首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The review presents data on the insulin-like growth factor-II (IGF-II), a regulatory peptide included in the insulin superfamily, as its structure and function are the closest to those of insulin and IGF-I. The last decade investigations revealed the biological properties of IGF-II which distinguish it from related peptides. The primary sequence of the IGF-II structure has peculiar differences from those of insulin but insignificant ones from IGF-I. The tertiary structure of IGF-II is similar to that of the related peptide molecules, but a peculiar receptor-binding domain in the IGF-II molecule provides for its unique capability of interacting with receptors. IGF-II interacts with three types of receptors: receptors of IGF-I, IGF-2, and insulin. IGF-II has the highest affinity to IGF-2 receptors but its mitogenic effects are mediated by IGF-I receptors (i.e., the phenomenon of divergence of binding and biological activities). The arguments obtainedin vitro andin vivo are presented, which confirm propagation of mitogenic effects by IGF-I receptors but deny participation of IGF-2 receptors. The structural and functional bivalency of the M6P/IGF-2 receptor (a peculiar form of the M6P receptor in mammals) is considered in detail. The results of interactions of IGF-II and the M6P/IGF-2 receptors are not yet known. The primary function of the M6P/IGF-2 receptor (sorting and transport of the lysosomal enzymes) is likely to be due to the peptides inactivation and does not imply its participation in the IGF-II signaling. However, several data do not permit ruling out participation of the IGF-2 receptor in the IGF-II effects different from mitogenic ones. The organization of related peptide gene in the lancelet allows us to suggest the appearance of the IGF-II gene at the initial steps of the vertebrate evolution and to trace all stages of formation of two separate IGF genes up to the mammalian IGF-II and IGF-I genes with different structural organizations. The IGF-II expression by embryonic tissues is revealed earlier than that of other related peptides and reaches the highest level at the embryonal period. The general regularities of the IGF-II regulatory activity in embryogenesis and of the growth hormone effect on the IGF-II expression in embryonal tissues are considered.  相似文献   

2.
Insulin-like growth factor-II (IGF-II) is an autocrine growth and motility factor for human rhabdomyosarcoma. It interacts with three different receptors: the IGF-I, the IGF-II, and the insulin receptor. A specific function of the IGF-II receptor in mediating IGF-II responses has not been defined. In this report we investigate the mechanism of IGF-II-mediated motility in rhabdomyosarcoma cells. We demonstrate that IGF-II and [Leu27]IGF-II, an analog selective for the IGF-II receptor, stimulate motility at concentrations in which they interact only with their own receptor. An antibody that blocks the IGF-I receptor does not inhibit either peptide activity, while an antibody specific for the IGF-II receptor suppresses the IGF-II-induced motility. This antibody does not interfere with rhabdomyosarcoma cell proliferation. We conclude that in rhabdomyosarcoma cells IGF-II stimulates two different responses mediated by distinct receptors: 1) a mitogenic response through the type I receptor and 2) a motility response through the type II receptor.  相似文献   

3.
The insulin-like growth factors IGF-I and IGF-II are mitogenic polypeptides with a high degree of chemical homology. Two distinct subtypes of receptors for the IGFs have been identified on the basis of structure and binding specificity. Type I IGF receptors bind IGF-I with equal or greater affinity than IGF-II, and also bind insulin with a low but definite affinity. They are structurally homologous to insulin receptors, containing disulfide-linked a-subunits that bind the peptides and beta-subunits that have intrinsic tyrosine-specific kinase activity. Type II IGF receptors typically bind IGF-II with greater affinity than IGF-I, and do not interact with insulin. They consist of a single polypeptide and lack tyrosine kinase activity. Because of the extensive cross-reactivity of IGF-I and IGF-II with both type I and type II receptors, we believe that potentially either receptor may mediate the biological responses of either peptide. Type I IGF receptors have been shown to mediate the mitogenic effects of the IGFs in some cell types. Whether type II IGF receptors mediate the same or different functions remains to be elucidated.  相似文献   

