首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Measurements of cell volume changes, free cytosolic Ca2+ concentration [( Ca2+]i) with Fura 2 and cell membrane potential with 3,3'-dipropylthiodicarbocyanine iodide were used to study the effect of cell volume change on Ca2+ influx and the membrane potential of the osteoblastic osteosarcoma cell line, UMR-106-01. Swelling the cells by hypo-osmotic stress was followed by reduction in cell volume which was markedly impaired by removal of medium Ca2+. Accordingly, cell swelling resulted in [Ca2+]i increase only in the presence of medium Ca2+. The cell swelling-activated Ca2+ entry pathway was active at resting membrane potentials, and Ca2+ influx through this pathway markedly increased upon cell hyperpolarization. A linear relationship between Ca2+ entry and the potential across the plasma membrane was observed. Thus, the volume-activated Ca2+ permeating pathway in UMR-106-01 cells has conductive properties. These pathways do not spontaneously inactivate with time when the cells are not allowed to volume regulate. The pathway can be blocked by micromolar concentrations of nicardipine and La3+ but display very low sensitivity to diltiazem and verapamil. Activation of the volume-sensitive, Ca2+ permeating pathway was not dependent on an increase in [Ca2+]i. Likewise, activation of the pathway was independent of a change in membrane potential between -85 and -3 mV. The increase in [Ca2+]i resulted in hyperpolarization of the cells, probably due to activation of Ca2+-activated K+ channels. The volume-sensitive pathways were partially active under isotonic conditions. Their activity was inhibited by cell shrinkage and increased by cell swelling. The pathways were sensitive to small changes in cell volume, particularly around a medium osmolarity of 310 mosM.  相似文献   

2.
The effect of plasma membrane water permeability on the rate of changes in the volume of principal cells of collecting ducts of the outer substantia medullaris under conditions of hypoosmotic shock has been studied. Changes in cell volume were studied by the fluorescent method. It was shown that the hypotonic shock induced a rapid increase in the cell volume with the characteristic time that depended on plasma membrane water permeability. The decrease in volume occurred much more slowly, and the rate of volume decrease directly correlated with the rate of swelling. The inhibition of potassium transport by barium chloride decreased the rate of volume restoration, without affecting substantially the duration of the swelling phase. The inhibition of mercury-sensitive water channels by mercury caused a significant increase in the time of both cell swelling and volume restoration. It was concluded that the state of water channels largely determines the rate of the regulatory response of epithelial cells of collecting ducts to hypoosmotic shock and affects the exchange of cell osmolites.  相似文献   

3.
There is growing evidence that aldosterone acts on heart where it causes cellular remodeling and hypertrophy. Since it is still unclear whether aldosterone directly acts on cardiomyocytes or indirectly, by an altered electrolyte balance in the organism, we applied atomic force microscopy (AFM) in primary cultures of neonatal mouse cardiomyocytes to measure hormone-induced changes in cell volume and plasma membrane surface. AFM measures cell volume and, at the same time, provides quantitative information on cell surface properties. Neonatal mouse cardiomyocytes were cultured for 28 hours in absence or presence of 100 nM aldosterone. Spironolactone was applied as a selective aldosterone receptor antagonist. At the microscopic level, single cell volume and single cell surface were found unchanged by aldosterone. However, nanoscopy of the cell surface, i.e. analysis of the plasma membrane at the nanometer level, revealed a specific increase in plasma membrane nano-enfoldings (roughness). This aldosterone-mediated increase in cell surface roughness was completely prevented by spironolactone. We conclude: (i) Aldosterone directly acts upon cardiomyocytes. (ii) At the microscopic level, no changes of cell volume and cell surface are detectable. (iii) At the nanoscopic level, aldosterone increases plasma membrane roughness. These nanometer changes, detectable only with AFM in cells scanned in fluid after fixation under physiological conditions, indicate plasma membrane remodeling of cardiomyocytes by mineralocorticoids.  相似文献   

