首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
Natal dispersal enables population connectivity, gene flow and metapopulation dynamics. In polygynous mammals, dispersal is typically male-biased. Classically, the ‘mate competition’, ‘resource competition’ and ‘resident fitness’ hypotheses predict density-dependent dispersal patterns, while the ‘inbreeding avoidance’ hypothesis posits density-independent dispersal. In a leopard (Panthera pardus) population recovering from over-harvest, we investigated the effect of sex, population density and prey biomass, on age of natal dispersal, distance dispersed, probability of emigration and dispersal success. Over an 11-year period, we tracked 35 subadult leopards using VHF and GPS telemetry. Subadult leopards initiated dispersal at 13.6 ± 0.4 months. Age at commencement of dispersal was positively density-dependent. Although males (11.0 ± 2.5 km) generally dispersed further than females (2.7 ± 0.4 km), some males exhibited opportunistic philopatry when the population was below capacity. All 13 females were philopatric, while 12 of 22 males emigrated. Male dispersal distance and emigration probability followed a quadratic relationship with population density, whereas female dispersal distance was inversely density-dependent. Eight of 12 known-fate females and 5 of 12 known-fate male leopards were successful in settling. Dispersal success did not vary with population density, prey biomass, and for males, neither between dispersal strategies (philopatry vs. emigration). Females formed matrilineal kin clusters, supporting the resident fitness hypothesis. Conversely, mate competition appeared the main driver for male leopard dispersal. We demonstrate that dispersal patterns changed over time, i.e. as the leopard population density increased. We conclude that conservation interventions that facilitated local demographic recovery in the study area also restored dispersal patterns disrupted by unsustainable harvesting, and that this indirectly improved connectivity among leopard populations over a larger landscape.  相似文献   

2.
Dispersal heterogeneity is increasingly being observed in ecological populations and has long been suspected as an explanation for observations of non-Gaussian dispersal. Recent empirical and theoretical studies have begun to confirm this. Using an integro-difference model, we allow an individual’s diffusivity to be drawn from a trait distribution and derive a general relationship between the dispersal kernel’s moments and those of the underlying heterogeneous trait distribution. We show that dispersal heterogeneity causes dispersal kernels to appear leptokurtic, increases the population’s spread rate, and lowers the critical reproductive rate required for persistence in the face of advection. Wavespeed has been shown previously to be determined largely by the form of the dispersal kernel tail. We qualify this by showing that when reproduction is low, the precise shape of the tail is less important than the first few dispersal moments such as variance and kurtosis. If the reproductive rate is large, a dispersal kernel’s asymptotic tail has a greater influence over wavespeed, implying that estimating the prevalence of traits which correlate with long-range dispersal is critical. The presence of multiple dispersal behaviors has previously been characterized in terms of long-range versus short-range dispersal, and it has been found that rare long-range dispersal essentially determines wavespeed. We discuss this finding and place it within a general context of dispersal heterogeneity showing that the dispersal behavior with the highest average dispersal distance does not always determine wavespeed.  相似文献   

3.
The question of how dispersal behavior is adaptive and how it responds to changes in selection pressure is more relevant than ever, as anthropogenic habitat alteration and climate change accelerate around the world. In metapopulation models where local populations are large, and thus local population size is measured in densities, density-dependent dispersal is expected to evolve to a single-threshold strategy, in which individuals stay in patches with local population density smaller than a threshold value and move immediately away from patches with local population density larger than the threshold. Fragmentation tends to convert continuous populations into metapopulations and also to decrease local population sizes. Therefore we analyze a metapopulation model, where each patch can support only a relatively small local population and thus experience demographic stochasticity. We investigated the evolution of density-dependent dispersal, emigration and immigration, in two scenarios: adult and natal dispersal. We show that density-dependent emigration can also evolve to a nonmonotone, “triple-threshold” strategy. This interesting phenomenon results from an interplay between the direct and indirect benefits of dispersal and the costs of dispersal. We also found that, compared to juveniles, dispersing adults may benefit more from density-dependent vs. density-independent dispersal strategies.  相似文献   

4.
5.
Many organisms use cues to decide whether to disperse or not, especially those related to the composition of their environment. Dispersal hence sometimes depends on population density, which can be important for the dynamics and evolution of sub-divided populations. But very little is known about the factors that organisms use to inform their dispersal decision. We investigated the cues underlying density-dependent dispersal in inter-connected microcosms of the freshwater protozoan Paramecium caudatum. In two experiments, we manipulated (i) the number of cells per microcosm and (ii) the origin of their culture medium (supernatant from high- or low-density populations). We found a negative relationship between population density and rates of dispersal, suggesting the use of physical cues. There was no significant effect of culture medium origin on dispersal and thus no support for chemical cues usage. These results suggest that the perception of density – and as a result, the decision to disperse – in this organism can be based on physical factors. This type of quorum sensing may be an adaptation optimizing small scale monitoring of the environment and swarm formation in open water.  相似文献   

