首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
For proper chromosome segregation, sister kinetochores must attach to microtubules extending from opposite spindle poles prior to anaphase onset. This state is called sister kinetochore bi-orientation or chromosome bi-orientation. The mechanism ensuring chromosome bi-orientation lies at the heart of chromosome segregation, but is still poorly understood. Recent evidence suggests that mal-oriented kinetochore-to-pole connections are corrected in a tension-dependent mechanism. The cohesin complex and the Ipl1/Aurora B protein kinase seem to be key regulators for this correction. In this article, I discuss how cells ensure sister kinetochore bi-orientation for all chromosomes, mainly focusing on our recent findings in budding yeast.  相似文献   

2.
The spindle checkpoint prevents errors in mitosis. Cells respond to the presence of kinetochores that are improperly attached to the mitotic spindle by delaying anaphase onset. Evidence suggests that phosphorylations recognized by the 3F3/2 anti-phosphoepitope antibody may be involved in the kinetochore signaling of the spindle checkpoint. Mitotic cells lysed in detergent in the absence of phosphatase inhibitors rapidly lose expression of the 3F3/2 phosphoepitope. However, when ATP is added to lysed and rinsed mitotic cytoskeletons, kinetochores become rephosphorylated by an endogenous, bound kinase. Kinetochore rephosphorylation in vitro produced the same differential phosphorylation seen in appropriately fixed living cells. In chromosomes not yet aligned at the metaphase plate, kinetochores undergo rapid rephosphorylation, while those of fully congressed chromosomes are under-phosphorylated. However, latent 3F3/2 kinase activity is retained at kinetochores of cells at all stages of mitosis including anaphase. This latent activity is revealed when rephosphorylation reactions are carried out for extended times. The endogenous, kinetochore-bound kinase can be chemically inactivated. Remarkably, a soluble kinase activity extracted from mitotic cells also caused differential rephosphorylation of kinetochores whose endogenous kinase had been chemically inactivated. We suggest that, in vivo, microtubule attachment alters the kinetochore 3F3/2 phosphoprotein, causing it to resist phosphorylation. This kinetochore modification is retained after cell lysis, producing a "memory" of the in vivo phosphorylation state.  相似文献   

