首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
目的:建立检测聚乙二醇位点特异性修饰重组人干扰素α-2b反应的方法。方法:采用分子量20000的甲氧基聚乙二醇马来酰亚胺修饰重组人干扰素α-2b,反应混合物样品经十二烷基硫酸钠聚丙烯酰胺凝胶电泳(SDS-PAGE)后,碘染色法判断反应产物组成。结果:该修饰反应产物除含有单PEG化的干扰素α-2b外,还有不同修饰程度的多PEG化干扰素。结论:本方法方便快捷、分辨率高、特异性强,同时可用于其它聚乙二醇修饰蛋白质的分析研究。  相似文献   

2.
Addition of poly(ethylene glycol) to bioactive proteins (PEGylation) improves their plasma half-life, enhances stability against proteolytic cleavage, and may also decrease protein immunogenicity. Characteristically, PEGylation usually involves a reaction to available lysine amino groups, some of which may be within or near a bioactive site. Thus, most protocols are nonspecific and result in a loss of protein activity. We report herein a strategy for site-specific PEGylation of a thrombomodulin (TM) derivative at the C terminus. A truncated TM mutant consisting of epidermal growth factor (EGF)-like domains 4-6 was expressed in Escherichia coli with a C-terminal azido-methionine. The TM mutant was site-specifically conjugated to a methyl-PEG-triarylphosphine compound via the Staudinger reaction. Enzymatic activity of the TM construct before and after PEGylation was unchanged, which confirms the utility of this site-specific PEGylation scheme.  相似文献   

3.
Advances in recombinant protein technology have facilitated the production of increasingly complex fusion proteins with multivalent, multifunctional designs for use in various in vitro and in vivo applications. In addition, traditional chemical conjugation remains a primary choice for linking proteins with polyethylene glycol (PEG), biotin, fluorescent markers, drugs, and others. More recently, site-specific conjugation of two or more interactive modules has emerged as a valid approach to expand the existing repertoires produced by either recombinant engineering or chemical conjugation alone, thus advancing the range of potential applications. Five such methods, each involving a specific binding event, are highlighted in this review, with a particular focus on the Dock-and-Lock (DNL) method, which exploits the natural interaction between the dimerization and docking domain (DDD) of cAMP-dependent protein kinase (PKA) and the anchoring domain (AD) of A-kinase anchoring proteins (AKAP). The various enablements of DNL to date include trivalent, tetravalent, pentavalent, and hexavalent antibodies of monospecificity or bispecificity; immnocytokines comprising multiple copies of interferon-alpha (IFNα); and site-specific PEGylation. These achievements attest to the power of the DNL platform technology to develop novel therapeutic and diagnostic agents from both proteins and nonproteins for unmet medical needs.  相似文献   

4.
聚乙二醇(PEG)定点修饰蛋白药物是针对蛋白特定基团特定位点的修饰,相比于非定点随机修饰的特点是PEG修饰位点的单一与确定,避免了修饰异构体的干扰,能较好的保留药物体内外活性;修饰产物组成均一、性质稳定,便于质量控制,降低由修饰异构体引起的潜在的安全性风险,并很大程度上提高得率,降低成本。已有PEG定点修饰蛋白药物上市,还有部分处于临床试验阶段。本文综述了PEG定点修饰蛋白药物的技术研究与临床进展,包括PEG定点修饰剂、定点修饰方法、PEG定点修饰的上市和临床药物及面临的问题,并展望了PEG修饰技术未来的发展前景。  相似文献   

