首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The pathological hallmark of the host response to Mycobacterium tuberculosis is the granuloma where T cells and macrophages interact with the extracellular matrix (ECM) to control the infection. Recruitment and retention of T cells within inflamed tissues depend on adhesion to the ECM. T cells use integrins to adhere to the ECM, and fibronectin (FN) is one of its major components. We have found that the major M. tuberculosis cell wall glycolipid, phosphatidylinositol mannoside (PIM), induces homotypic adhesion of human CD4+ T cells and T cell adhesion to immobilized FN. Treatment with EDTA and cytochalasin D prevented PIM-induced T cell adhesion. PIM-induced T cell adhesion to FN was blocked with mAbs against alpha5 integrin chain and with RGD-containing peptides. Alpha5beta1 (VLA-5) is one of two major FN receptors on T cells. PIM was found to bind directly to purified human VLA-5. Thus, PIM interacts directly with VLA-5 on CD4+ T lymphocytes, inducing activation of the integrin, and promoting adhesion to the ECM glycoprotein, FN. This is the first report of direct binding of a M. tuberculosis molecule to a receptor on human T cells resulting in a change in CD4+ T cell function.  相似文献   

2.
Cellular adhesion to fibronectin (FN) can be mediated by several sequences located in different portions of the molecule. In human FN, these are: (i) the bipartite RGDS domain containing the RGDS cell-binding sequence functioning in synergy for full cellular adhesion with a second site (termed here the synergistic adhesion site) and (ii) the recently characterized CS1 and REDV adhesion sites within the alternatively-spliced type III homology-connecting segment. Using specific adhesive ligands and inhibitory probes, we have examined the role of each of these domains in the adhesion, spreading, and motility of avian neural crest cells in vitro. Both the RGDS domain and the CS1 adhesion site were found to promote attachment of neural crest cells, but only the RGDS domain supported their spreading. However, the RGDS sequence could mediate both attachment and spreading efficiently only when it was associated with the synergistic adhesion site. In migratory assays, it was found that both the RGDS domain and the CS1 site are required in association, each with functional specificity, to permit effective locomotion of neural crest cells. The REDV adhesion site was apparently not recognized by avian neural crest cells, presumably because this sequence is absent from chicken FN. Finally, it was found that recognition of both the RGDS domain and CS1 binding site by neural crest cells involved receptors belonging to the integrin family. From these results, we conclude that neural crest cells can interact with several binding sites of FN molecules, and use them for distinct functions. Our results also suggest the possibility of an instructive role for FN in the control of adhesive and migratory events during embryonic development.  相似文献   

3.
Given prior evidence that adhesion molecules play critical roles in T cell recognition, it is important to identify new adhesion pathways and explore their role in T cell activation. Our studies of T cell proliferation complement concurrent studies of T cell adhesion; both demonstrate that resting CD4+ human T lymphocytes express the VLA integrins VLA-4, VLA-5, and VLA-6, and can use these receptors to interact with the extracellular matrix (ECM) proteins fibronectin (VLA-4 and VLA-5) and laminin (VLA-6). VLA-dependent interaction of resting human CD4+ T cells with fibronectin (FN) and laminin (LN) facilitates CD3-mediated T cell proliferation. Specifically, T cells do not proliferate in response to a wide range of concentrations of a CD3 mAb, OKT3, immobilized on plastic. However, coimmobilization with the CD3 mAb of FN or LN, but not other ECM proteins such as fibrinogen and collagen, consistently results in strong T cell proliferation. mAb blocking studies demonstrate that three VLA integrin receptor/ligand interactions mediate costimulation: VLA-4/FN, VLA-5/FN, and VLA-6/LN. VLA-5-dependent binding to FN but not costimulation by FN can be specifically blocked with peptides containing the RGD (arg-gly-asp) tripeptide sequence whereas VLA-4-dependent binding and costimulation can both be efficiently inhibited by a 12 amino acid peptide, LHGPEILDVPST (leu-his-gly-pro-glu-iso-leu-asp-val-pro-ser-thr), derived from the alternatively spliced IIICS region of FN. The costimulation provided by FN and LN in this system is stronger than and distinct from costimulatory signals provided by cytokines, such as IL-1 beta, IL-6,, and IL-7. These results suggest that, such as other adhesion molecules, T cell VLA integrins may also function in a dual capacity as adhesion and signalling molecules. In addition, they suggest that the interaction of T cells in vivo with ECM via VLA integrins plays a role not only in T cell migratory processes but may also influence Ag-specific T cell recognition.  相似文献   