3.
In eukaryotes, the microtubule-based spindle drives chromosome segregation. In this issue, Schweizer et al. (2015; J. Cell Biol. http://dx.doi.org/10.1083/jcb.201506107) find that the spindle area is demarcated by a semipermeable organelle barrier. Molecular crowding, which is microtubule independent, causes the enrichment and/or retention of crucial factors in the spindle region. Their results add an important new feature to the models of how this structure assembles and is regulated.Mitosis is marked by the assembly of the mitotic spindle, a microtubule-based structure that facilitates accurate chromosome segregation. Many biochemical reactions are coupled to spindle assembly, from tubulin polymerization itself to the mitotic checkpoint, which inhibits chromosome disjunction until all the chromosomes are properly attached and aligned (Cleveland et al., 2003). Interestingly, these reactions are virtually unaltered over a broad morphological range; large spindles and small spindles follow roughly the same biochemical rules despite quite distinct geometries (Brown et al., 2007; Wühr et al., 2008). In this issue, Schweizer et al. report that the mitotic spindle area is delineated by membrane-bound organelles, generating a “spindle envelope” with unique molecular constituents compared with the surrounding cytoplasm. Spindle envelope–based molecular crowding provides an enticing hypothetical solution to the broad problem of confining mitotic biochemistry to a specific cellular space irrespective of cell size.Schweizer et al. (2015) used FRAP and fluorescence correlation spectroscopy (FCS) to measure the mobility of specific proteins. The authors found that tubulin and the Mad2 spindle assembly checkpoint protein were enriched in the spindle area in a microtubule polymer-independent manner. Given that the mobility of these proteins outside and within the spindle area was the same, changes in local concentration were likely a result of a barrier effect. In support of this hypothesis, modeling their FCS data with a fenestrated barrier separating the spindle area from the cytoplasm reproduced the measured FCS results. To test if a barrier surrounding the spindle area was important for spindle function, the authors disrupted the envelope area by laser microsurgery and found chromosome segregation errors consistent with defects in spindle assembly and kinetochore attachment monitoring. Thus, spindle envelope–based concentration of basal components in two critical spindle reactions, spindle assembly and mitotic checkpoint signaling, could mechanistically catalyze cell division.Molecular crowding can catalyze reactions and stabilize proteins by altering the local concentration of one or more rate-limiting components and is best characterized by membrane-bound organelles. Crowding by aggregation can greatly increase biochemical reactions without the need for a contiguous membrane (Weber and Brangwynne, 2012; Brangwynne, 2013) and this phenomenon can regulate cell cycle states (Lee et al., 2013). Here, Schweizer et al. (2015) propose that by creating a membrane-bound organelle exclusion zone, a spindle envelope could cause the molecular crowding of important spindle proteins and thereby their enrichment in the spindle area.The mitotic spindle is known to scale with cell size: smaller cells have smaller spindles (Levy and Heald, 2012). Spindle size scaling is prominent during development when repeated cell division without embryonic growth results in cells that can be several orders of magnitude smaller than that of the zygote. Recently, cytoplasm volume and tubulin concentration was shown to be an important factor in spindle size scaling; however, a curious exception to the size scaling rule is that there seems to be an upper limit to spindle size, resulting in stable spindle size when a threshold cell size is reached (Wühr et al., 2008; Good et al., 2013; Hazel et al., 2013). A spindle envelope would provide mechanisms to maintain increased local tubulin concentration independent of the absolute amount available in the cell. The net effect would be that spindle size scales in very large cells to the spindle envelope size rather than cell size in a manner analogous to chromosome size scaling to nuclear size independently of cell size (Fig. 1 A). Clearly this is a more complex problem and factors such as tubulin protein production and polymerization cofactors (such as the Tog family of proteins) clearly play an important role (Slep, 2009). However, spindle envelope–based molecular crowding could provide an elegant solution to a biochemical problem.Open in a separate windowFigure 1.Molecular crowding in the mitotic spindle. Schematic view of how a spindle envelope could mitigate spindle size scaling during development (A) or cell cycle control (B) in a common cytoplasm. (A) A spindle envelope (black dotted line) that excludes large membrane-bound organelles (yellow) could locally increase the concentration of spindle proteins (depicted as a red background) such as tubulin to control spindle size independent of cell size during early development. (B) Neighboring nuclei in a common cytoplasm (e.g., the syncytial mitotic gonad in C. elegans) could have differing mitotic states by restricting the diffusion of important regulatory proteins such as Mad2 (similar coloring as in A).A spindle envelope could also provide a cell biological solution to another developmental problem—independent cell cycle control of separate nuclei within a single cytoplasm (syncytia). For example, the mitotic region of the Caenorhabditis elegans germline contains germ cell precursors that divide independently of one another in a common cytoplasm. In some cases, two neighboring dividing nuclei can have different biochemistry, one arrested in metaphase because of a kinetochore microtubule attachment defect while the other is progressing into anaphase (Gerhold et al., 2015). By restricting the diffusive radius of signaling molecules like Mad2, a steep threshold of checkpoint activity can be maintained, allowing independent cell cycle control even in a common cytoplasm (Fig. 1 B).The mitotic spindle has long been known to exclude large membrane-bound organelles, even in the absence of microtubule polymer, leading to a hypothesized nontubulin-based “spindle matrix.” A spindle matrix would be an excellent candidate to underlie the spindle envelope. The molecular nature of a spindle matrix, however, has never been agreed upon with candidate mechanisms ranging from nonprotein macromolecules to actin (Pickett-Heaps et al., 1984; Chang et al., 2004). A convincing argument can be made that the Skeletor/Megator/Chromator proteins first identified in Drosophila melanogaster constitute a spindle matrix (Walker et al., 2000; Qi et al., 2004; Rath et al., 2004; Schweizer et al., 2014). These proteins are large and are found in the nucleus in interphase and as microtubule-independent fibrous structures in and around the spindle in mitosis. Depletion of these proteins results in mitotic errors; however, these may or may not be caused by a role as the spindle matrix.Schweizer et al. (2015) evaluated Megator (as a representative member of the complex) as a possible basis for generating the spindle envelope. FRAP and FCS showed that, like tubulin and Mad2, Megator is concentrated in the spindle envelope region independent of microtubules. However, Megator in the spindle region had slower diffusive properties compared with that around the cell periphery. Thus, unlike tubulin and Mad2, the mobility of Megator within the spindle was altered, indicating that Megator likely forms a high molecular weight complex with its binding partners Skeletor and Chromator in the spindle area, which may help form the spindle envelope.The sum of these results lead to a possible model whereby the Skeletor/Megator/Chromator proteins complex together and subsequently support a spindle envelope independent of microtubules. The spindle envelope excludes large membrane-bound organelles, leading to increased concentration of mitotic reaction constituents and thus ultimately catalyzing cell division. It will be exciting in the future to determine if the spindle area is indeed subject to molecular crowding in the purest of forms (solvent exclusion) and how this effect drives cell division.  相似文献   