5.
Chemical coupling of polyethylene glycol (PEG) to therapeutic proteins reduces their immunogenicity and prolongs their circulating half-life. The limitation of this approach is the number and distribution of sites on proteins available for PEGylation (the N terminus and the -amino group of lysines). To increase the extent of PEGylation, we have developed a method to increase the number of PEGylation sites in a model protein, recombinant methionine alpha,gamma-lyase (recombinant methioninase; rMETase), an enzyme cancer therapeutic cloned from Pseudomonas putida. rMETase was first PEGylated with methoxypolyethylene glycol succinimidyl glutarate-5000 with a molar ratio of PEG:rMETase of 15:1. The carboxyl groups of the initially PEGylated protein were then conjugated with diaminobutane, resulting in carboxyl amidation. This reaction was catalyzed by 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide, a water-soluble carbodiimide. The steric hindrance provided by the PEG chains already coupled to the protein prevented cross-linking between rMETase molecules during the carboxyl amidation reaction. The carboxyl-amidated PEGylated rMETase was hyper-PEGylated at a molar ratio of PEG to PEG-rMETase of 60:1. Biochemical analysis indicated that 13 PEG chains were coupled to each subunit of rMETase after hyper-PEGylation compared with 6-8 PEG chains attached to the non-carboxyl-amidated PEG-rMETase. Approximately 15-20% of the non-PEGylated rMETase activity was retained in the hyper-PEGylated molecule. Immunogenicity of the hyper-PEG-rMETase was significantly reduced relative to PEG-rMETase and rMETase. Initial results suggest that hyper-PEGylation may become a new strategy for PEGylation of protein biologics.  相似文献   

6.
蛋白药物的聚乙二醇定点修饰策略与最佳位点   总被引:1,自引:0,他引:1  
聚乙二醇修饰是一种改善蛋白质药物临床药效行之有效的方法。聚乙二醇修饰具有延长蛋白质药物在体内的半衰期、降低免疫原性和延缓蛋白酶降解、提高稳定性和溶解性等优点。而聚乙二醇的定点修饰由于能够获得均一性和高活性保留率的产物,并能提高产率,已经引起了广泛关注。综述了近年来聚乙二醇定点修饰蛋白质药物方面的研究进展,着重介绍了聚乙二醇定点修饰的策略及最佳修饰位点,并对聚乙二醇定点修饰技术的发展趋势进行了展望。  相似文献   

7.
Semisynthetic DNA-protein conjugates are versatile tools for many applications in bioanalytics and nanobiotechnology. We here report a method based on expressed protein ligation (EPL) for the site-specific coupling of cysteine-modified DNA oligomers with recombinant intein-fusion proteins. The latter contain a C-terminal thioester, enabling the mild and highly specific reaction with N-terminal cysteine compounds. To conveniently couple commercially available DNA oligomers with cysteine groups a universal chemical modifier was developed, containing a protected cysteine and an amino-reactive N-hydroxysuccinimide group connected by a hexaethyleneglycol moiety. Using maltose-binding protein (MBP) and green fluorescent protein mutant EYFP as a model systems, we demonstrate the feasibility of this approach, as well as the integrity and functionality of the DNA-protein conjugates synthesized. We anticipate that our concept will enable many applications, such as the generation of large arrays of surface-bound, recombinant proteins assembled by means of DNA-directed immobilization.  相似文献   

8.
Preparations enriched by a specific protein are rarely easily obtained from natural host cells. Hence, recombinant protein production is frequently the sole applicable procedure. The ribosomal machinery, located in the cytoplasm is an outstanding catalyst of recombinant protein biosynthesis. Escherichia coli facilitates protein expression by its relative simplicity, its inexpensive and fast high-density cultivation, the well-known genetics and the large number of compatible tools available for biotechnology. Especially the variety of available plasmids, recombinant fusion partners and mutant strains have advanced the possibilities with E. coli. Although often simple for soluble proteins, major obstacles are encountered in the expression of many heterologous proteins and proteins lacking relevant interaction partners in the E. coli cytoplasm. Here we review the current most important strategies for recombinant expression in E. coli. Issues addressed include expression systems in general, selection of host strain, mRNA stability, codon bias, inclusion body formation and prevention, fusion protein technology and site-specific proteolysis, compartment directed secretion and finally co-overexpression technology. The macromolecular background for a variety of obstacles and genetic state-of-the-art solutions are presented.  相似文献   

