首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Dental decay is a major public health challenge, causing substantial social and economic burdens. In animals, vaccination against mutans streptococci, the causative organism, interferes with dental caries. The mutans streptococcal glucosyltransferase (GTF) has been effectively used as a protein antigen in experimental dental caries vaccines. Compared to whole proteins, peptide subunits can focus immune responses on protective epitopes, and not on potentially harmful cross reactive antigens. In the past we selected peptide subunits of GTF for vaccine discovery based on putative functional significance and conservation of GTF primary structure. To focus on the immunogenicity of peptides, we estimated the probability of MHC class II binding. Twenty 20-mer linear GTF peptides were synthesized on this basis and their immunoreactivity explored. Significant human peripheral blood mononuclear cell (PBMC; n = 12) proliferation was observed in response to amino acids (AA) 502–521 (peptide 7), located in the catalytic domain of GTF. Human serum (n = 36) antibody reactivity was observed to AA 438–457 (peptide 5), AA 502–521 (peptide 7), and AA 1376–1395 (peptide 16). Whole saliva mutans streptococcal levels were used as markers of mutans infection, and dental examinations to determine existing and historic caries (DMFS score) were performed. DMFS scores correlated with mutans streptococcal counts, but not with immune responses. We have identified peptides with projected avid MHC-binding activity that reacted with human PBMC and serum antibody, implying that these peptides are immunogenic and may be of significance in a subunit dental caries vaccine.  相似文献   

2.
Sequential deletion of the carboxyl-terminal amino acids (including the six direct repeating units) of the glucosyltransferase-I (GTF-I) enzyme of Streptococcus mutans revealed differential effects on sucrase and GTF activities. Removal of all but one repeating unit resulted in a truncated enzyme with significant sucrase activity but no detectable GTF activity. These results are compatible with the presence of two functional domains in the enzyme.  相似文献   

3.
In the present communication molecular genetic approaches have been utilized to confirm the nature of the catalytic site of Streptococcus mutans glucosyltransferases (GTF)s. Site-directed mutagenesis was used to convert the putative sucrose binding Asp-451 of the GTF-I enzyme from S. mutans GS5 to Glu, Asn, and Thr. All three of the resulting mutated enzymes displayed no detectable sucrase or GTF activities. By contrast, mutation of nearby Asp residues did not markedly reduce enzymatic activity. The inactive enzymes also appear to bind acceptor dextrans as well as the parental enzyme. These results confirm the essential role of Asp-451 of the GTF-I from strain GS5 and analogous Asp residues in other related GTFs in enzymatic activity.  相似文献   

4.
The gene encoding glucosyltransferase responsible for water-insoluble glucan synthesis (GTF-I) of Streptococcus sobrinus (formerly Streptococcus mutans 6715) was cloned, expressed, and sequenced. A gene bank from S. sobrinus 6715 DNA was constructed in vector pUC18 and screened with anti-GTF-I antibody to detect clones producing GTF-I peptide. Five immunopositive clones were isolated, all of which produced peptides that bound alpha-1,6 glucan. GTF-I activity was found in only two large peptides: one stretching over the full length of the GTF-I peptide and composed of about 1,600 amino acid residues (AB1 clone) and the other lacking about 80 N-terminal residues and about 260 C-terminal residues (AB2 clone). A deletion study of the AB2 clone indicated that specific glucan binding, which is essential for water-insoluble glucan synthesis, was lost prior to sucrase activity with an increase in deletion from the 3' end of the GTF-I gene. These results suggest that the GTF-I peptide consists of three segments: that for sucrose splitting (approximately 1,100 residues), that for glucan binding (approximately 240 residues), and that of unknown function (approximately 260 residues), in order from the N terminus. The primary structure of the GTF-I peptide, deduced by DNA sequencing of the AB1 clone, was found to be very similar to that of the homologous protein from another strain of S. sobrinus.  相似文献   