6.
Vocal Dialect Recognition and Population Genetic Consequences   总被引:1,自引:0,他引:1  
SYNOPSIS. On the basis of male territorial song, a system ofdiscrete dialects is described in a population of White-crownedSparrows in central, coastal California. Four of these dialectsare genetically differentiated from one another. Inbreedingcoefficients calculated from electrophoretic alleles indicatethat individuals in a dialect are inbred due to isolation ofthe dialect not because of inbreeding with close relatives.Males react more aggressively to male song from an adjacentdialect than to song from another member of their own dialectbut react only weakly to song from a distant dialect. This indicatesthat male-male interactions may have a role in maintaining dialectpopulations. Females of the Mountain White-crowned Sparrow havebeen tested in dialect experiments in the laboratory and foundto respond with precopulatory sexual posturing almost exclusivelyto song from the home dialect in comparison to song from analien dialect. This indicates that female choice of mate mayalso play a role in maintaining dialect populations.  相似文献   

7.
Many species exhibit widespread spatial synchrony in population fluctuations. This pattern is of great ecological interest and can be a source of concern when the species is rare or endangered. Both dispersal and spatial correlations in the environment have been implicated as possible causes of this pattern, but these two factors have rarely been studied in combination. We develop a spatially structured population model, simple enough to obtain analytic solutions for the population correlation, that incorporates both dispersal and environmental correlation. We ask whether these two synchronizing factors contribute additively to the total spatial population covariance. We find that there is always an interaction between these two factors and that this interaction is small only when one or both of the environmental correlation and the dispersal rate are small. The interaction is opposite in sign to the environmental correlation; so, in the normal case of positive environmental correlation across sites, the population synchrony will be lower than predicted by simply adding the effects of dispersal and environmental correlation. We also find that population synchrony declines as the strength of population regulation increases. These results indicate that dispersal and environmental correlation need to be considered in combination as explanations for observed patterns of population synchrony.  相似文献   

8.
Clark AG  Feldman MW 《Genetics》1981,98(4):849-869
The effects of larval density on components of fertility fitness were investigated with two mutant lines of Drosophila melanogaster. The differences in adult body weight, wing length, larval survivorship and development time verified that flies reared at high density were resource limited. Experimental results indicate that: (1) relative fecundities of both sexes show density-dependent effects, (2) there is a strong density effect on male and female mating success, and (3) in general, there is a reduction in fecundity differences between genotypes at high density. These results imply that it may be important to consider fertility in models of density-dependent natural selection.  相似文献   

9.
The density-dependent rates of population growth were determined for 26 populations of Drosophila melanogaster maintained in the serial transfer system. Twenty-five populations were homozygous for an entire chromosome 2 sampled from nature; the other was a random heterozygous population. Rates of population growth around the carrying capacity cannot explain the large fitness depression of these lines. However, the homozygous lines show large differences in rates of population growth at low densities relative to the random heterozygous standard. The average relative fitness of the homozygous lines, as determined from the growth rates at the lowest density, is 0.51.  相似文献   

10.
Moraes EM  Abreu AG  Andrade SC  Sene FM  Solferini VN 《Genetica》2005,125(2-3):311-323
The genetic variability and population genetic structure of six populations of Praecereus euchlorus and Pilosocereus machrisii were investigated. The genetic variability in single populations of Pilosocereus vilaboensis, Pilosocereus aureispinus, and Facheiroa squamosa was also examined. All of these cacti species have a patchy geographic distribution in which they are restricted to small areas of xeric habitats in eastern Brazil. An analysis of genetic structure was used to gain insights into the historical mechanisms responsible for the patchy distribution of P. euchlorus and P. machrisii. High genetic variability was found at the populational level in all species (P=58.9–92.8%, Ap=2.34–3.33, He=0.266–0.401), and did not support our expectations of low variability based on the small population size. Substantial inbreeding was detected within populations (FIS=0.370–0.623). In agreement with their insular distribution patterns, P. euchlorus and P. machrisii had a high genetic differentiation (FST=0.484 and FST=0.281, respectively), with no evidence of isolation by distance. Accordingly, estimates of gene flow (Nm) calculated from FST and private alleles were below the level of Nm=1 in P. machrisii and P. euchlorus. These results favored historical fragmentation as the mechanism responsible for the patchy distribution of these two species. The genetic distance between P. machrisii and P. vilaboensis was not compatible with their taxonomic distinction, indicating a possible local speciation event in this genus, or the occurrence of introgression events.  相似文献   