4.
The rates of synthesis of peptidoglycan and protein during the division cycle of Salmonella typhimurium have been measured by using the membrane elution technique and differentially labeled diaminopimelic acid and leucine. The cells were labeled during unperturbed exponential growth and then bound to a nitrocellulose membrane by filtration. Newborn cells were eluted from the membrane with fresh medium. The radioactivity in the newborn cells in successive fractions was determined. As the cells are eluted from the membrane as a function of their cell cycle age at the time of labeling, the rate of incorporation of the different radioactive compounds as a function of cell cycle age can be determined. During the first part of the division cycle, the ratio of the rates of protein and peptidoglycan synthesis was constant. During the latter part of the division cycle, there was an increase in the rate of peptidoglycan synthesis relative to the rate of protein synthesis. These results support a simple, bipartite model of cell surface increase in rod-shaped cells. Before the start of constriction, the cell surface increased only by cylindrical extension. After cell constriction started, the cell surface increased by both cylinder and pole growth. The increase in surface area was partitioned between the cylinder and the pole so that the volume of the cell increased exponentially. No variation in cell density occurred because the increase in surface allowed a continuous exponential increase in cell volume that accommodated the exponential increase in cell mass. Protein was synthesized exponentially during the division cycle. The rate of cell surface increase was described by a complex equation which is neither linear nor exponential.  相似文献   

5.
Morphology of the differentiation and maturation of LLC-PK1 epithelia   总被引:4,自引:0,他引:4  
In the present study, a stereologic approach was utilized to quantitatively assess morphological changes during the differentiation of LLC-PK1 cells into an epithelial membrane. This renal epithelial cell line has been described to undergo morphological changes during differentiation and maturation from subconfluent culture to a confluent epithelial layer. An increase in the number of apical microvilli, interpreted as an areal increase in this membrane domain was reported. This morphological differentiation was found to be accompanied by an increase in the expression of apical Na(+)-dependent hexose transport and the activities of certain brush border enzymes. Since no data are available that quantify the morphologic changes during LLC-PK1 differentiation, a quantitative morphologic-stereologic-investigation was performed for an early (6 days) and a late (12 days) state of confluence of LLC-PK1 monolayer cultures. The following morphological parameters were determined by light and electron microscopic morphometry: volume fractions (Vv) of nuclei, mitochondria, and lysosomes, and surface densities (Sv) of the apical and basolateral cell membrane domains. For the apical membrane surface, the microvillous fraction has been measured separately. Since the stereologic approach used in the present study allows the determination of absolute cell volumes, the absolute measures of organelle volumes (V) and membrane surfaces (S) per average cell can be calculated from volume and surface densities. Although no changes in cell density were found for 6 and 12 day old LLC-PK1 monolayers, indicating ceased cell proliferation due to contact inhibition, remarkable changes were found concerning the absolute cell volume and apical membrane surface. The observed increase in the apical cell surface was exclusively due to the enlarged microvillous surface fraction. This finding is in good agreement with the increased number of Na(+)-dependent hexose transporters as well as with the increased expression of apical membrane marker enzymes observed during the differentiation of LLC-PK1 monolayers.  相似文献   

6.
The effect of the intracellular level of ATP and of the state of spectrin on the critical cell volume of bovine erythrocyte was studied. The state of spectrin was changed by thermal denaturation, which for the bovine red cell took place at similar temperature as for the human erythrocyte. The increase of the ATP level and the spectrin denaturation increased the critical cell volume, while metabolic starvation decreased it. The changes of the ATP level did not influence the critical volume after the denaturation of spectrin. The results suggest that the ATP-dependent effect on the critical cell volume was caused by an alteration of the membrane extensibility due to the change of the membrane skeleton-lipid bilayer interaction(s).  相似文献   