5.
Glucosyltransferases (GTF) from different strains of streptococci exhibited different elution profiles when fractionated on insoluble-dextran affinity columns. The proportions of unadsorbed and adsorbed GTF were not related to their extent of stimulation by exogenous dextran, and GTF preparations exposed to, and freed from, clinical dextran prior to fractionation lost their ability to bind to the dextran columns. Different proportions of bound GTF were released by irrigation of columns with different concentrations of salt and clinical dextran, and the “specific” binding and release of GTF exhibited by a column possessing covalently linked, clinical dextran ligands was duplicated on a control column that did not possess the dextran ligands. These results, and the high affinity of GTF for hydrophobic alkyl (Shaltiel) ligands, demonstrate that ionic and hydrophobic properties of impure GTF aggregates may lead to erroneous characterization of the dextran affinity of some protein fractions. Fractionations on DEAE-Sepharose and on hydroxylapatite showed that the two dextran-dependant GTF activities (GTF-S and GTF-I) were present in the major enzyme fraction (Streptococcus mutans 6715) recovered from a Sephacryl S-200 affinity column. A minor, dextran-independent GTF was not adsorbed onto the Sephacryl column. The presence of SDS (0.005%) and Triton X100 (0.01%) stabilized GTF activity during gel filtration and improved the separation of GTF-S and GTF-I in hydroxylapatite fractionation of the highly aggregated enzyme. A comparable separation of the two enzyme forms on DEAE-Sepharose was achieved only if T10 dextran (10 mg/mL) was included with the detergent mixture in the column irrigant.  相似文献   

6.
1. Cationic fractions were isolated from a low chromium (less than 0.2 ppm) commercial yeast extract in an attempt to purify the material responsible for glucose tolerance factor (GTF) activity observed in a standard yeast assay system. 2. Following previously described procedures a fraction with GTF activity but containing negligible chromium was isolated, which on further purification was found to be composed of many separate small basic peptides. 3. Much of the activity of the yeast GTF material in the yeast assay could be attributed to the presence of basic peptides and free amino acids acting as nitrogen sources for the yeast. 4. Additional activity was present in the yeast GTF sample, which was not due to a synergistic effect of the mixed amino acids and peptides although the component of the yeast extract responsible for this activity was not identified. 5. The results show that the GTF fractions isolated according to most previously published procedures are highly impure, and conclusions drawn about the nature of GTF based on these isolates must remain open to question. 6. The activity due to the presence of peptides and amino acids is a major cause of lack of specificity of the yeast systems as an assay for GTF.  相似文献   

7.
A comparison of the amino acid sequences of the glucosyltransferases (GTFs) of mutans streptococci with those from the alpha-amylase family of enzymes revealed a number of conserved amino acid positions which have been implicated as essential in catalysis. Utilizing a site-directed mutagenesis approach with the GTF-I enzyme of Streptococcus mutans GS-5, we identified three of these conserved amino acid positions, Asp413, Trp491, and His561, as being important in enzymatic activity. Mutagenesis of Asp413 to Thr resulted in a GTF which expressed only about 12% of the wild-type activity. In contrast, mutagenesis of Asp411 did not inhibit enzyme activity. In addition, the D413T mutant was less stable than was the parental enzyme when expressed in Escherichia coli. Moreover, conversion of Trp491 or His561 to either Gly or Ala resulted in enzymes devoid of GTF activity, indicating the essential nature of these two amino acids for activity. Furthermore, mutagenesis of the four Tyr residues present at positions 169 to 172 which are part of a subdomain with homology to the direct repeating sequences present in the glucan-binding domain of the GTFs had little overall effect on enzymatic activity, although the glucan products appeared to be less adhesive. These results are discussed relative to the mechanisms of catalysis proposed for the GTFs and related enzymes.  相似文献   

8.
NADH-cytochrome b5 reductases purified from bovine erythrocytes and from bovine brain and liver microsomes solubilized with lysosomal protease were subjected to structural analysis by using HPLC mapping, amino acid analysis of the resulting peptides, and NH2-terminal sequence analysis of apoproteins. HPLC maps of the tryptic peptides derived from these enzymes were very similar to each other, and amino acid analysis of the HPLC-separated peptides indicated that the structures of these enzymes are identical except for the NH2-terminal region. The NH2-terminal sequence of the brain enzyme determined by automated Edman degradation was as follows: NH2-Phe-Gln-Arg-Ser-Thr-Pro-Ala-Ile-Thr-Leu-Glu-Asn-Pro-Asp- Ile-Lys-Tyr-Pro-Leu-Arg-Leu-Ile-Asp-Lys-Glu-Val-Ile- This sequence is identical to that of liver enzyme except that the liver enzyme started at the 3rd Arg or 4th Ser. The NH2-terminal amino acid residue of the soluble erythrocyte enzyme was not detected by automated Edman degradation. The sequence analysis of a tryptic peptide from the erythrocyte enzyme indicated that Leu is present before the NH2-terminal Phe of the brain enzyme. The recently reported sequence of the apparently identical protein (Ozols et al. (1985) J. Biol. Chem. 260, 11953-11961) differs in two amino acid assignments from our sequence.  相似文献   