4.
Previous studies have proposed that insulin increases the binding of insulin-like growth factor II (IGF-II) in isolated rat adipose cells at 24 degrees C by increasing receptor affinity (Ka). This study re-examines these observations under conditions in which receptor-ligand internalization is blocked by 1 mM KCN. In the absence of KCN, adipose cells bind 0.71 amol of IGF-II/cell with low apparent affinity (0.030 nM-1), of which greater than 75% is not accessible to trypsin. In contrast, in the presence of KCN, IGF-II binding is decreased by 95% and its apparent affinity increased to 0.21 nM-1. Moreover, greater than 60% of the bound IGF-II now is sensitive to trypsin. In either the absence or presence of KCN, approximately 20% of the cell's total IGF-II receptors are present in the plasma membranes and approximately 80% in the low density microsomes. Insulin induces a 5-fold increase in cell surface IGF-II receptors without a change in affinity when IGF-II binding is measured in the presence of KCN. Similarly, insulin increases IGF-II receptor concentration in the plasma membranes and concomitantly decreases that in the low density microsomes. Receptor affinity in these two subcellular membrane fractions is not affected by incubation of intact cells with either insulin or KCN and is similar to that observed in intact cells in the presence of KCN. Addition of KCN prior to insulin abolishes all of these effects of insulin. These data suggest that (a) the effects of KCN reflect a selective blockade of endocytosis; (b) in the absence of KCN, IGF-II binds to receptors of constant affinity that cycle between the plasma membrane and an intracellular pool resulting in an accumulation of intracellular IGF-II; (c) insulin induces an increase in IGF-II binding by causing a steady state redistribution of receptors from this intracellular pool to the plasma membrane; and (d) this redistribution in the intact cell can only be detected using Scatchard analysis when recycling of the receptors is prevented by KCN.  相似文献   

5.
Continuous culture of rat C6 glioma in serum-free medium   总被引:4,自引:0,他引:4       下载免费PDF全文
In this communication we describe serum-free culture conditions for the serial propagation of the C6 glioma cell line. The growth rate, saturation density, and morphology of these cells are equivalent to those of their serum-grown counterparts when cultured in a 3:1 mixture of Dulbecco's modified Eagle's medium and Ham's medium F-12 supplemented with trace elements, insulin, transferrin, fibroblast growth factor, linoleic acid complexed to fatty acid-free bovine serum albumin, and a serum-spreading factor (SSF) partially purified from human plasma. The requirement for SSF in the medium can be satisfied by preincubating the tissue culture dishes with SSF. Tissue culture dishes sequentially pretreated with poly-D-lysine and purified cold insouluble globulin will also substitute for this requirement. The fatty acid-free bovine serum albumin/linoleic acid complex increases the growth rate of these cells but has no appreciable effect on their morphology, saturation density, or ability to grow with repeated subculture. The growth stimulation caused by this complex appears to be dependent on the fatty acid, as the fatty acid-free bovine serum albumin alone has no effect on the growth rate. Linoleic acid is cytotoxic in the absence of bovine serum albumin, and the fatty acid-free bovine serum albumin prevents this toxicity. Other fatty acids including oleic, arachidonic, and palmitic only partially substitute for the growth-promoting effect of linoleic acid.  相似文献   

6.
Insulin shifts the steady-state subcellular distribution of insulin-like growth factor II (IGF-II) receptors from a large intracellular pool to the plasma membrane in the rat adipose cell (Wardzala, L. J., Simpson, I. A., Rechler, M. M., and Cushman, S. W. (1984) J. Biol. Chem. 259, 8378-8383). In the present study, the counterregulatory effects of adrenergic stimulation, adenosine deaminase, and cAMP on this process were studied. Both isoproterenol (10(-6) M) and adenosine deaminase reduced insulin sensitivity and also rapidly (t1/2 approximately 1.5 min) decreased the effect of a maximal insulin concentration on the number of cell surface IGF-II receptors by 35-50%, and by 70% when added together. The marked reduction in binding was retained in isolated and solubilized plasma membranes. Both isoproterenol and adenosine deaminase alone increased the EC50 for insulin from 0.06 to 0.17 nM and, when combined, to 0.6 nM. N6-Monobutyryl-cAMP and 8-bromo-cAMP were equally potent in reducing IGF-II binding in the absence of insulin and inhibited maximal insulin-stimulated IGF-II binding by 60 and 30%, respectively. However, only the nonhydrolyzable cAMP analogue, N6-monobutyryl-cAMP, reduced the insulin sensitivity (EC50 0.7 nM). An important stimulatory role for Gi (guanine nucleotide-binding regulatory protein that inhibits adenylate cyclase) was indicated by the altered activities of cells from pertussis toxin-treated animals. The results suggest that beta-adrenergic stimulation through a cAMP-dependent mechanism markedly alters the insulin-stimulated redistribution of IGF-II receptors. This effect is additional to the potent antagonistic action of cAMP on insulin's signalling mechanism.  相似文献   