4.
It has been reported that ATP inhibits or stimulates lymphoid cell proliferation depending on the cellular subset analyzed. In this study, we show that ATP exerts strikingly opposite effects on anti-CD3/CD28-activated and regulatory CD4(+) T cells (T(regs)), based on nucleotide concentration. We demonstrate that physiological concentrations of extracellular ATP (1-50 nM) do not affect activated CD4(+) T cells and T(regs). Conversely, higher ATP concentrations have a bimodal effect on activated CD4(+) T cells. Whereas 250 nM ATP stimulates proliferation, cytokine release, expression of adhesion molecules, and adhesion, 1 mM ATP induces apoptosis and inhibits activated CD4(+) T cell functions. The expression analysis and pharmacological profile of purinergic P2 receptors for extracellular nucleotides suggest that activated CD4(+) T cells are induced to apoptosis via the upregulation and engagement of P2X7R and P2X4R. On the contrary, 1 mM ATP enhances proliferation, adhesion, migration, via P2Y2R activation, and immunosuppressive ability of T(regs). Similar results were obtained when activated CD4(+) T cells and T(regs) were exposed to ATP released by necrotized leukemic cells. Taken together, our results show that different concentrations of extracellular ATP modulate CD4(+) T cells according to their activated/regulatory status. Because extracellular ATP concentration highly increases in fast-growing tumors or hyperinflamed tissues, the manipulation of purinergic signaling might represent a new therapeutic target to shift the balance between activated CD4(+) T cells and T(regs).  相似文献   

5.
Activation of T-lymphocytes is an important component of inflammatory and infectious processes, including HIV infection. It is regulated via the actions of various cell-surface receptors, including CD4 and CXCR4. We examined the roles of CD4 and CXCR4 in the adhesive interaction of CD4+T-cells with the vascular endothelium. CD4+Jurkat cells were incubated in the presence or absence of anti-CD4 to stimulate CD4, or with SDF-1 alpha, a cognate ligand of CXCR4. Stimulation of CD4 or CXCR4 each significantly enhanced cell adhesion. We next stimulated the two receptors together, using gp120, a component of HIV. This enhanced cell adhesion was greater than stimulation of CD4 or CXCR4 individually. Western blotting revealed that stimulation of CXCR4 by SDF-1 alpha significantly increased the phosphorylation of ERK1/2 in Jurkat cells. Treatment with anti-CD4 also activated ERK1/2, although to a lesser extent. When the expression of CD4 was reduced by siRNA transfection, both CD4-dependent adhesion and MAPK activation were diminished. Furthermore, pre-treatment with fluvastatin, significantly attenuated observed Jurkat cell adhesion. These findings indicate novel mechanisms of CD4+ T-cells recruitment to activated endothelium via CD4 and CXCR4, which are modulated by statin.  相似文献   

6.
Very late Ag (VLA)-3, VLA-4, and VLA-5, belonging to the beta-1 subfamily of integrins, have been recently identified as receptors for different binding regions of fibronectin (FN). We have detected VLA-4 and VLA-5, but not VLA-3, on fresh CD3-, CD16+, CD56+ human NK cells by flow cytometry and immunochemical analyses using mAb directed against beta-1, alpha-3, alpha-4, and alpha-5 subunits. Binding assays, performed on FN-coated plates, showed that NK cells specifically adhere to FN and their binding capacity is increased by MgCl2 but not by CaCl2. Using as inhibitory probes a polyclonal antibody against the beta-1 chain of the human FN receptor, the synthetic peptide GRGDSP, which is able to inhibit cellular adhesion mediated by VLA-5, the CS1 fragment, which contains the principal adhesion site in the IIICS domain recognized by VLA-4, and functional mAb directed against alpha-4 or alpha-5 subunits, we show that both VLA-4 and VLA-5 mediate the adhesion of human NK cells to FN. The expression of these integrin receptors may be relevant for NK interaction with extracellular matrix components and other cell types.  相似文献   