9.
Procollagen C-endopeptidase (BMP-1) and N-endopeptidase (ADAMTS-2) are key enzymes for correct and efficient conversion of fibrillar procollagens to their self assembling monomers. Thus, they have an essential role in building and controlling the quality of extracellular matrices (ECMs). Here, we tested inhibition of activity of the largest variant of BMP-1, a recombinant mammalian tolloid (mTld), in vitro by three synthetic peptides with conservative amino-acid sequences found in chordin using procollagen type I as a substrate. We also verified the specific action of best inhibitory 16 amino-acid peptide in the procollagen type I cleavage assay with the use of ADAMTS-2 (procollagen N-endopeptidase). Subsequently, we determined the critical residues and minimal sequence of six amino acids in the original 16 amino-acid peptide required to maintain the inhibitory potential. Studies on the interactions of 6 and 16 amino acid long peptides with the enzyme revealed their binding to non-catalytic, regulatory domains of mTld; the inhibitory activity was not due to the competition of peptides with the substrate for the enzyme active center, because mTld did not cleave the peptides. However, in the presence of mTld both peptides underwent cyclization by disulfide bond formation. Concluding, we have shown that procollagen C-endopeptidase may be specifically blocked via its non-catalytic domains by synthetic peptide consisting of 6 amino acids in the sequence found in highly conservative region of chordin. Thus, we hypothesize that the 6 amino-acid peptide could be a good candidate for anti-fibrotic drug development.  相似文献   

10.
Glucosyltransferase (GTF) plays an important role in the development of dental caries. This study was carried out to compare the efficiency of green mate (GM) and roasted mate (RM) water extracts, drinks rich in polyphenolic compounds consumed in the subtropical region of South America, on the extracellular GTF activity from Streptococcus mutans. The RM extract exhibited a greater inhibitory effect (IC?? of 10 mg/mL) despite presenting lower polyphenolic content. The kinetic analysis showed that there were significant differences (P?相似文献   

11.
Neutrophil chemotactic activity was found in the autodigest of calcium dependent cysteine proteinase (calpain) I purified from human erythrocytes, an active peptide was isolated, and its structure was determined. It was an N-acetyl nonapeptide with the sequence: N-acetyl Ser-Glu-Glu-Ile-Ile-Thr-Pro-Val-Tyr. This peptide was identical with the N-terminal amino acid sequence of the large subunit of calpain I deduced from cDNA sequence, except that the peptide was lacking a methionine residue and was acetylated at the N-terminus. A number of N-acetyl peptides with N-terminal amino acid sequences of large and small subunits of calpains I and II were synthesized and their chemotactic activity was estimated. In addition to the N-acetyl nonapeptide from calpain I large subunit, several peptides of different lengths from the small subunit showed dose-dependent migrations of neutrophils. They include N-acetyl tetra, hepta, octa, nona and larger size peptides. Further, it was also revealed that when calpain was incubated with high molecular weight (HMW) or low molecular weight (LMW) kininogen, kinin liberation occurred with simultaneous inhibition of calpains by kininogens. These data suggest that chemical mediators generated from the calpain-kininogen system may participate in migration and accumulation of neutrophils to the inflammatory locus.  相似文献   

12.
Preincubation of Escherichia coli DNA polymerase I (pol I) with 5'-fluorosulfonylbenzoyladenosine (5'-FSBA) results in an irreversible inactivation of DNA polymerase activity with concomitant covalent binding of 5'-FSBA to enzyme. pol I-associated 3'-5' exonuclease activity, however, remains unaffected. Kinetic studies of inactivation indicate that the degree of inactivation is directly proportional to the concentration of 5'-FSBA and increases linearly with time. The presence of the metal chelate form of dNTP substrates or template primer, but not the template or primer alone, protects the enzyme from inactivation by 5'-FSBA. A complete inactivation of polymerase activity occurs when 2 mol of 5'-FSBA are covalently linked to 1 mol of enzyme, suggesting two sites of modification. Tryptic peptide mapping of 5'-FSBA-treated enzyme revealed the presence of two distinct peptides containing the affinity label, confirming the presence of two reactive sites in the enzyme. However, we find that only one of the two sites is essential for the polymerase activity since, in the presence of substrate dNTP or template primer during preincubation of enzyme with 5'-FSBA, incorporation of the affinity label is reduced by only 1 mol. Peptide analysis of dNTP or template primer-protected enzyme further revealed that a peptide eluting at 35 min from the C-18 matrix was protected from the 5'-FSBA reaction. It is therefore concluded that this peptide contains the domain essential for polymerase activity. Staphylococcus aureus V-8 protease digestion, amino acid composition, and sequence analysis of this peptide revealed this domain to span residues 669 to 687 in the primary amino acid sequence of pol I, and arginine 682 was found to be the site of 5'-FSBA reactivity.  相似文献   

