and stems of plants. It was observed radiographically that the major sites of digesta retention were the caecum, proximal colon and distal colon, and thus the hindgut is probably the principal site of microbial fermentation. The mealworms were more digestible than the mixed seeds, but digestible energy intake (mealworm: 939 kJ · kg−0.75 · d−1; mixed seed: 629 kJ · kg−0.75 · d−1) was high enough for maintenance of body mass and positive nitrogen balance on both diets. Thus, although bilbies may be limited in their ability to utilize high-fibre diets by a lack of selective retention of solutes and small particles in their hindgut, their digestive strategy is flexible enough to accommodate at least some diets of both animal and plant origin. Such a strategy should benefit an animal inhabiting environments in which food resources are unpredictable in their relative abundance. Accepted: 26 May 2000  相似文献   

16.
Efficient transformation of pBR322 and its derived plasmids, which have been widely used as cloning vectors in Escherichia coli, was observed in Pseudomonas avenae (K1), the pathogen of leaf blight disease in cereals. Moreover, there was a 10- to 50-fold transformation efficiency (1.3–3.0 × 106/μg DNA) in the proline-auxotrophic mutant (Pr47), whose virulence to rice seedlings decreased. Similar enhancement of the frequency of transfer by mobilization of RSF1010, a broad host range plasmid, was observed in the recipient Pr47 strain in mating with donor Pseudomonas syringae. The plasmids harbored in these strains were maintained very stably after subcultures. Thus, a highly efficient transformation system with pBR322-derived plasmids used as a vector and Pseudomonas as a host bacterium was developed. Received: 13 July 1996 / Accepted: 26 August 1996  相似文献   

17.
The feeding dynamics and oxygen uptake of the bottom-dwelling caridean shrimp Nauticaris marionis were studied during the April/May 1984, 1996 and 1997 cruises to Marion Island (Prince Edward Islands, Southern Ocean). N. marionis is thought to have an opportunistic feeding mode. Prey composition varied considerably between the years and sites investigated. Overall, benthic (mainly hydrozoans and bottom-dwelling polychaetes) and, at times, pelagic (largely euphausiids and copepods) prey items dominated in the stomachs of N. marionis both by occurrence and by volume. Generally, pelagic prey contributed more to the diets of smaller shrimps, while benthic prey was a more important component in the guts of larger specimens. Wet, dry and ash-free dry weight were determined for specimens used in respiration experiments. The respiration rates of N. marionis females with carapace length 6.6–11.1 mm ranged from 80 to 250 μl O2 individual−1 · h−1, or from 0.588 to 2.756 μl O2 · mg−1 dry weight h−1. Regression analyses showed highly significant correlations between oxygen consumption and carapace length for N. marionis. Daily ingestion rates estimated using an in situ gut content analysis technique (4.4% of body dry weight) and an energy budget approach (average 4.7% of body dry weight, range 2.0–7.5%) showed good agreement with each other. Accepted: 29 July 1998  相似文献   

18.
The Butyrivibrio group comprises Butyrivibrio fibrisolvens and related Gram-positive bacteria isolated mainly from the rumen of cattle and sheep. The aim of this study was to investigate phenotypic characteristics that discriminate between different phylotypes. The phylogenetic position, derived from 16S rDNA sequence data, of 45 isolates from different species and different countries was compared with their fermentation products, mechanism of butyrate formation, lipid metabolism and sensitivity to growth inhibition by linoleic acid (LA). Three clear sub-groups were evident, both phylogenetically and metabolically. Group VA1 typified most Butyrivibrio and Pseudobutyrivibrio isolates, while Groups VA2 and SA comprised Butyrivibrio hungatei and Clostridium proteoclasticum, respectively. All produced butyrate but strains of group VA1 had a butyrate kinase activity <40 U (mg protein)−1, while strains in groups VA2 and SA all exhibited activities >600 U (mg protein)−1. The butyrate kinase gene was present in all VA2 and SA bacteria tested but not in strains of group VA1, all of which were positive for the butyryl-CoA CoA-transferase gene. None of the bacteria tested possessed both genes. Lipase activity, measured by tributyrin hydrolysis, was high in group VA2 and SA strains and low in Group VA1 strains. Only the SA group formed stearic acid from LA. Linoleate isomerase activity, on the other hand, did not correspond with phylogenetic position. Group VA1 bacteria all grew in the presence of 200 μg LA ml−1, while members of Groups VA2 and SA were inhibited by lower concentrations, some as low as 5 μg ml−1. This information provides strong links between phenotypic and phylogenetic properties of this group of clostridial cluster XIVa Gram-positive bacteria.  相似文献   

19.
Boza is a low-pH and low-alcohol cereal-based beverage produced in the Balkan Peninsula. From a total population of 9 × 106 colony-forming units ml−1, four isolates (JW3BZ, JW6BZ, JW11BZ, and JW15BZ) produced bacteriocins active against a broad spectrum of Gram-positive bacteria. Bacteriocin JW15BZ inhibited the growth of Klebsiella pneumoniae. The producer strains were identified as Lactobacillus plantarum (strains JW3BZ and JW6BZ) and L. fermentum (strains JW11BZ and JW15BZ). The spectrum of antimicrobial activity, characteristics, and mode of action of these bacteriocins were compared with bacteriocins previously described for lactic-acid bacteria isolated from boza.  相似文献   

20.
Aims: Plant growth‐promoting rhizobacteria (PGPR) introduced into soil often do not compete effectively with indigenous micro‐organisms for plant colonization. The aim of this study was to identify novel genes that are important for root colonization by the PGPR Enterobacter cloacae UW5. Methods and Results: A library of transposon mutants of Ent. cloacae UW5 was screened for mutants with altered ability to colonize canola roots using a thermal asymmetric interlaced (TAIL)‐PCR‐based approach. A PCR fragment from one mutant was reproducibly amplified at greater levels from genomic DNA extracted from mutant pools recovered from seedling roots 6 days after seed inoculation compared to that from the cognate inoculum cultures. Competition assays confirmed that the purified mutant designated Ent. cloacae J28 outcompetes the wild‐type strain on roots but not in liquid cultures. In Ent. cloacae J28, the transposon is inserted upstream of the hns gene. Quantitative RT‐PCR showed that transposon insertion increased expression of hns on roots. Conclusions: These results indicate that increased expression of hns in Ent. cloacae enhances competitive colonization of roots. Significance and Impact of the Study: A better understanding of the genes involved in plant colonization will contribute to the development of PGPR that can compete more effectively in agricultural soils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号