首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
In this study the further characterization of the Vicia faba leghaemoglobin promoter pVfLb29 is presented that was previously shown to be specifically active in the infected cells of root nodules and in arbuscule-containing cells of mycorrhizal roots. Using promoter studies in transgenic hairy roots of the Pisum sativum mutant RisNod24, disabled in the formation of functional arbuscules, VfLb29 promoter activity is assigned to later stages of arbuscule development. In order to narrow down the regions containing cis-acting elements of pVfLb29, the activity of five VfLb29 promoter deletions (-797/-31 to -175/-31 in relation to the start codon) fused to the gusAint coding region were tested in transgenic V. hirsuta hairy roots. The results specify a promoter region ranging from position -410 to -326 (85 bp) as necessary for gus expression in arbuscule-containing cells, whereas this segment is not involved in the nodule-specific activity. Sequence analysis of the pVfLb29 fragment -410/-326 (85 bp) revealed sequence motifs previously shown to be cis-acting elements of diverse promoters. To investigate the autonomous function of pVfLb29 regions for activation in arbuscule-containing cells, different regions of pVfLb29 from positions -410 to -198 were used to prepare chimeric promoter constructs for trans-activation studies. These fragments alone did not activate the mycorrhiza inactive promoter of the Vicia faba leghaemoglobin gene VfLb3, showing that the activation of pVfLb29 in arbuscule-containing cells is governed by a complex regulatory system that requires at least two modules located between position -410 and -31 of the VfLb29 gene.  相似文献   

9.
The VfLb29 leghemoglobin gene promoter was polymerase chain reaction-amplified from a Vicia faba genomic library and was fused to the gusAint coding region. Expression of the chimeric gene was analyzed in transgenic hairy roots of the legumes V. faba, V. hirsuta, and Medicago truncatula as well as in transgenic Nicotiana tabacum plants. The VfLb29 promoter was found to be specifically active not only in the infected cells of the nitrogen-fixing zone of root nodules but also in arbuscule-containing cells of transgenic V. faba and M. truncatula roots colonized by the endomycorrhizal fungus Glomus intraradices. In addition to these two legumes, specific expression in arbuscule-containing cells was also observed in the nonlegume N. tabacum. All studies were done in comparison to the V. faba leghemoglobin gene promoter VfLb3 that as VfLb29 was expressed in the infected cells of root nodules but showed no activity in endomycorrhiza. An activation of the VfLb29 promoter due to hypoxia in metabolically active tissues was excluded. The conserved activation in arbuscule-containing cells of legumes and the nonlegume N. tabacum suggests a conserved trigger for this promoter in legume and nonlegume endomycorrhiza symbioses.  相似文献   

10.
Fluctuations in intracellular calcium levels generate signalling events and regulate different cellular processes. Whilst the implication of Ca2+ in plant responses during arbuscular mycorrhiza (AM) interactions is well documented, nothing is known about the regulation or role of this secondary messenger in the fungal symbiont. The spatio-temporal expression pattern of putatively Ca2+-related genes of Glomus intraradices BEG141 encoding five proteins involved in membrane transport and one nuclear protein kinase, was investigated during the AM symbiosis. Expression profiles related to successful colonization of host roots were observed in interactions of G. intraradices with roots of wild-type Medicago truncatula (line J5) compared to the mycorrhiza-defective mutant dmi3/Mtsym13. Symbiotic fungal activity was monitored using stearoyl-CoA desaturase and phosphate transporter genes. Laser microdissection based-mapping of fungal gene expression in mycorrhizal root tissues indicated that the Ca2+-related genes were differentially upregulated in arbuscules and/or in intercellular hyphae. The spatio-temporal variations in gene expression suggest that the encoded proteins may have different functions in fungal development or function during symbiosis development. Full-length cDNA obtained for two genes with interesting expression profiles confirmed a close similarity with an endoplasmic reticulum P-type ATPase and a Vcx1-like vacuolar Ca2+ ion transporter functionally characterized in other fungi and involved in the regulation of cell calcium pools. Possible mechanisms are discussed in which Ca2+-related proteins G. intraradices BEG141 may play a role in mobilization and perception of the intracellular messenger by the AM fungus during symbiotic interactions with host roots.  相似文献   

11.
12.
13.
14.
Arbuscular mycorrhizal (AM) fungi are obligate symbionts that need their plant hosts to complete their life cycle. In the absence of the plant, germlings arrest growth after a few days and retract most of their cytoplasm back into the multinuclear spores. The spores can germinate again during more favorable conditions. How AM fungi recognize compatible host roots and activate their symbiotic program is not yet understood. However, research in this field in the last years has shed light into this topic. We, and others, have approached some of these aspects by studying changes in fungal gene expression observed at early stages of development, before and at the plant recognition stage in an attempt to identify genes and proteins featuring as key regulators in the switch between the asymbiotic and symbiotic style of life. The molecular bases of this recognition process are now starting to be understood and point to common signaling pathways shared with other microbe-plant associations and to arbuscular mycorrhiza specific signaling pathways.  相似文献   

15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号