11.
12.
Abstract Sugi (Cryptomeria japonica D. Don) is a valuable tree species in Japan. The present natural distribution is limited to small scattered areas in temperate moist regions, and most of these areas are surrounded by vast artificial plantations. We studied natural populations of C. japonica in an effort to determine the amount and distribution of genetic diversity using 12 allozyme markers. The amount of genetic variation within the species is high (HT=0.196) but most is found within populations with little among populations (GST=0.034) despite their isolated distribution. This pattern of genetic diversity is inferred to be the consequence of the following: (1) the distribution of this species in the past was wider and more continuous than it is now; (2) a high rate of gene flow occurs, perhaps including gene flow between natural populations and plantations; and (3) the long lifespan. However, the distribution of allele frequencies at the 6Pg-1 in northern populations on the side near the Sea of Japan is clearly different from those in other populations. This observation is inferred to result from founding events.  相似文献   

13.
14.
15.
Dispersal is critically linked to the demographic and evolutionary trajectories of populations, but in most seabird species it may be difficult to estimate. Using molecular tools, we explored population structure and the spatial dispersal pattern of a highly pelagic but philopatric seabird, the Cory''s shearwater Calonectris diomedea. Microsatellite fragments were analysed from samples collected across almost the entire breeding range of the species. To help disentangle the taxonomic status of the two subspecies described, the Atlantic form C. d. borealis and the Mediterranean form C. d. diomedea, we analysed genetic divergence between subspecies and quantified both historical and recent migration rates between the Mediterranean and Atlantic basins. We also searched for evidence of isolation by distance (IBD) and addressed spatial patterns of gene flow. We found a low genetic structure in the Mediterranean basin. Conversely, strong genetic differentiation appeared in the Atlantic basin. Even if the species was mostly philopatric (97%), results suggest recent dispersal between basins, especially from the Atlantic to the Mediterranean (aprox. 10% of migrants/generation across the last two generations). Long-term gene flow analyses also suggested an historical exchange between basins (about 70 breeders/generation). Spatial analysis of genetic variation indicates that distance is not the main factor in shaping genetic structure in this species. Given our results we recommend gathering more data before concluded whether these taxa should be treated as two species or subspecies.  相似文献   

16.
Matrix models are widely used in biology to predict the temporal evolution of stage-structured populations. One issue related to matrix models that is often disregarded is the sampling variability. As the sample used to estimate the vital rates of the models are of finite size, a sampling error is attached to parameter estimation, which has in turn repercussions on all the predictions of the model. In this study, we address the question of building confidence bounds around the predictions of matrix models due to sampling variability. We focus on a density-dependent Usher model, the maximum likelihood estimator of parameters, and the predicted stationary stage vector. The asymptotic distribution of the stationary stage vector is specified, assuming that the parameters of the model remain in a set of the parameter space where the model admits one unique equilibrium point. Tests for density-dependence are also incidentally provided. The model is applied to a tropical rain forest in French Guiana.  相似文献   

17.
Smith CI  Farrell BD 《Genetica》2006,126(3):323-334
Although gene flow is an important determinant of evolutionary change, the role of ecological factors such as specialization in determining migration and gene flow has rarely been explored empirically. To examine the consequences of dispersal ability and habitat patchiness on gene flow, migration rates were compared in three cactophagous longhorn beetles using coalescent analyses of mtDNA sequences. Analyses of covariance were used to identify the roles of dispersal ability and habitat distribution in determining migration patterns. Dispersal ability was a highly significant predictor of gene flow (p< 0.001), and was more important than any other factor. These findings predict that dispersal ability may be an import factor shaping both microevolutionary and macroevolutionary patterns; this prediction is borne out by comparisons of species diversity in cactus-feeding groups.  相似文献   

18.
Measuring genetic diversity requires selection of a spatial scale of analysis. Different levels of genetic structuring are revealed at different spatial scales, however, and the relative importance of factors driving genetic structuring varies along the spatial scale continuum. Unequal gene flow is a major factor determining genetic structure in plant populations at the local level, while the effect of selection imposed by environmental heterogeneity increases with the spatial scale of analysis. At a continental and global scale genetic structure of invasive plant populations is significantly affected by founder effect and propagule transport via human vectors. Although genetic analysis at one spatial scale provides only partial information about the invasion process, little published research reports such data for the same species at multiple scales. A multi-faceted approach to investigating the genetic structure of invasive plant species that incorporates sampling at different spatial and temporal scales would provide a more complete picture of the role of genetic forces in invasion.  相似文献   

19.
本文介绍了植物遗传变异空间自相关分析的理论、方法与应用,包括将基因型作为绝对型数据与等位基因频率作为连续型数据进行自相关分析的基本方法等。并对影响植物居群遗传变异空间结构的因素以及研究居群内遗传结构的重要意义作了评述。  相似文献   

20.
植物居群遗传变异的空间自相关分析   总被引:19,自引:0,他引:19  
本文介绍了植物遗传变异空间自相关分析的理论、方法与应用 ,包括将基因型作为绝对型数据与等位基因频率作为连续型数据进行自相关分析的基本方法等。并对影响植物居群遗传变异空间结构的因素以及研究居群内遗传结构的重要意义作了评述  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号