7.
An in vitro model of T cell adhesion to human umbilical vein endothelial cells (HUVEC) and transendothelial migration was used to determine whether the activation state of the T cell or cytokine exposure of the HUVEC altered T cell-HUVEC interactions or receptor utilization. Stimulation of T cells with the activator of protein kinase C, phorbol dibutyrate (PDB) alone or in combination with the calcium ionophore, ionomycin increased their binding to HUVEC. Much of the binding of control and activated T cells to HUVEC was mediated by leukocyte function-associated Ag-1 (LFA-1) (CD11a/CD18), because mAb to either chain of this molecule inhibited binding substantially, but not completely. Activation of HUVEC with IL-1 also increased binding of T cells. Binding of control T cells to IL-1-stimulated HUVEC, however, was found to be LFA-1 independent, because mAb to CD11a/CD18 failed to block the interaction. In contrast, binding of activated T cells to IL-1-stimulated HUVEC was partially inhibited by mAb to LFA-1. Binding of activated T cells to IL-1-stimulated HUVEC also involved CD44 because this interaction was partially blocked by mAb to this determinant. When T cell migration was analyzed, it was found that the migration of PDB-activated T cells was three to four-fold more than that of control T cells. Migration through HUVEC and random migration were both enhanced by PDB stimulation. However, when the T cells were costimulated with PDB and ionomycin, migration was not increased above that of control T cells. PDB-activated T cells appeared to use LFA-1 for migration regardless of the activation status of the HUVEC, because mAb to CD11a/CD18 partially blocked their migration after binding to HUVEC. There was also a modest inhibition of PDB-activated T cell migration by mAb to CD44. In contrast, migration of control T cells involved neither LFA-1 nor CD44. Finally, binding of control T cells to high endothelial venules of peripheral lymphoid tissue was found to be CD11a/CD18 and CD44 independent, and completely inhibited by activation with either PDB or the combination of PDB and ionomycin. These results demonstrate that T cells use LFA-1 and CD44 as well as other as yet unidentified adhesion receptors for interactions with HUVEC, and that use of these adhesion receptors is mutable and related to the activation state of the T cell and cytokine stimulation of the HUVEC.  相似文献   

8.
4-1BB costimulation promotes human T cell adhesion to fibronectin   总被引:6,自引:0,他引:6  
CD28 and 4-1BB (CD137) are costimulatory molecules for T cells. In this study we investigated the role of 4-1BB in T cell adhesion to fibronectin (FN). Unlike CD28, 4-1BB is present in only a small subset of T cells prepared from fresh human peripheral blood mononuclear cells, but was induced after prolonged TCR/CD28 activation in vitro. 4-1BB-expressing T cells were characteristically unique in their strong responsiveness to FN. Anti-4-1BB cross-linking synergized CD28 costimulation by lowering the threshold of CD3 signal required for CD28-mediated maximal proliferative response. In addition to increasing proliferative responses, 4-1BB promoted T cell adhesion to FN in the presence of CD28 costimulation. 4-1BB-mediated cell adhesion to FN was blocked by anti-beta1 integrin, suggesting that 4-1BB mediates beta1 integrin activation. The role of 4-1BB in inducing CD4(+) T cell adhesion to FN was confirmed by showing that the human leukemic CD4(+) T cell line, Jurkat, when transfected with cDNA encoding 4-1BB, became adherent to FN with anti-4-1BB stimulation. Taken together, our results suggest that 4-1BB-promoted T cell adhesion to extracellular matrix proteins is an important postactivation process for T cell migration.  相似文献   