13.
14.
A nontoxic peptide with bradykinin-potentiating activity was isolated from the dialyzed venom of the scorpion Buthus occitanus by reverse-phase high performance liquid chromatography (RP-HPLC). The pharmacological activity of the peptide was bioassayed by its ability to potentiate added bradykinin (BK) on the isolated guinea pig ileum as well as the isolated rat uterus for contraction. Moreover, the peptide potentiates in vivo the depressor effect of BK on arterial blood pressure in the normotensive anesthetized rat. Chemical characterization of the peptide was also performed. The amino acid composition of the peptide showed 21 amino acid residues per molecule including three proline residues. The amino acid sequence of the purified peptide was confirmed by mass spectrometry. Either N- or C-terminal ends were free. The sequence does not show a homology with bradykinin-potentiating peptides isolated from either scorpion or snake venoms. Furthermore, we did not find a significant sequence homology between the sequence of the isolated peptide and any of proteins or peptides in GenPro or NBRF data banks. The peptide also inhibited angiotensin-converting enzyme (ACE), and could not serve as substrate for the enzyme. It could be concluded that the mechanism of bradykinin-potentiating peptide (BPP) activity may be due to ACE inhibition.  相似文献   

15.
Peptide YY. Structure of the precursor and expression in exocrine pancreas   总被引:4,自引:0,他引:4  
Peptide YY is a 36-residue gastrointestinal hormone which inhibits both pancreatic and gastric secretion. We have isolated a cDNA encoding the peptide YY precursor by screening a rat intestinal lambda gt11 cDNA library with an antiserum directed against the porcine hormone. The nucleotide sequence of the cDNA encodes a 98-residue protein (molecular weight, 11, 121) which has an amino acid sequence identical to that of porcine peptide YY. Rat peptide YY is preceded immediately by a signal sequence and followed by a cleavage-amidation sequence Gly-Lys-Arg plus 31 additional amino acids. Thus the peptide YY precursor is similar in structure to that of two related peptides, pancreatic polypeptide and neuropeptide Y. RNA blot hybridizations reveal that the peptide YY gene is much more actively expressed in pancreas than previously realized. In situ hybridizations localized peptide YY cells exclusively to the exocrine pancreas. The abundance of peptide YY in one of its target organs, the pancreas, suggests a paracrine mechanism for peptide YY in regulating pancreatic enzyme secretion.  相似文献   

16.
The ruminal anaerobe Butyrivibrio fibrisolvens OR79 produces a bacteriocin-like activity demonstrating a very broad spectrum of activity. An inhibitor was isolated from spent culture fluid by a combination of ammonium sulfate and acidic precipitations, reverse-phase chromatography, and high-resolution gel filtration. N-terminal analysis of the isolated inhibitor yielded a 15-amino-acid sequence (G-N/Q-G/P-V-I-L-X-I-X-H-E-X-S-M-N). Two different amino acid residues were detected in the second and third positions from the N terminus, indicating the presence of two distinct peptides. A gene with significant homology to one combination of the determined N-terminal sequence was cloned, and expression of the gene was confirmed by Northern blotting. The gene (bvi79A) encoded a prepeptide of 47 amino acids and a mature peptide, butyrivibriocin OR79A, of 25 amino acids. Significant sequence homology was found between this peptide and previously reported lantibiotics containing the double-glycine leader peptidase processing site. Immediately downstream of bvi79A was a second, partial open reading frame encoding a peptide with significant homology to proteins which are believed to be involved in the synthesis of lanthionine residues. These findings indicate that the isolated inhibitory peptides represent new lantibiotics. Results from both total and N-terminal amino acid sequencing indicated that the second peptide was identical to butyrivibriocin OR79A except for amino acid substitutions in positions 2 and 3 of the mature lantibiotic. Only a single coding region was detected when restriction enzyme digests of total DNA were probed either with an oligonucleotide based on the 5' region of bvi79A or with degenerate oligonucleotides based on the predicted sequence of the second peptide.  相似文献   

17.
The Mr values and isoelectric points of glucosyltransferases synthesizing insoluble glucan (GTF-Is) were determined, and the immunological relationships between them studied. The GTF-I enzymes were from Streptococcus cricetus (mutans group serotype a), Streptococcus sobrinus (mutans group serotypes d and g) and Streptococcus downei (mutans group serotype h). By double immunodiffusion tests, the GTF-I enzymes from the three species possessed a common antigenic determinant; in addition, the GTF-I enzymes of serotypes d, g and h shared a further determinant. The S. sobrinus serotypes d and g GTF-I enzymes were immunologically identical. The GTF-I enzymes of S. sobrinus serotypes d and g, and of S. downei, had an Mr of 161,000 and isoelectric points of 4.8-4.9, while S. cricetus GTF-I had a lower Mr (150,000) and a higher isoelectric point (5.2). This suggests that the S. cricetus GTF-I enzyme may lack a sequence of amino acids which include the determinant shared by S. sobrinus and S. downei GTF-I enzymes. Antibodies specific to the determinant shared by all four serotypes inhibited the homologous and heterologous enzymes by 94-100%.  相似文献   