7.
Optimal bioassay conditions for bovine glia maturation factor (GMF) were determined among glial cells from normal glioblasts to glioma cells. Rat glioblasts 4–8 days after subculture show the highest response to GMF with regard to morphological transformation and mitogenic activity. Bovine GMF enhances DNA synthesis of rat glioblasts at 12 hr after stimulation; maximum incorporation of [methyl-3H]thymidine was detected at 18 hr. GMF increases twofold the saturation density of rat glioblasts but does not alter that of C6 astrocytoma cells. The apparent inhibition of mitogenic activity of high doses of GMF is seen in both normal and malignant glial cells.  相似文献   

8.
The photoactive insulin-like growth factor (IGF)-II analogue 4-azidobenzoyl-125I-IGF-II was synthesized and used to label specifically and covalently the Mr = 250,000 Type II IGF receptor. When rat adipocytes are irradiated after a 10-min incubation with 4-azidobenzoyl-125I-IGF-II at 10 degrees C and immediately homogenized, most of the labeled IGF-II receptors are associated with the plasma membrane fraction, indicating that receptors accessible to the labeling reagent at low temperature are on the cell surface. However, when the photolabeled cells are incubated at 37 degrees C for various times before homogenization, labeled IGF-II receptors are rapidly internalized with a half-time of 3.5 min as evidenced by a loss from the plasma membrane fraction and a concomitant appearance in the low density microsome fraction. The low density microsomes were previously shown to contain intracellular membranes (Oka, Y., and Czech, M.P. (1984) J. Biol. Chem. 259, 8125-8133). The steady state level of cell surface IGF-II receptors in the presence or absence of IGF-II, measured by the binding of anti-IGF-II receptor antibody to cells, remains constant under these conditions, demonstrating that IGF-II receptors rapidly recycle back to the cell surface at the same rate as receptor internalization. Using the above methodology, it is shown that acute insulin action: 1) increases the steady state number of cell surface IGF-II receptors; 2) increases the number of ligand-bound IGF-II receptors that are internalized per unit of time, as evidenced by a large increase in the photolabeling of intracellular membrane IGF-II receptors when cells are incubated at 37 degrees C with insulin and 4-azidobenzoyl-125I-IGF-II prior to photoactivation; and 3) increases the rate of cellular 125I-IGF-II degradation by a process that is blocked by anti-IGF-II receptor antibody. The results indicate that the action of insulin to elevate the steady state number of cell surface IGF-II receptors leads to an increased internalization flux of IGF-II-bound receptors, mediating increased IGF-II uptake and degradation.  相似文献   

9.
Recent studies have demonstrated that ligand-bound insulin-like growth factor (IGF)-II receptors on the adipocyte cell surface are rapidly internalized into an intracellular membrane fraction prior to recycling to the plasma membrane (Oka, Y., Rozek, L. M., and Czech, M. P. (1985) J. Biol. Chem. 260, 9435-9442). In order to evaluate whether these subcellular movements of IGF-II receptors in fat cells require their binding to ligand, cell surface IGF-II receptors of insulin-treated fat cells were iodinated with Na125I and lactoperoxidase at 15 degrees C. IGF-II receptors were then localized by immunoadsorption from solubilized cell surface plasma membranes and intracellular low density microsomes derived from labeled cells. When fat cells were homogenized immediately after iodination, most of the labeled IGF-II receptors were associated with the plasma membrane fraction. However, when iodinated fat cells were incubated at 37 degrees C for various times before homogenization, labeled IGF-II receptors progressively decreased in the plasma membrane fraction and concomitantly increased in the low density microsome fraction with a half-time of about 5 min. The rate of increase of radiolabeled IGF-II receptors appearing in the low density microsomes of labeled fat cells incubated with insulin was not changed by the addition of a saturating concentration of IGF-II. These results indicate that cell surface IGF-II receptors are rapidly internalized and recycled even in the absence of ligand binding in insulin-treated adipocytes.  相似文献   