7.
Membrane potential and the rate constants for anion self-exchange in dog, cat, and human red blood cells have been shown to vary with cell volume. For dog and cat red cells, the outward rate constants for SO4 and Cl increase while the inward rate constant for SO4 decreases as cells swell or shrink. These changes coincide with the membrane potential becoming more negative as a result of changes in cell volume. Human red cells exhibit a similar change in the rate constants for SO4 and Cl efflux in response to cell swelling, but shrunken cells exhibit a decreased rate constant for SO4 efflux and a more positive membrane potential. Hyperpolarization of shrunken dog and cat red cells is due to a volume-dependent rate constant for SO4 efflux and a more positive membrane potential. Hyperpolarization of shrunken dog and cat red cells is due to a volume-dependent increase in PNa. If this increase in PNa is prevented by ATP depletion or if the outward Na gradient is removed, the response to shrinking is identical to human red cells. These results suggest that the volume dependence of anion permeability may be secondary to changes in the anion equilibrium ratio which in red cells is reflected by the membrane potential. When the membrane potential and cell volume of human red cells were varied independently by a method involving pretreatment with nystatin, it was found that the rate of anion transport (for SO4 and Cl) does not vary with cell volume but rather with membrane potential (anion equilibrium ratio); that is, the rate constant for anion efflux is decreased and that for influx is increased as the membrane potential becomes more positive (internal anion concentration increases) while the opposite is true with membrane hyperpolarization (a fall in internal anion concentration).  相似文献   

8.
The rates of synthesis of peptidoglycan and protein during the division cycle of Escherichia coli were measured by the membrane elution technique using cells differentially labelled with N-acetylglucosamine and leucine. During the first part of the division cycle the ratio of the rates of protein and peptidoglycan synthesis was constant. The rate of peptidoglycan synthesis, relative to the rate of protein synthesis, increased during the latter part of the division cycle. These results support a simple, bipartite model of cell surface increase in rod-shaped cells. Prior to the start of constriction the cell surface increases only by lateral wall extension. After cell constriction starts, the cell surface increases by both lateral wall and pole growth. The increase in surface area is partitioned between the lateral wall and the pole so that the volume of the cell increases exponentially. No variation in cell density occurs, because the increase in surface allows a continuous exponential increase in cell volume that accommodates the exponential increase in cell mass. The results are consistent with the constant density of the growing cell and the surface stress model for the regulation of cell surface synthesis. In addition, the elution pattern suggests that the membrane elution method does work by having the cells effectively bound to the membrane by their poles.  相似文献   

9.
Cell volume regulation is fundamentally important in phenomena such as cell growth, proliferation, tissue homeostasis, and embryogenesis. How the cell size is set, maintained, and changed over a cell’s lifetime is not well understood. In this work we focus on how the volume of nonexcitable tissue cells is coupled to the cell membrane electrical potential and the concentrations of membrane-permeable ions in the cell environment. Specifically, we demonstrate that a sudden cell depolarization using the whole-cell patch clamp results in a 50% increase in cell volume, whereas hyperpolarization results in a slight volume decrease. We find that cell volume can be partially controlled by changing the chloride or the sodium/potassium concentrations in the extracellular environment while maintaining a constant external osmotic pressure. Depletion of external chloride leads to a volume decrease in suspended HN31 cells. Introducing cells to a high-potassium solution causes volume increase up to 50%. Cell volume is also influenced by cortical tension: actin depolymerization leads to cell volume increase. We present an electrophysiology model of water dynamics driven by changes in membrane potential and the concentrations of permeable ions in the cells surrounding. The model quantitatively predicts that the cell volume is directly proportional to the intracellular protein content.  相似文献   

10.
Cell division requires an increase in surface area to volume ratio. During early development, surface area can increase, volume can decrease, or surface topography can be optimized to allow for division. While exocytosis is thought to be essential for division [Mol. Biol. Cell 10 (1999), 2735; Proc. Natl. Acad. Sci. USA 99 (2002), 3633], exocytosis doesn't always yield an increase in surface area [Proc. Natl. Acad. Sci. USA 79 (1982), 6712]. We used multiphoton laser scanning microscopy, fluorescence spectroscopy, and electron microscopy to monitor membrane trafficking, surface area, volume, and surface topography during early sea urchin development. Despite extensive membrane trafficking monitored by FM 1-43 fluorescence, we find that the net surface area of the embryo does not change prior to the eight-cell stage. During this period, embryo volume decreases by 15%, and microvilli disappear from interior facing membrane segments. Thus, the first three cell divisions utilize residual membrane liberated by decreasing cytoplasmic volume, and reducing microvilli density on interior facing membranes. Only after the eight-cell stage was a net increase in FM 1-43 fluorescence from the embryo surface detected. Our data suggest that compensatory endocytosis is downregulated after this developmental stage to yield an increase in surface area for cell division.  相似文献   