18.
The main antibody-combining sites of horse skeletal muscle acylphosphatase were mapped by preparing and purifying CNBr, tryptic and peptic peptides from the pure enzyme, and looking for the immunoreactivity of each peptide by the dot-immunobinding assay using specific polyclonal antienzyme antibodies previously purified by immunoaffinity chromatography. The immunoreactive peptides were identified on the basis of either their elution times in the fingerprint analysis or amino acid composition, or both, by comparison with the known enzyme amino acid sequence. All the CNBr as well as two tryptic and two peptic peptides were immunopositive, leading to identification of three main continuous antigenic sites on the enzyme molecule. The strong inhibition (92%) of the antigen-antibody reaction carried out in the presence of antibodies previously incubated with the immunoreactive peptide mixture supports the possibility that, at our experimental condition, the three identified antigenic domains contain the main antigenic determinants of the enzyme. The relationship between structure and antigenicity of the immunoreactive peptides is discussed in detail.  相似文献   

19.
Fructose-6-phosphate,2-kinase:fructose-2,6-bis-phosphatase from rat skeletal muscle has been purified to homogeneity, and its structure and kinetic properties have been determined. The Mr of the native enzyme was 100,000 and the subunit Mr was 54,000. The apparent Km values of fructose-6-P,2-kinase for Fru-6-P and ATP were 56 and 48 microM, respectively. The apparent Km value for Fru-2,6-P2 of fructose-2,6-bis-phosphatase was 0.4 microM, and the Ki for Fru-6-P was 12.5 microM. The enzyme was bifunctional, and the phosphatase activity was 2.5 times higher than the kinase activity. The enzyme was not phosphorylated by cAMP-dependent protein kinase. The amino acid composition of the skeletal muscle enzyme was similar to that of the rat liver enzyme, and the carboxyl terminus sequence (His-Tyr) was the same as that of the liver enzyme. The tryptic peptides generated from the liver and skeletal muscle enzymes were identical except for two peptides. A peptide corresponding to nucleotides 14-28 of the rat liver enzyme was not detected in the skeletal muscle enzyme. A peptide whose amino acid sequence was Thr-Ala-Ser-Ile-Pro-Gln-Phe-Thr-Asn-Ser-Pro-Thr-Met-Val-Ile-Met-Val-Gly-Leu-Pro - Ala-Arg was also isolated. This peptide was the same as that of rat liver enzyme (nucleotides 31-52) containing the phosphorylation site except in the muscle enzyme two amino terminus amino acids, Gly-Ser(P), have been altered to Thr-Ala. Thus, the rat skeletal muscle enzyme is very similar in structure to the rat liver enzyme except for the lack of possibly one peptide and the lack of a phosphorylation site by the substitution of the target Ser with Ala.  相似文献   

20.
Using the technique of UV-mediated cross-linking of nucleotides to their acceptor sites (Modak, M. J., and Gillerman-Cox, E. (1982) J. Biol. Chem. 257, 15105-15109), we have labeled calf terminal deoxynucleotidyltransferase (TdT) with [32P]dTTP. The specificity of dTTP cross-linking at the substrate binding site in TdT is demonstrated by the competitive inhibition of the cross-linking reaction by other deoxynucleoside triphosphates, and ATP and its analogues, requiring concentrations consistent with their kinetic constants. Tryptic peptide mapping of the [32P]dTTP-labeled enzyme showed the presence of a single radioactive peptide fraction that contained the site of dTTP cross-linking. The amino acid composition and sequence analysis of the radioactive peptide fraction revealed it to contain two tryptic peptides, spanning residues 221-231 and 234-249. Since these two peptides were covalently linked to dTTP, the region encompassed by them constitutes a substrate binding domain in TdT. Further proteolytic digestion of the tryptic peptide-dTTP complex, using V8 protease, yielded a smaller peptide, and its analysis narrowed the substrate binding domain to 14 amino acids corresponding to residues 224-237 in the primary amino acid sequence of TdT. Furthermore, 2 cysteine residues, Cys-227 and Cys-234, within this domain were found to be involved in the cross-linking of dTTP, suggesting their participation in the process of substrate binding in TdT.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号