9.
PEG修饰被认为是改善重组蛋白药物特性的最有效手段,包括增加蛋白质药物在体内的血浆半衰期,降低免疫原性和抗原性。目前典型的PEG修饰手段为将PEG连接至蛋白质的游离氨基,包括赖氨酸和N-末端,但这种连接缺乏选择性,产物为混合物,活性及工艺稳定性差,难以控制。酶法PEG化修饰能有效克服上述缺点,其中谷氨酰胺转氨酶(TGase)可以作为PEG化定点修饰用酶。文中选择重组人干扰素α2a(IFNα2a)进行酶法修饰反应,通过计算机模拟预测IFNα2a可以在第101位Gln特异性定点修饰。将IFNα2a与40 kDa的Y型PEG在微生物来源的谷氨酰胺转氨酶(mTG)催化下进行定点PEG化修饰。结果显示,mTG可以介导IFNα2a特异性位点Gln的单一定点PEG修饰,产生分子量为58 495.6 Da的PEG-Gln101-IFNα2a分子。圆二色谱结果显示,PEG-Gln101-IFNα2a与未修饰的IFNα2a具有相同的二级结构。SD大鼠药代结果显示,与IFNα2a相比,PEG-Gln101-IFNα2a能有效提高药代动力学参数,强于已上市PEGIFNα2a-PEGASYS?。  相似文献   

10.
Addition of polyethylene glycol to protein (PEGylation) to improve stability and other characteristics is mostly nonspecific and may occur at all lysine residues, some of which may be within or near an active site. Resultant PEGylated proteins are heterogeneous and can show markedly lower bioactivity. We attempted to develop a strategy for site-specific mono-PEGylation using tumor necrosis factor-alpha (TNF-alpha). We prepared phage libraries expressing TNF-alpha mutants in which all the lysine residues were replaced with other amino acids. A fully bioactive lysine-deficient mutant TNF-alpha (mTNF-alpha-Lys(-)) was isolated by panning against TNF-alpha-neutralizing antibody despite reports that some lysine residues were essential for its bioactivity. mTNF-alpha-Lys(-) was site-specifically mono-PEGylated at its N terminus. This mono-PEGylated mTNF-alpha-Lys(-), with superior molecular uniformity, showed higher bioactivity in vitro and greater antitumor therapeutic potency than randomly mono-PEGylated wild-type TNF-alpha. These results suggest the usefulness of the phage display system for creating functional mutant proteins and of our site-specific PEGylation approach.  相似文献   

11.
Rapid synthesis of DNA-cysteine conjugates for expressed protein ligation   总被引:1,自引:0,他引:1  
We report a rapid method for the covalent modification of commercially available amino-modified DNA oligonucleotides with a cysteine moiety. The resulting DNA-cysteine conjugates are versatile reagents for the efficient preparation of covalent DNA-protein conjugates by means of expressed protein ligation (EPL). The EPL method allows for the site-specific coupling of cysteine-modified DNA oligomers with recombinant intein-fusion proteins, the latter of which contain a C-terminal thioester enabling the mild and highly specific reaction with N-terminal cysteine compounds. We prepared a cysteine-modifier reagent in a single-step reaction which allows for the rapid and near quantitative synthesis of cysteine-DNA conjugates. The latter were ligated with the green fluorescent protein mutant EYFP, recombinantly expressed as an intein-fusion protein, allowing for the mild and selective formation of EYFP-DNA conjugates in high yields of about 60%. We anticipate many applications of our approach, ranging from protein microarrays to the arising field of nanobiotechnology.  相似文献   