10.
In order to investigate the specific factors controlling the growth of normal breast cell types, purified populations of human breast epithelial and myoepithelial cells from reduction mammoplasties were grown in primary culture in three defined media and their response to foetal calf serum (FCS), epidermal growth factor (EGF) and basic fibroblast growth factor (FGF2) measured using MTT growth assays. Epithelial and myoepithelial cells differed markedly in their growth requirements. Whereas epithelial cell survival was dependent on the presence of FCS, myoepithelial cell growth was dramatically inhibited by serum. EGF and FGF2 were mitogenic for epithelial cells but not myoepithelial cells, the addition of insulin being the only essential supplement required for myoepithelial cell growth. Heparin inhibited FGF2-stimulated epithelial cell growth but also basal myoepithelial cell proliferation and this inhibition could be overcome by the addition of EGF. Neutralizing antibodies to EGF also inhibited basal myoepithelial cell growth. This suggests the possibility of an autocrine role for a heparin-binding member of the EGF family in the growth of myoepithelial cells. Purified cells combined to form lobuloalveolar structures when incubated in a reconstituted basement membrane matrix (Matrigel) in the presence of EGF and FGF2. J. Cell. Physiol. 171:11–19, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

11.
The present study was undertaken to evaluate the functional significance of the previously observed increase in the level of IGF-II receptors despite the loss of growth promoting activity of IGF-II in differentiated limb buds in organ culture. In the present study IGF-II and insulin at similar concentration (0.1-1 microgram/ml) stimulated the glucose uptake by the tissue and incorporation into glycogen (approximately 2 and 4 times control) and stimulated the activity of glycogen synthase (approximately 2 times control) of the limb buds irrespective of the differentiation stage of the tissues. IGF-I had little or no effect. None of the hormones (IGF-I, II or insulin) had any effect on the CO2 production by the limb buds. These results suggest a regulatory role of IGF-II, complementary or overlapping with insulin, in glucose metabolism of the developing limb buds. The absence of the effects of both IGF-II and insulin on CO2 production by the tissue, however, indicate that the IGF-II and insulin regulation of glucose metabolism of the limb buds is predominantly on glycogen synthesis.  相似文献   

12.
The well-known mitogenic effects of TSH observed in vivo on the thyroid are not always reproducible of human thyroid cells in vitro where conflicting results have been obtained. In order to clarify this issue, we have used primary cultures of human thyroid cells obtained from normal tissue and maintained in serum-free medium for several days. In this in vitro model we have studied the effect of TSH on growth by measuring three different parameters: [3H]-thymidine incorporation, cell counts, and DNA measurement. Monolayer cultures were plated at both low and high cell density (2 x 10(4) and 8 x 10(4) cells/25 mm well, respectively). Although at either cell density cultures were equally able to functionally respond to TSH in terms of cAMP accumulation a significant growth response to TSH was observed only in low density cultures. In high density cultures TSH had an antimitogenic effect. Moreover, TSH potentiated the mitogenic effect of insulin only in low density cultures. In contrast to TSH, FCS induced a similar proliferative response at both high and low cell density. Following TSH stimulation, cAMP content was always increased, paralleling the effect of growth in low density but not in high density cultures. The cAMP analogues dibutyryl-cAMP and 8-bromo-cAMP, as well as cholera toxin and forskolin, did not mimic the mitogenic effect of TSH but had an antiproliferative effect. In addition, these agents blunted the proliferative effect of insulin. These data suggest that in thyroid cells TSH is able to elicit both a mitogenic and an antimitogenic effect depending on the environmental conditions such as cell density.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
The counter-regulatory effects of beta-adrenergic stimulation and cyclic AMP on the insulin-like action of growth hormone (GH) on the subcellular distribution of insulin-like growth factor II (IGF-II) receptors were studied in fat cells from hypophysectomized (Hx) and sham-operated rats. For comparison, the effect of insulin on this process was also studied. Basal IGF-II binding was increased by approx. 2-fold in cells from Hx as compared with sham-operated animals. The stimulatory effect of insulin was decreased in Hx cells, mainly due to a basal redistribution but also to a reduced total number of receptors. GH exerted an acute insulin-like effect in cells from Hx rats and stimulated the translocation of IGF-II receptors from an intracellular pool to the plasma membrane. beta-Adrenergic stimulation with isoprenaline or addition of the non-metabolizable cyclic AMP-analogue N6-monobutyryl cyclic AMP induced a cellular resistance to both GH and insulin and also reduced the responsiveness to these hormones. Adenosine exerted a modulatory effect on both hormones. Binding of 125I-labelled GH to its receptors was not significantly changed by any of these factors. It is concluded that: (1) beta-adrenergic stimulation and cyclic AMP induce a cellular GH resistance at a level distal to the GH-binding site, and (2) the insulin-like effect of GH shares a common pathway with insulin which occurs at the post-binding level.  相似文献   