9.
The adhesion of Balb/c 3T12 cells to fibronectin (FN) and to denatured (DC) or native (NC) collagen is differentially sensitive to divalent cations and to sodium azide. Short-time adhesion (10 min) to FN requires either Mg2+ or Mn2+, whereas only Mn2+ stimulates attachment to DC and NC. Azide treatment only slightly affects adhesion of cells to FN, but strongly inhibits cell attachment to DC and NC. Attachment to any of these substrata is unaffected by monensin and by treatment of the cells with an intracellular fraction, making unlikely the possibility that molecules released by secretion or cell lysis participate in the adhesive process. Soluble collagen inhibits the adhesion of cells to DC and NC, but does not affect adhesion to FN. Finally, rabbit antiserum against collagen binding proteins inhibits cell attachment to NC and DC; the cells, however, attach normally to FN in presence of this antiserum. Taken together, our results support the view that 3T12 cells attach directly to native or denatured collagens and that FN is not required for this process.  相似文献   

10.
11.
The extracellular matrix protein fibronectin (FN) mediates the adhesion of bacteria as well as T lymphocytes. Mammalian cells express integrins alpha(4)beta(1) and alpha(5)beta(1) as the major FN-binding cell surface receptors. Bacteria such as Staphylococcus aureus, also express FN-binding receptors that are important for adherence to host tissue and initiation of infection. The S. aureus FN-binding protein, FnbpA, has been previously identified, and recombinant proteins that correspond to distinct functional regions of this protein have been made. Three recombinant truncated forms of FnbpA, rFnbpA(37-881), rFnbpA(37-605), and rFnbpA(620-881), were examined for effects on in vitro adhesion and coactivation of human T lymphocytes. These proteins, when coimmobilized with anti-CD3 mAb, activated T lymphocyte proliferation. The coactivation signal generated by the rFnbpA proteins required medium containing serum with FN. Furthermore, the costimulatory signal could be restored in FN-depleted serum when the rFnbpAs were preloaded with soluble FN. Monoclonal Ab blocking studies revealed that integrin alpha(5)beta(1) is the major receptor responsible for the rFnbpA costimulatory signal. Shear flow cell detachment assays confirmed that lymphocytes can bind to FN captured by the rFnbpA proteins. These results suggest that the S. aureus rFnbpA can interact with integrin alpha(5)beta(1) via an FN bridge to mediate adhesion and costimulatory signals to T lymphocytes.  相似文献   

12.
Interleukin-2 (IL-2)-activated murine killer cell lines with macrophage- and B-lymphoblastic-lytic activity were established, and their target specificity, surface markers, recognition-related structures, and requirements for optimal cell growth were characterized. Sustained growth of IL-2-activated lymphocytes was supported by the combination of IL-2 and IL-4-enriched T cell conditioned medium (CM), but was not supported by IL-2 alone or the combination of IL-2 and IL-3-containing CM in the presence of macrophages (M phi). The established line required continuous contact with M phi to maintain anti-M phi cytolytic activity. Flow cytometric analysis showed that the original line isolated by the first cloning was Thyl+, CD4-, and weakly CD8+, FcR+. The majority of these cells were CD3+ and TCR-V beta 8+. From this line, the CD3+, TCR-V beta 8+ and CD3-, TCR-V beta 8- clones were isolated by subcloning. The former clone showed Thyl+, CD3+, CD4-, CD8-, TCR-V beta 8+, FcR(+)-phenotype, and the latter clone showed Thyl+, CD3-, CD4-, CD8-, TCR-V beta 8-, FcR- phenotype. The original line and subclones showed a similar target specificity and killed resident or thioglycollate (TG)-induced peritoneal M phi and B-lymphoblasts, but did not kill T-lymphoblasts. Allogeneic M phi, M phi-like cell line P388D1, and B cell hybridoma were sensitive, whereas fresh lymphocytes, T cell lymphoma BW5147, natural killer (NK)-sensitive YAC-1, and NK-resistant P815 tumor cells were resistant to lysis by these cytotoxic lines. The addition of anti-H-2 heteroserum, anti-MHC class 1, anti-MHC class II, anti-CD3, or anti-TCR-V beta 8 monoclonal antibody (mAb) to assay cultures did not inhibit the anti-M phi cytolysis by these killer cells. In addition, the CD3- TCR-V beta 8- clone killed M phi and B lymphoblasts better than the CD3+, TCR-V beta 8+ clone. These results suggest that cytotoxic lines established in this study do not use the T cell receptor (TCR) molecules to recognize target cells and the MHC molecules are not involved in recognition. Anti-LFA-1 mAb partially inhibited anti-M phi-lysis, suggesting that the cell contact between targets and effectors is important in cytolysis. Our present data suggest that the culture condition containing IL-2, IL-4, and M phi may support the continuous growth of non-MHC-restricted killer cells with relative target specificity against M phi and B-lymphoblasts.  相似文献   