11.
J Graf  M Rupnik  G Zupancic    R Zorec 《Biophysical journal》1995,68(4):1359-1363
We have used the whole-cell patch-clamp technique to study changes in membrane conductance and membrane capacitance after osmotic swelling in rat hepatocytes. Hypoosmotic solutions induced an instantaneous increase in the volume of patch-clamped cells that was followed by a slow decline reminiscent of regulatory volume decrease as seen in intact cells. These morphological changes were associated with a transient increase in membrane conductance. The rise in conductance was not correlated with changes in capacitance, neither in time after the initiation of cell swelling nor in magnitude. Therefore we conclude that an osmotically induced increase in conductance is probably a result of the activation of existent channels in the plasmalemma and not a result of the fusion of vesicle membrane containing ionic channels.  相似文献   

12.
A network thermodynamic model was developed to provide insights into the nature of isotonic solute-coupled volume flow in "leaky" epithelia, where the transepithelial volume flow is assumed to be primarily through the cellular pathway. The coupled flows of solute and volume at each membrane in this four membrane model are described by the practical phenomenological equations as developed by Kedem & Katchalsky (1958). The model contains one permeable non-electrolyte solute (s) and a fixed amount of an impermeable non-electrolyte (i) inside the cell. The cell is assumed to be capable of volume regulation under the steady-state experimental conditions simulated. A solute-pump, located in the basolateral membrane, uses feedback regulation to adjust Cs in the cell in order to maintain cell volume at or near control levels in all simulations. Model behavior is, in general, very consistent with experimental observations with respect to tonicity and magnitude of volume flow over a wide range of experimental conditions. Examination of the parameter space suggests the following important features when isotonic solute-coupled volume flow moves primarily through the cellular pathway: (1) the apical membrane reflection coefficient must be less than that of the basolateral membrane; (2) the basement membrane reflection coefficient must be small; (3) the apical membrane solute permeability and reflection coefficient are the two most "sensitive" parameters and need to vary in an inverse manner in order to maintain isotonicity when both solute and volume flows increase; and (4) relationships (1) and (3) above imply the need for at least two separate solute pathways in the apical membrane, one that is shared with volume flow and one that is not.  相似文献   

13.
Cell volume regulation in liver   总被引:5,自引:0,他引:5  
The maintenance of liver cell volume in isotonic extracellular fluid requires the continuous supply of energy: sodium is extruded in exchange for potassium by the sodium/potassium ATPase, conductive potassium efflux creates a cell-negative membrane potential, which expelles chloride through conductive pathways. Thus, the various organic substances accumulated within the cell are osmotically counterbalanced in large part by the large difference of chloride concentration across the cell membrane. Impairment of energy supply leads to dissipation of ion gradients, depolarization and cell swelling. However, even in the presence of ouabain the liver cell can extrude ions by furosemide-sensitive transport in intracellular vesicles and subsequent exocytosis. In isotonic extracellular fluid cell swelling may follow an increase in extracellular potassium concentration, which impairs potassium efflux and depolarizes the cell membrane leading to chloride accumulation. Replacement of extracellular chloride with impermeable anions leads to cell shrinkage. During excessive sodium-coupled entry of amino acids and subsequent stimulation of sodium/potassium-ATPase by increase in intracellular sodium activity, an increase in cell volume is blunted by activation of potassium channels, which maintain cell membrane potential and allow for loss of cellular potassium. Cell swelling induced by exposure of liver cells to hypotonic extracellular fluid is followed by regulatory volume decrease (RVD), cell shrinkage induced by reexposure to isotonic perfusate is followed by regulatory volume increase (RVI). Available evidence suggests that RVD is accomplished by activation of potassium channels, hyperpolarization and subsequent extrusion of chloride along with potassium, and that RVI depends on the activation of sodium hydrogen ion exchange with subsequent activation of sodium/potassium-ATPase leading to the respective accumulation of potassium and bicarbonate. In addition, exposure of liver to anisotonic perfusates alters glycogen degradation, glycolysis and probably urea formation, which are enhanced by exposure to hypertonic perfusates and depressed by hypotonic perfusates.  相似文献   