14.
Abstract. Regulation of the growth of breast cancer cells is the result of a complex interaction between steroid hormones and growth factors, and in particular of oestrogen and insulin-like growth factors (IGF). Alteration of any one mitogenic component can affect the cell response to other pathways. Previous work has shown that increased autocrine production of IGF-II from a transfected inducible expression vector can result in reduced oestrogen sensitivity of growth of MCF-7 human breast cancer cells. This report describes alterations to non-oestrogen regulated pathways of cell growth following enhanced IGF-II expression in these transfected MI7 cells. Serum sensitivity of cell growth in the absence of oestrogen was found to differ between MI7 and untransfected MCF-7 cells, in that growth of MI7 but not MCF-7 cells was strongly inhibited by high serum levels. Increased serum had no effect on levels of IGF-II mRNA, IGFIR, IGFBP4 mRNA, or IGFBP secreted in MI7 cells. However, growth inhibition by serum in MI7 cells could be overcome by increasing levels of IGF-II in the serum or by removal of IGFBP onto polycarbonate membranes. Thus, the growth inhibition by serum in MI7 cells is concluded to result from the increased levels of IGFBP added with higher serum. This would support an inhibitory role for IGFBP on growth of breast cancer cells when cell growth is being driven by IGF pathways in the absence of oestrogen, and would suggest that cellular sensitivity to such factors can depend on levels of endogenous IGF production.  相似文献   

15.
Hepatic stimulator substance (HSS), a partially purified extract of weanling or regenerating adult rat liver, is an organ-specific stimulator of liver growth in vivo and in vitro. The HTC hepatoma cell line is particularly responsive to HSS. The present experiments show that HSS will stimulate HTC cells in the complete absence of serum, although graded doses of fetal cal serum (FCS), from 0.1 to 5.0%, will increase the degree of stimulation in a dose-dependent manner. In contrast, when HSS is absent, increasing doses of FCS above 0.5% inhibit DNA synthesis. Much of this inhibition is removed by prior dialysis of the FCS and maximum enhancement of the HSS-induced stimulation occurs with only 0.1–0.5% of the dialysed FCS. Sera from older animals have less or even negative effect. Evidence is presented to show that the enhanced stimulation by HSS in the presence of serum is not due to insulin, glucagon, epidermal growth factor (EGF), or platelet derived growth factor (PDGF) and that HSS does not act via a shared receptor for one of these hormones. These experiments provide further evidence that HSS is a unique stimulator of liver growth and lend support to a model of organ-specific growth control.  相似文献   

16.
Insulin-like growth factors (IGFs) I and II (IGF-I, IGF-II) and Des-3-IGF-I at physiological concentrations are potent mitogens of bovine undifferentiated mammary epithelial cells cultured in collagen in a serum-free medium. Des-3-IGF-I was found to be as potent as IGF-I, while IGF-II was significantly less active. All three factors acted either synergistically or additively with epidermal growth factor (EGF), cholera toxin and fetal calf serum (FCS). Indirect evidence indicates that despite its lower mitogenic activity the action of IGF-II is mediated through IGF-I receptors. The galactopoietic activity of Des-3-IGF-I and IGF-II was studied in an organ culture of bovine lactating mammary glands using lactogen-responsive fat synthesis as a test. Neither Des-3-IGF-I nor IGF-II exhibited galactopoietic activity nor did they affect the galactopoietic activity of prolactin.  相似文献   

17.
High affinity receptors for insulin, transferrin, epidermal growth factor (EGF) and a multiplication-stimulating activity (MSA) have been identified and partially characterized on a mouse embryonal carcinoma cell line, OTT-6050, using various 125I-ligands. With the exception of MSA receptors which bound both MSA and insulin, the receptors for EGF, insulin and transferrin exhibited specificity of binding for their respective ligands. There is a correlation between the saturation of these receptors and the concentration of growth factors necessary for optimal growth of OTT-6050 cells in serum-free medium supplemented with insulin (or MSA), transferrin, EGF, fibroblast growth factor (FGF) and Pedersen fetuin on culture surfaces treated with polylysine or various types of collagen. Cells cultured in this medium exhibit growth rates equivalent to that observed with cells maintained in medium containing 5% fetal calf serum (FCS). These results suggest that relatively undifferentiated mouse embryonal carcinoma cells or endoderm cells possess receptors for various growth factors and that their presence on these cells is correlated with the ability of these cells to mitogenically respond to these growth factors.  相似文献   