4.
The spindle assembly checkpoint (SAC) monitors the attachment of microtubules to the kinetochore and inhibits anaphase when microtubule binding is incomplete. The SAC might also respond to tension; however, how cells can sense tension and whether its detection is important to satisfy the SAC remain controversial. We generated a HeLa cell line in which two components of the kinetochore, centromere protein A and Mis12, are labeled with green and red fluorophores, respectively. Live cell imaging of these cells reveals repetitive cycles of kinetochore extension and recoiling after biorientation. Under conditions in which kinetochore stretching is suppressed, cells fail to silence the SAC and enter anaphase after a delay, regardless of centromere stretching. Monitoring cyclin B levels as a readout for anaphase-promoting complex/cyclosome activity, we find that suppression of kinetochore stretching delays and decelerates cyclin B degradation. These observations suggest that the SAC monitors stretching of kinetochores rather than centromeres and that kinetochore stretching promotes silencing of the SAC signal.  相似文献   

5.
For the proper segregation of sister chromatids before cell division, each sister kinetochore must attach to microtubules that extend to opposite spindle poles. This process is called bipolar microtubule attachment or chromosome bi-orientation. The mechanism for chromosome bi-orientation lies at the heart of chromosome segregation, but is still poorly understood. Recent studies suggest that cells can promote bi-orientation by re-orienting kinetochore-spindle pole connections.  相似文献   

6.
7.
8.
9.
Gadde S  Heald R 《Current biology : CB》2004,14(18):R797-R805
In all eukaryotes, morphogenesis of the microtubule cytoskeleton into a bipolar spindle is required for the faithful transmission of the genome to the two daughter cells during division. This process is facilitated by the intrinsic polarity and dynamic properties of microtubules and involves many proteins that modulate microtubule organization and stability. Recent work has begun to uncover the molecular mechanisms behind these dynamic events. Here we describe current models and discuss some of the complex repertoire of factors required for spindle assembly and chromosome segregation.  相似文献   

10.
Chromosomes move polewards as kinetochore fibres shorten during anaphase. Fibre dynamics and force production have been studied extensively, but little is known about these processes in the absence of the spindle matrix. Here we show that laser-microbeam-severed kinetochore fibres in the cytoplasm of grasshopper spermatocytes maintain a constant length while turning over in a polarized manner. Tubulin incorporates at or near the kinetochore and translocates towards severed ends without shortening the fibre. Consequently, the chromosome cannot move polewards unless the severed fibre reattaches to the pole through microtubules. A potential seclusion artefact has been ruled out, as fibres severed inside spindles behave identically despite being surrounded by the spindle matrix. Our data suggest that kinetochore microtubules constantly treadmill during anaphase in insect cells. Treadmilling is an intrinsic property of microtubules in the kinetochore fibre, independent of the context and attachment of the spindle. The machinery that depolymerizes minus ends of kinetochore microtubules is functional in a non-spindle context. Attachment to the pole, however, is required to cause net kinetochore fibre shortening to generate polewards forces during anaphase.  相似文献   