12.
Although PEGylation is a potential approach to prolong the half-lives and reduce the dosing frequency of therapeutic proteins, conjugation behaviors of polymer have pivotal effects on the remaining bioactivities of the derivatives. In this study, the PEGylation strategy of recombinant human interleukin-1 receptor antagonist was investigated. The random conjugation of polyethylene glycol to amino groups on the protein resulted in a severe loss of activity and only retained 9.8% of the activity. In contrast, the PEGylation at the thiol groups had moderate effects on the bioactivity of protein and 40% of activity was conserved. The results suggested that the thiol-target PEGylation was more beneficial for IL-1ra.  相似文献   

13.
Recombinant interferon-beta-1b (IFN-beta-1b) is used clinically in the treatment of multiple sclerosis. In common with many biological ligands, IFN-beta-1b exhibits a relatively short serum half-life, and bioavailability may be further diminished by neutralizing antibodies. While PEGylation is an approach commonly employed to increase the blood residency time of protein therapeutics, there is a further requisite for molecular engineering approaches to also address the stability, solubility, aggregation, immunogenicity and in vivo exposure of therapeutic proteins. We investigated these five parameters of recombinant human IFN-beta-1b in over 20 site-selective mono-PEGylated or multi-PEGylated IFN-beta-1b bioconjugates. Primary amines were modified by single or multiple attachments of poly(ethylene glycol), either site-specifically at the N-terminus, or randomly on the 11 lysines. In two alternate approaches, site-directed mutagenesis was independently employed in the construction of designed IFN-beta-1b variants containing either a single free cysteine or lysine for site-specific PEGylation. Optimization of conjugate preparation with 12 kDa, 20 kDa, 30 kDa, and 40 kDa amine-selective PEG polymers was achieved, and a comparison of the structural and functional properties of the IFN-beta-1b proteins and their PEGylated counterparts was conducted. Peptide mapping and MALDI-TOF mass spectrometric analysis confirmed the attachment sites of the PEG polymer. Independent biochemical and bioactivity analyses, including antiviral and antiproliferation bioassays, circular dichroism, capillary electrophoresis, flow cytometric profiling, reversed phase and size exclusion HPLC, and immunoassays demonstrated that the functional activities of the designed IFN-beta-1b conjugates were maintained, while the formation of soluble or insoluble aggregates of IFN-beta-1b was ameliorated. Immunogenicity and pharmacokinetic studies of selected PEGylated IFN-beta-1b compounds in mice and rats demonstrated both diminished IgG responses, and over 100-fold expanded AUC exposure relative to the unmodified protein. The results demonstrate the capacity of this macromolecular engineering strategy to address both pharmacological and formulation challenges for a highly hydrophobic, aggregation-prone protein. The properties of a lead mono-PEGylated candidate, 40 kDa PEG2-IFN-beta-1b, were further investigated in formulation optimization and biological studies.  相似文献   

14.
To extend the (strept)avidin-biotin technology for affinity purification of proteins, development of reusable biochips and immobilized enzyme bioreactors, selective immobilization of a protein of interest from a crude sample to a protein array without protein purification and many other possible applications, the (strept)avidin-biotin interaction is better when reversible. A gentle enzymatic method to introduce a biotin analog, desthiobiotin, in a site-specific manner to recombinant proteins carrying a biotinylation tag has been developed. The optimal condition for efficient in vitro desthiobiotinylation catalyzed by Escherichia coli biotin ligase (BirA) in 1-4h has been established by systematically varying the substrate concentrations, reaction time, and pH. Real desthiobiotinylation in the absence of any significant biotinylation using this enzymatic method was confirmed by mass spectrometric analysis of the desthiobiotinylated tag. This approach was applied to affinity purify desthiobiotinylated staphylokinase secreted by recombinant Bacillus subtilis to high purity and with good recovery using streptavidin-agarose. The matrix can be regenerated for reuse. This study represents the first successful application of E. coli BirA to incorporate biotin analog to recombinant proteins in a site-specific manner.  相似文献   