13.
T cell adhesion molecules   总被引:7,自引:0,他引:7  
Cell adhesion or conjugate formation between T lymphocytes and other cells is an important early step in the generation of the immune response. Although the antigen-specific T cell receptor confers antigen recognition and specificity, a number of other molecules expressed on the T cell surface are involved in the regulation of lymphocyte adhesion. T cell molecules that function to strengthen adhesion include lymphocyte function-associated antigen (LFA)-1, CD2, CD4, and CD8. Their ligands have recently been identified. LFA-1 is a member of the integrin family of adhesion receptors and one of its ligands is intercellular adhesion molecule-1 (ICAM-1); a ligand for CD2 is LFA-3; and ligands for CD4 and CD8 appear to be major histocompatibility complex class II and class I molecules, respectively. In addition, T cells express a number of receptors thought to be involved in cell matrix adhesion. The function and significance of these T cell adhesion receptors and their ligands are reviewed.  相似文献   

14.
The CD8 receptor plays a central role in the recognition and elimination of virally infected and malignant cells by cytolytic CD8(+) T cells. In conjunction with the TCR, the CD8 coreceptor binds Ag-specific class I MHC (MHC-I) molecules expressed by target cells, initiating signaling events that result in T cell activation. Whether CD8 can further function as an adhesion molecule for non-Ag MHC-I is currently unclear in humans. In this study, we show that in human CD8(+) T cells, TCR complex signaling activates CD8 adhesion molecule function, resulting in a CD8 interaction with MHC-I that is sufficient to maintain firm T cell adhesion under shear conditions. Secondly, we found that while CD8 adhesive function was triggered by TCR complex activation in differentiated cells, including in vitro generated CTL and ex vivo effector/memory phenotype CD8(+) T cells, naive CD8(+) T cells were incapable of activated CD8 adhesion. Lastly, we examine the kinetics of, and signaling for, activated CD8 adhesion in humans and identify notable differences from the equivalent CD8 function in mouse. Activated CD8 adhesion induced by TCR signaling may contribute to the more rapid and robust elimination of pathogen-infected cells by differentiated CD8(+) T cells.  相似文献   

15.
The epithelia are the avascular layers of cells that cover the environment-exposed surfaces of the body. It appears that T cells localize to selected sites in or adjacent to epithelia via the selective expression of adhesion molecules and chemokine receptors on T cells. These bind to counter-receptors and to chemokines expressed by epithelial cells. Recently, there has been an advance in our understanding of the interaction of the alpha(Ebeta7) integrin with its epithelial cell ligand, E-cadherin. In addition, a new adhesion molecule has been identified on non-intestinal epithelial cells, termed lymphocyte-endothelial-epithelial-cell adhesion molecule (LEEP-CAM). Finally, there have been advances in our understanding of the role of skin- or gut-epithelia-derived chemokines in regulating activated T cell homing to these sites.  相似文献   