11.
Regulation of Aurora-A kinase on the mitotic spindle   总被引:4,自引:0,他引:4  
Kufer TA  Nigg EA  Silljé HH 《Chromosoma》2003,112(4):159-163
The error-free segregation of duplicated chromosomes during cell division is essential for the maintenance of an intact genome. This process is brought about by a highly dynamic bipolar array of microtubules, the mitotic spindle. The formation and function of the mitotic spindle during M-phase of the cell cycle is regulated by protein phosphorylation, involving multiple protein kinases and phosphatases. Prominent among the enzymes implicated in spindle assembly is the serine/threonine-specific protein kinase Aurora-A. In several common human tumors, Aurora-A is overexpressed, and deregulation of this kinase was shown to result in mitotic defects and aneuploidy. Moreover, recent genetic evidence directly links the human Aurora-A gene to cancer susceptibility. Several of the physiological substrates of Aurora-A presumably await identification, but recent studies are beginning to shed light on the regulation of this critical mitotic kinase. Here, we review these findings with particular emphasis on the role of TPX2, a prominent spindle component implicated in a Ran-GTP-mediated spindle assembly pathway.Communicated by E.A. Nigg  相似文献   

12.
Tanaka TU 《Chromosoma》2008,117(6):521-533
To maintain their genetic integrity, eukaryotic cells must segregate their chromosomes properly to opposite poles during mitosis. This process mainly depends on the forces generated by microtubules that attach to kinetochores. During prometaphase, kinetochores initially interact with a single microtubule that extends from a spindle pole and then move towards a spindle pole. Subsequently, microtubules that extend from the other spindle pole also interact with kinetochores and, eventually, each sister kinetochore attaches to microtubules that extend from opposite poles (sister kinetochore bi-orientation). If sister kinetochores interact with microtubules in wrong orientation, this must be corrected before the onset of anaphase. Here, I discuss the processes leading to bi-orientation and the mechanisms ensuring this pivotal state that is required for proper chromosome segregation.  相似文献   

13.
Motor function in the mitotic spindle   总被引:8,自引:0,他引:8  
Heald R 《Cell》2000,102(4):399-402
  相似文献   

14.
15.
16.
17.
Spontaneous contraction of mouse heart muscle in tissue culture is stopped by ryanodine at 1–2 mg/ml. These concentrations also block mitosis. In the dividing Echinarachnius egg, anaphase movement of chromosomes is retarded and incomplete in ryanodine at 6–8 mg/ml, although some of the eggs complete 2 or 3 cleavages. Increasing the length of exposure prior to cleavage does not alter the character of response and only slightly increases the severity. These phenomena are consistent with an inhibition of traction fiber contraction by ryanodine, but are insufficient to demonstrate the existence of such a contractile phenomenon.  相似文献   

18.
19.
Cell division requires the assembly of a microtubule-based spindle which captures and segregates sister chromatids. But how is this spindle broken down once chromosome segregation is complete? New evidence implicates a highly conserved AAA-ATPase in spindle disassembly at the end of mitosis.  相似文献   

20.
The cellular mechanisms used to generate sufficient microtubule polymer mass to drive the assembly and function of the mitotic spindle remain a matter of great interest. As the primary microtubule nucleating structures in somatic animal cells, centrosomes have been assumed to figure prominently in spindle assembly. At the onset of mitosis, centrosomes undergo a dramatic increase in size and microtubule nucleating capacity, termed maturation, which is likely a key event in mitotic spindle formation. Interestingly, however, spindles can still form in the absence of centrosomes calling into question the specific mitotic role of these organelles. Recent work has shown that the human centrosomal protein, Cep192, is required for both centrosome maturation and spindle assembly thus providing a molecular link between these two processes. In this article, we propose that Cep192 does so by forming a scaffolding on which proteins involved in microtubule nucleation are sequestered and become active in mitotic cells. Normally, this activity is largely confined to centrosomes but in their absence continues to function but is dispersed to other sites within the cell.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号