15.
The efficacy of protein-based medicines can be compromised by their rapid clearance from the blood circulatory system. Achieving optimal pharmacokinetics is a key requirement for the successful development of safe protein-based medicines. Protein PEGylation is a clinically proven strategy to increase the circulation half-life of protein-based medicines. One limitation of PEGylation is that there are few strategies that achieve site-specific conjugation of PEG to the protein. Here, we describe the covalent conjugation of PEG site-specifically to a polyhistidine tag (His-tag) on a protein. His-tag site-specific PEGylation was achieved with a domain antibody (dAb) that had a 6-histidine His-tag on the C-terminus (dAb-His(6)) and interferon α-2a (IFN) that had an 8-histidine His-tag on the N-terminus (His(8)-IFN). The site of PEGylation at the His-tag for both dAb-His(6)-PEG and PEG-His(8)-IFN was confirmed by digestion, chromatographic, and mass-spectral studies. A methionine was also inserted directly after the N-terminal His-tag in IFN to give His(8)Met-IFN. Cyanogen bromide digestion studies of PEG-His(8)Met-IFN were also consistent with PEGylation at the His-tag. By using increased stoichiometries of the PEGylation reagent, it was possible to conjugate two separate PEG molecules to the His-tag of both the dAb and IFN proteins. Stability studies followed by in vitro evaluation confirmed that these PEGylated proteins retained their biological activity. In vivo PK studies showed that all of the His-tag PEGylated samples displayed extended circulation half-lives. Together, our results indicate that site-specific, covalent PEG conjugation at a His-tag can be achieved and biological activity maintained with therapeutically relevant proteins.  相似文献   

16.
Chemical modification of proteins with substances such as poly(ethylene glycol) can add useful properties to proteins. Currently PEGylation is done in a random manner utilizing amino residues dispersed throughout a protein. For proteins such as immunotoxins, which have several different functional domains, random modification leads to inactivation. To determine if we could produce an immunotoxin with a diminished number of lysine residues so that chemical modification could be restricted to certain regions of the protein, we chose the recombinant immunotoxin anti-Tac(dsFv)-PE38 that has 13 lysine residues in the Fv portion and 3 in the toxin. We prepared a series of mutants with 0-12 lysines in the Fv and 0 or 3 in the toxin. Almost all of these molecules retain full biological activity. Our data indicate that replacement of lysine residues can be achieve without loss of biological potency. These molecules are a useful starting point to carry out site-specific PEGylation experiments.  相似文献   

17.
Peng F  Wang Y  Sun L  Liu Y  Hu T  Zhang G  Ma G  Su Z 《Bioconjugate chemistry》2012,23(9):1812-1820
Conventional protein PEGylation is carried out in aqueous solution. However, some hydrophobic proteins seem to be stable in organic solution. In this study, a novel approach of PEGylating IFN-β-1b in an organic solution of 2-butanol (2-BuOH) was investigated. Compared with protein PEGylation in aqueous solution, the overall modification yields increased more than 37%, while the yield of mono-PEGylated products could be increased by 36%. Furthermore, the PEGylated IFN-β-1b, which was obtained in organic solution, demonstrated 18% more antiviral potency than those derived from aqueous solution. The PEGylation step could be directly connected to the previous protein separation step for process integration. Dynamic light scattering (DLS) and atomic force microscope (AFM) analysis revealed that IFN-β-1b formed aggregates both in water and in 2-BuOH solutions. However, the aggregates were much smaller and more homogeneous in 2-BuOH than those in aqueous solution, thereby providing larger solvent accessible protein surfaces, which resulted in a more productive PEGylation process. In addition, the results of circular dichroism (CD), fluorescence spectra, and peptide mapping suggested that the increased bioactivity came from the difference in PEGylation site distribution due to solution environment that induced conformational discrepancy. The results of this study show that PEGylation of IFN-β-1b in organic solution is a facile and efficient process, which might find applications for other hydrophobic proteins.  相似文献   