16.
《The Journal of cell biology》1990,111(6):2733-2745
Cellular interactions with fibronectin-treated substrata have a complex molecular basis involving multiple domains. A carboxy-terminal cell and heparin binding region of fibronectin (FN) is particularly interesting because it is a strong promoter of neurite outgrowth (Rogers, S.L., J.B. McCarthy, S.L. Palm, L.T. Furcht, and P.C. Letourneau, 1985. J. Neurosci. 5:369-378) and cell attachment (McCarthy, J.B., S.T. Hagen, and L.T. Furcht. 1986. J. Cell Biol. 102:179-188). To further understand the molecular mechanisms of neuronal interactions with this region of FN, we screened two peptides from the 33-kD heparin binding fragment of the FN A chain, FN-C/H II (KNNQKSEPLIGRKKT) and CS1 (Humphries, M.J., A. Komoriya, S.K. Akiyama, K. Olden, and K.M. Yamada. 1987. J. Biol. Chem. 262:6886-6892), for their ability to promote B104 neuroblastoma cell-substratum adhesion and neurite outgrowth. Both FN- C/H II and CS1 promoted B104 cell attachment in a concentration- dependent and saturable manner, with attachment to FN-C/H II exceeding attachment to CS1. In solution, both exogenous FN-C/H II or CS1 partially inhibited cell adhesion to the 33-kD fragment. Similar results were obtained with anti-FN-C/H II antibodies. In contrast, soluble GRGDSP did not affect B104 cell adhesion to FN-C/H II. These results indicate that both FN-C/H II and CS1 represent distinct, RGD- independent, cell adhesion-promoting sites active within the 33-kD fragment, and further define FN-C/H II as a novel neural recognition sequence in FN. B104 adhesion to FN-C/H II and CS1 differs in sensitivity to heparin, yet each peptide inhibited adhesion to the other peptide, suggesting cell adhesion is somehow related at the cellular level. Within the A chain 33-kD fragment, FN-C/H II and CS1 are contiguous, and might represent components of a larger domain with greater neurite-promoting activity since only the 33-kD fragment, and neither individual peptide, was effective at promoting B104 neurite outgrowth. These data further support the hypothesis that cell responses to FN are mediated by multiple sites involving both heparin- sensitive and -insensitive mechanisms.  相似文献   

17.
The melanoma cell adhesion molecule (MCAM)/CD146 is expressed as two isoforms differing by their cytoplasmic domain (MCAM long (MCAM-l) and MCAM short (MCAM-s)). MCAM being expressed by endothelial cells and activated T cells, we analyzed its involvement in lymphocyte trafficking. The NK cell line NKL1 was transfected by MCAM isoforms and submitted to adhesion on both the endothelial cell monolayer and recombinant molecules under shear stress. MCAM-l transfection reduced rolling velocity and increased NKL1 adhesion on the endothelial cell monolayer and VCAM-1. Scanning electron microscopy revealed that MCAM-l induced microvilli formation and extension. In contrast, MCAM short or mock transfection had no effect on adhesion of NKL1 cells and microvilli formation. As shown by mutagenesis, serine 32 of the MCAM-l cytoplasmic tail, belonging to a putative protein kinase C phosphorylation site, was necessary for MCAM-l-actin cytoskeleton interaction and microvilli induction. Accordingly, chelerythrine chloride, a protein kinase C inhibitor, abolished MCAM-l-induced microvilli and rolling of MCAM-l-transfected NKL1 cells. Inhibition of adhesion under shear stress by anti-MCAM Abs suggested that both lymphoid MCAM-l and endothelial MCAM were also directly involved in lymphocyte endothelium interaction. MCAM-l-transfected NKL1 and activated CD4 T cells adhered to rMCAM under shear stress whereas anti-MCAM Ab treatment inhibited this process. Taken together, these data establish that MCAM is involved in the initial steps of lymphocyte endothelium interaction. By promoting the rolling on the inflammation marker VCAM-1 via microvilli induction and displaying adhesion receptor activity involving possible homophilic MCAM-l-MCAM-l interactions, MCAM might be involved in the recruitment of activated T cells to inflammation sites.  相似文献   