14.
The interaction between the outer hair cell (OHC) lateral wall plasma membrane and the underlying cortical lattice was examined by a morphometric analysis of cell images during cell deformation. Vesiculation of the plasma membrane was produced by micropipette aspiration in control cells and cells exposed to ionic amphipaths that alter membrane mechanics. An increase of total cell and vesicle surface area suggests that the plasma membrane possesses a membrane reservoir. Chlorpromazine (CPZ) decreased the pressure required for vesiculation, whereas salicylate (Sal) had no effect. The time required for vesiculation was decreased by CPZ, indicating that CPZ decreases the energy barrier required for vesiculation. An increase in total volume is observed during micropipette aspiration. A deformation-induced increase in hydraulic conductivity is also seen in response to micropipette-applied fluid jet deformation of the lateral wall. Application of CPZ and/or Sal decreased this strain-induced hydraulic conductivity. The impact of ionic amphipaths on OHC plasma membrane and lateral wall mechanics may contribute to their effects on OHC electromotility and hearing.  相似文献   

15.
We studied the ionic mechanisms underlying the regulatory volume increase of rat hepatocytes in primary culture by use of confocal laser scanning microscopy, conventional and ion-sensitive microelectrodes, cable analysis, microfluorometry, and measurements of 86Rb+ uptake. Increasing osmolarity from 300 to 400 mosm/liter by addition of sucrose decreased cell volumes to 88.6% within 1 min; thereafter, cell volumes increased to 94.1% of control within 10 min, equivalent to a regulatory volume increase (RVI) by 44.5%. This RVI was paralleled by a decrease in cell input resistance and in specific cell membrane resistance to 88 and 60%, respectively. Ion substitution experiments (high K+, low Na+, low Cl-) revealed that these membrane effects are due to an increase in hepatocyte Na+ conductance. During RVI, ouabain-sensitive 86Rb+ uptake was augmented to 141% of control, and cell Na+ and cell K+ increased to 148 and 180%, respectively. The RVI, the increases in Na+ conductance and cell Na+, as well as the activation of Na+/K(+)-ATPase were completely blocked by 10(-5) mol/liter amiloride. At this concentration, amiloride had no effect on osmotically induced cell alkalinization via Na+/H+ exchange. When osmolarity was increased from 220 to 300 mosm/liter (by readdition of sucrose after a preperiod of 15 min in which the cells underwent a regulatory volume decrease, RVD) cell volumes initially decreased to 81.5%; thereafter cell volumes increased to 90.8% of control. This post-RVD-RVI of 55.0% is also mediated by an increase in Na+ conductance. We conclude that rat hepatocytes in confluent primary culture are capable of RVI as well as of post-RVD-RVI. In this system, hypertonic stress leads to a considerable increase in cell membrane Na+ conductance. In concert with conductive Na+ influx, cell K+ is then increased via activation of Na+/K(+)-ATPase. An additional role of Na+/H+ exchange in the volume regulation of rat hepatocytes remains to be defined.  相似文献   

16.
The changes of the muscle fibres volume and resting membrane potential (RMP) were studied following treatment with hypertonic medium and furosemide. The volume changes in hypertonic medium began with cell shrinkage and later have been followed by the volume increase up to normal level during 30-40 minutes. At the same time the medium hypertonicity caused muscle fibres depolarisation. The hypertonic-induced decrease of the RMP was delayed in the furosemide-treated muscle. Besides, furosemide abolished the muscle fibres volume restorative properties in hypertonic medium. It is suggested that the membrane depolarisation and cell volume restoration in hypertonic medium are the resultant effects of intracellular chloride ions level elevation which, in turn, have been evoked by activation of furosemide-sensitive Cl(-)-influx system.  相似文献   