18.
This protocol details methodologies for the site-specific biotinylation of proteins using in vitro, in vivo and cell-free systems for the purpose of fabricating functional protein arrays. Biotinylation of recombinant proteins, in vitro as well as in vivo, relies on the chemoselective reaction between cysteine-biotin and a reactive thioester group at the C-terminus of a protein generated via intein-mediated cleavage. The cell-free system utilizes low concentrations of biotin-conjugated puromycin. Unlike other approaches that require tedious and costly downstream steps of protein purification, C-terminal biotinylated proteins can be captured directly onto avidin-functionalized slides from a mixture of other cellular proteins to generate the corresponding protein array. These methods were designed to maintain the integrity and activity of proteins in a microarray format, which potentially allows simultaneous functional assays of thousands of proteins. Assuming that the target proteins have been cloned into the expression vector, transformation of bacterial strain and growth of starter culture would take approximately 2 days. Expression and in vitro protein purification and biotinylation will take approximately 3 days whereas the in vivo method would take approximately 2 days. The cell-free protein biotinylation strategy requires only 6-8 h.  相似文献   

19.
The first semi-synthetic serine protease made by native chemical ligation   总被引:1,自引:0,他引:1  
Selective incorporation of non-natural amino acid residues into proteins is a powerful approach to delineate structure-function relationships. Although many methodologies are available for chemistry-based protein engineering, more facile methods are needed to make this approach suitable for routine laboratory practice. Here, we describe a new strategy and provide a proof of concept for engineering semi-synthetic proteins. We chose a serine protease Streptomyces griseus trypsin (SGT) for this study to show that it is possible to efficiently couple a synthetic peptide containing a catalytically critical residue to a recombinant fragment containing the other active site residues. The 223-residue hybrid SGT molecule was prepared by fusing a chemically synthesized N-terminal peptide to a large C-terminal fragment of recombinant origin using native chemical ligation. This C-terminal polypeptide was produced from full-length SGT by cyanogen bromide cleavage at a genetically engineered Met57 position. This semi-synthetic hybrid trypsin is fully active, showing kinetics identical to the wild-type enzyme. Thus, we believe that it is an ideal model enzyme for studying the catalytic mechanisms of serine proteases by providing a straightforward approach to incorporate non-natural amino acids in the N-terminal region of the protein. In particular, this strategy will allow for replacement of the catalytic His57 residue and the buried N-terminus, which is thought to help align the active site, with synthetic analogs. Our approach relies on readily available recombinant proteins and small synthetic peptides, thus having general applications in chemical engineering of large proteins where the N-terminal region is the focal interest.  相似文献   

20.
Abstract We describe an efficient, general approach for cloning, expression and purification of heterologous proteins in Escherichia coli host strains. The affinity expression cassette polymerase chain reaction (AEC-PCR) allows the insertion of virtually any coding sequence in suitable expression vectors. For ease of purification of the (over)produced protein the gene expression cassettes are engineered by specifically designed oligonucleotide primers in the polymerase chain reaction (PCR) to contain either 3′ or 5′ additional nucleotides coding for a short amino acid sequence constituting an ‘affinity block’ fused to either end of the protein. This allows a one-step purification by affinity chromatography. In combination with PCR-mediated site-specific mutagenesis this approach is a highly efficient way for the expression and isolation of proteins and for the analysis and dissection of functional domains. The application of AEC-PCR is demonstrated by the cloning, production and purification of the native, active and the mutagenized, inactive ADP-ribosyltransferase (S1 subunit) of pertussis toxin. In this example, a string of six histidines has been engineered to either the N-terminal or the C-terminal end of the protein to serve as ‘affinity block’ for the isolation of the recombinant protein by immobilized metal ion affinity chromatography (IMAC). Thus, the S1 subunit can now be produced in sufficient quantities to facilitate further studies on its immunological and molecular properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号