18.
Coli surface antigen 6 (CS6) is a widely expressed enterotoxigenic Escherichia coli (ETEC) colonization factor that mediates bacterial attachment to the small intestinal epithelium. CS6 is a polymer of two protein subunits CssA and CssB, which are secreted and assembled on the cell surface via the CssC/CssD chaperone usher (CU) pathway. Here, we present an atomic resolution model for the structure of CS6 based on the results of X‐ray crystallographic, spectroscopic and biochemical studies, and suggest a mechanism for CS6‐mediated adhesion. We show that the CssA and CssB subunits are assembled alternately in linear fibres by the principle of donor strand complementation. This type of fibre assembly is novel for CU assembled adhesins. We also show that both subunits in the fibre bind to receptors on epithelial cells, and that CssB, but not CssA, specifically recognizes the extracellular matrix protein fibronectin. Taken together, structural and functional results suggest that CS6 is an adhesive organelle of a novel type, a hetero‐polyadhesin that is capable of polyvalent attachment to different receptors.  相似文献   

19.
Bone formation in the vertebrate skeleton occurs via the processes of endochondral and membranous ossification. Bone matrices contain chondroitin sulfate (CS) chains that regulate endochondral ossification. However, the function of CS in membranous ossification is unclear. Here, using preosteoblastic MC3T3-E1 cells we demonstrate that chondroitin sulfate-E (CS-E) promotes osteoblast differentiation by binding to both N-cadherin and cadherin-11. Differentiated MC3T3-E1 cells exhibited an increase in the total amount of CS and of E-disaccharide units of CS over time. In addition, CS-E polysaccharide, but not CS-A polysaccharide, bound to N-cadherin and cadherin-11 and enhanced osteoblast differentiation. In contrast, osteoblast differentiation was inhibited in chondroitinase ABC-digested MC3T3-E1 cells. Notably, CS-E polysaccharide and hexasaccharide activated intracellular signaling during osteoblast differentiation in non-contacting MC3T3-E1 cells, decreased ERK1/2 phosphorylation, and activated Smad3 and Smad1/5/8; these reactions were blocked by neutralizing antibodies against N-cadherin or cadherin-11, even though cell-cell adhesion is reported to be required for initiation of MC3T3-E1 cell differentiation. Furthermore, CS-E-unit overexpression in MC3T3-E1 cells increased adhesion of the cells to N-cadherin and cadherin-11, and promoted osteoblast differentiation. Collectively, these results suggest that CS-E is a selective ligand for the potential CS receptors, N-cadherin and cadherin-11, leading to osteoblast differentiation of MC3T3-E1 cells.  相似文献   

20.
Proteins with affinities for specific glycosaminoglycans (GAC's) were used as probes for testing the potential of cell surface GAG's to mediate cell adhesive responses to extracellular matrices (ECM). Plasma fibronectin (FN) and proteins that bind hyaluronate (cartilage proteo-glycan core and link proteins) or heparan sulfate (platelet factor 4 [PF4]) were adsorbed to inert substrata to evaluate attachment and spreading of several 3T3 cell lines. Cells failed to attach to hyaluronate-binding substrata. The rates of attachment on PF4 were identical to those on FN; however, PF4 stimulated formation of broad convex lamellae but not tapered cell processes fibers during the spreading response. PF4-mediated responses were blocked by treating the PF4-adsorbed substratum with heparin (but not chondroitin sulfate), or alternatively the cells with Flavobacter heparinum heparinase (but not chondroitinase ABC). Heparinase treatment did not inhibit cell attachment to FN but did inhibit spreading. Cells spread on PF4 or FN contained similar Ca2+-independent cell-substratum adhesions, as revealed by EGTA-mediated retraction of their substratum-bound processes. Microtubular networks reorganized in cells on PF4 but failed to extend into the broadly spread lamellae, where fine microfilament bundles had developed. Stress fibers, common on FN, failed to develop on PF4. These experiments indicate that (a) heparan sulfate proteoglycans are critical mediators of cell adhesion and heparan sulfate-dependent adhesion via PF4 is comparable in some, but not all, ways to FN-mediated adhesion, (b) the uncharacterized and heparan sulfate-independent "cell surface" receptor for FN permits some but not all aspects of adhesion, and (c) physiologically compatible and complete adhesion of fibroblasts requires binding of extracellular matrix FN to both the unidentified "cell surface" receptor and heparan sulfate proteoglycans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号