17.
Hyperosmotic shock, induced by raising the NaCl concentration of Dunaliella salina medium from 1.71 to 3.42 M, elicited a rapid decrease of nearly one-third in whole cell volume and in the volume of intracellular organelles. The decrease in cell volume was accompanied by plasmalemma infolding without overall loss of surface area. This contrasts with the dramatic increase in plasmalemma surface area after hypoosmotic shock (Maeda, M., and G. A. Thompson. 1986. J. Cell Biol. 102:289-297). Although plasmalemma surface area remained constant after hyperosmotic shock, the nucleus, chloroplast, and mitochondria lost membrane surface area, apparently through membrane fusion with the endoplasmic reticulum. Thus the endoplasmic reticulum serves as a reservoir for excess membrane during hyperosmotic stress, reversing its role as membrane donor to the same organelles during hypoosmotically induced cell expansion. Hyperosmotic shock also induced rapid changes in phospholipid metabolism. The mass of phosphatidic acid dropped to 56% of control and that of phosphatidylinositol 4,5-bisphosphate rose to 130% of control within 4 min. Further analysis demonstrated that within 10 min after hyperosmotic shock, there was 2.5-fold increase in phosphatidylcholine turnover, a twofold increase in lysophosphatidylcholine mass, a four-fold increase in lysophosphatidate mass, and an elevation in free fatty acids to 124% of control, all observations suggesting activation of phospholipase A. The observed biophysical and biochemical phenomena are likely to be causally interrelated in providing mechanisms for successful accommodation to such severe osmotic extremes.  相似文献   

18.
The relationship between erythrocyte shape and the critical cell volume was investigated. Agents able to increase the critical cell volume induced three main stable shapes of erythrocytes: discocytic, stomatocytic, and echinocytic. The absence of correlation between shape and critical cell volume under isoosmotic conditions suggests that relative differences between the surface areas of the inner and the outer leaflet of the cell membrane do not influence the critical volume of a cell.  相似文献   

19.
The osmotic process plays an important role in controlling the distribution of water across cell membranes and thus the cell volume. A system was designed to detect the volume changes of an endothelial cell monolayer when cells were exposed to media with altered osmolalities. Electrodes housed in a flow chamber measured the resistance of ionic media flowing over a cultured cell layer. Assuming the cell membrane acts as an electrical insulator, volume changes of the cell layer can be calculated from the corresponding changes in chamber resistance. The media used in the experiments had osmolalities in the range 120-630 mmol/kg. When cells were exposed to hypertonic media, there was rapid shrinkage with an approximate 30% reduction in total cell volume for a twofold increase in osmolality. On exposure to hypotonic media, the cells initially swelled with an approximate 20% volume increase for a decrease in osmolality by half. With sustained exposure to low osmolality media, there was a gradual and partial return of cell volume towards isotonic values that started 10 minutes after and was complete within 30 minutes of the osmolality alteration. This finding suggests regulatory volume decrease (RVD); however, no regulatory volume increase (RVI) was observed with the continued exposure to hypertonic media over 45 minutes.  相似文献   

20.
The regulatory decrease in the volume of principal cells of collecting ducts to hypoosmotic shock has been investigated experimentally and using the mathematical modeling. A mathematical model of the response of collecting duct principal cells to hypotonic shock has been constructed on the basis of the experimental time course of changes in cell volume measured by the fluorescent dye Calcein. It was shown that the regulatory decrease in volume under hypotonic conditions occurs via a marked release of osmolytes and is accompanied by a decrease in water permeability of the cell membrane. The mathematical modeling of transmembrane transport processes allowed us to quantitatively estimate the changes in membrane water permeability, which decreased tenfold, from 2 x 10(-1) cm/s to 2 x 10(-2) cm/s. It was also shown that the effective regulatory decrease in the volume of collecting duct principal cells in hypotonic medium results from a significant increase in membrane permeability for K+, Cl-, and organic anions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号