18.
Insulin-like growth factor-II (IGF-II) receptors in primary cultures of adult rat hepatocytes were characterized and their regulation by cell density examined. In hepatocytes cultured at 5 X 10(5) cells per 3.8 cm2 plate [125I]IGF-II bound to specific, high affinity receptors (Ka = 4.4 +/- 0.5 X 10(9) l/mol). Less than 1% cross-reactivity by IGF-I and no cross-reactivity by insulin were observed. IGF-II binding increased when cells were permeabilized with 0.01% digitonin, suggesting the presence of an intracellular receptor pool. Determined by Scatchard analysis and by polyacrylamide gel electrophoresis after affinity labeling, the higher binding was due solely to an increase in binding sites present on 220 kDa type II IGF receptors. In hepatocytes cultured at low densities, the number of cell surface receptors increased markedly, from 10-20,000 receptors per cell at a culture density of 6 X 10(5) cells/well to 70-80,000 receptors per cell at 0.38 X 10(5) cells/well. The increase was not due simply to the exposure of receptors from the intracellular pool, as a density-related increase in receptors was also seen in cells permeabilized with digitonin. There was no evidence that IGF binding proteins, either secreted by hepatocytes or present in fetal calf serum, had any effect on the measurement of receptor concentration or affinity. We conclude that rat hepatocytes in primary culture contain specific IGF-II receptors and that both cell surface and intracellular receptors are regulated by cell density.  相似文献   

19.
B Zhang  R A Roth 《Biochemistry》1991,30(21):5113-5117
We constructed and expressed chimeric receptor cDNAs with insulin receptor exon 3 (residues 191-297 of the cysteine-rich region) replaced with either the comparable region of the insulin-like growth factor I receptor (IGF-IR) or the insulin receptor related receptor (IRR). Both chimeric receptors still could bind insulin with as high affinity as the wild-type receptor. In addition, chimeric receptors containing exon 3 of the IGF-IR could also bind with high affinity both IGF-I and IGF-II. In contrast, chimeric receptors containing exon 3 of IRR did not bind either IGF-I, IGF-II, or relaxin. These results indicate that (1) the high affinity of binding of insulin to its receptor can occur in the absence of insulin receptor specific residues encoded by exon 3, the cysteine-rich region; (2) the cysteine-rich region of the IGF-I receptor can confer high-affinity binding to both IGF-I and IGF-II; and 3) the IRR is unlikely to be a receptor for either IGF-I, IGF-II, or relaxin.  相似文献   

20.
Insulin-like growth factor II (IGF-II) is a peptide growth factor that is homologous to both insulin-like growth factor I (IGF-I) and insulin and plays an important role in embryonic development and carcinogenesis. IGF-II is believed to mediate its cellular signaling via the transmembrane tyrosine kinase type 1 insulin-like growth factor receptor (IGF-I-R), which is also the receptor for IGF-I. Earlier studies with both cultured cells and transgenic mice, however, have suggested that in the embryo the insulin receptor (IR) may also be a receptor for IGF-II. In most cells and tissues, IR binds IGF-II with relatively low affinity. The IR is expressed in two isoforms (IR-A and IR-B) differing by 12 amino acids due to the alternative splicing of exon 11. In the present study we found that IR-A but not IR-B bound IGF-II with an affinity close to that of insulin. Moreover, IGF-II bound to IR-A with an affinity equal to that of IGF-II binding to the IGF-I-R. Activation of IR-A by insulin led primarily to metabolic effects, whereas activation of IR-A by IGF-II led primarily to mitogenic effects. These differences in the biological effects of IR-A when activated by either IGF-II or insulin were associated with differential recruitment and activation of intracellular substrates. IR-A was preferentially expressed in fetal cells such as fetal fibroblasts, muscle, liver and kidney and had a relatively increased proportion of isoform A. IR-A expression was also increased in several tumors including those of the breast and colon. These data indicate, therefore, that there are two receptors for IGF-II, both IGF-I-R and IR-A. Further, they suggest that interaction of IGF-II with IR-A may play a role both in fetal growth and cancer biology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号