首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Glucoamylase (1,4-alpha-D-glucan glucohydrolase, EC 3.2.1.3) was purified from the culture filtrates of the thermophilic fungus Thermomyces lanuginosus and was established to be homogeneous by a number of criteria. The enzyme was a glycoprotein with an average molecular weight of about 57 000 and a carbohydrate content of 10-12%. The enzyme hydrolysed successive glucose residues from the non-reducing ends of the starch molecule. It did not exhibit any glucosyltransferase activity. The enzyme appeared to hydrolyse maltotriose by the multi-chain mechanism. The enzyme was unable to hydrolyse 1,6-alpha-D-glucosidic linkages of isomaltose and dextran. It was optimally active at 70 degrees C. The enzyme exhibited increase in the Vmax. and decreased in Km values with increasing chain length of the substrate molecule. The enzyme was inhibited by the substrate analogue D-glucono-delta-lactone in a non-competitive manner. The enzyme inhibited remarkable resistance towards chemical and thermal denaturation.  相似文献   

2.
High levels of an extracellular alpha-galactosidase are produced by the thermophilic fungus Thermomyces lanuginosus CBS 395.62/b when grown in submerse culture and induced by sucrose. The enzyme was purified 114-fold from the culture supernatant by (NH(4))(2)SO(4) fractionation, and by chromatographical steps including Sepharose CL-6B gel filtration, DEAE-Sepharose FF anion-exchange, Q-Sepharose FF anion-exchange and Superose 12 gel filtration. The purified enzyme exhibits apparent homogeneity as judged by sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) and iso-electric focusing (IEF). The native molecular weight of the monomeric alpha-galactosidase is 93 kDa with an isoelectric point of 3.9. The enzyme displays a pH and temperature optimum of 5-5.5 and 65 degrees C, respectively. The purified enzyme retains more than 90% of its activity at 45 degrees C in a pH range from 5.5 to 9.0. The enzyme proves to be a glycoprotein and its carbohydrate content is 5.3%. Kinetic parameters were determined for the substrates p-nitrophenyl-alpha-galactopyranoside, raffinose and stachyose and very similar K(m) values of 1.13 mM, 1.61 mM and 1.17 mM were found. Mn(++) ions activates enzyme activity, whereas inhibitory effects can be observed with Ca(++), Zn(++) and Hg(++). Five min incubation at 65 degrees with 10 mM Ag(+) results in complete inactivation of the purified alpha-galactosidase. Amino acid sequence alignment of N-terminal sequence data allows the alpha-galactosidase from Thermomyces lanuginosus to be classified in glycosyl hydrolase family 36.  相似文献   

3.
A thermostable superoxide dismutase (SOD) from a Thermomyces lanuginosus strain (P134) was purified to homogeneity by fractional ammonium sulfate precipitation, ion-exchange chromatography on DEAE-Sepharose, Phenyl-Sepharose hydrophobic interaction chromatography, and gel filtration on Sephacryl S-100. The molecular mass of a single band of the enzyme was estimated to be 22.4 kDa, using sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Using gel filtration on Sephacryl S-100, the molecular mass was estimated to be 89.1 kDa, indicating that this enzyme was composed of four identical subunits of 22.4 kDa each. The SOD was found to be inhibited by NaN3, but not by KCN or H2O2, suggesting that the SOD in T. lanuginosus was of the manganese superoxide dismutase type. The SOD exhibited maximal activity at pH 7.5. The optimum temperature for the activity was 55°C. It was thermostable at 50 and 60°C and retained 55% activity after 60 min at 70°C. The half-life of the SOD at 80°C was approximately 28 min and even retained 20% activity after 20 min at 90°C.  相似文献   

4.
疏绵状嗜热丝孢菌热稳定几丁质酶的纯化及其性质研究   总被引:6,自引:1,他引:6  
采用硫酸铵沉淀、DEAE SepharoseFastFlow阴离子层析、Phenyl Sepharose疏水层析等步骤获得了凝胶电泳均一的疏绵状嗜热丝孢菌 (Thermomyceslanuginosus)几丁质酶。经SDS PAGE和凝胶过滤层析测得纯酶蛋白的分子量在 4 8~ 4 9 .8kD之间。该酶反应的最适温度和最适pH分别为 5 5℃和 4 5 ,在pH4 5条件下 ,该酶在 5 0℃以下稳定 ;6 5℃的半衰期为 2 5min ;70℃保温 2 0min后 ,仍保留 2 4 %的酶活性。其N 端氨基酸序列为AQGYLSVQYFVNWAI。金属离子对几丁质酶的活性影响较大 ,Ca2 、Na 、K 、Ba2 对酶有激活作用 ;Ag 、Fe2 、Cu2 、Hg2 对酶有显著的抑制作用 ;以胶体几丁质为底物的Km 和Vmax值分别为 9 .5 6mg mL和 2 2 . 12 μmol min。抗菌活性显示 ,该酶对供试病原菌有不同程度的抑制作用。  相似文献   

5.
根据Thermomyces lanuginosus热稳定几丁质酶Chit的N-端氨基酸序列和同源保守序列设计简并引物,通过RT-PCR及快速扩增cDNA末端(RACE)的方法,克隆了该几丁质酶的编码基因chit,全长cDNA为1500bp,包含一个由442个氨基酸组成的开放阅读框。该基因已在GenBank中注册,登录号为DQ092332。将成熟肽几丁质酶Chit阅读框与酵母表达载体pPIC9K连接,构建重组质粒pPIC9K/chit,转化毕赤酵母GS115,在甲醇的诱导下,成功地分泌出具生物活性的几丁质酶,诱导6d后酶活性达2.261U/mL,酶蛋白表达量为0.36mg/mL。该酶的最适反应温度和pH值分别为60℃和5.5,该酶在50℃以下稳定;65℃的半衰期为40min。  相似文献   

6.
An extracellular alpha-galactosidase was purified to electrophoretic homogeneity from a locust bean gum-spent culture fluid of a mannanolytic strain of the thermophilic fungus Thermomyces lanuginosus. Molecular mass of the enzyme is 57 kDa. The pure enzyme which has a glycoprotein nature, afforded several forms on IEF, indicating its microheterogeneity. Isoelectric point of the major form was 5.2. Enzyme is the most active against aryl alpha-D-galactosides but efficiently hydrolyzed alpha-glycosidically linked non-reducing terminal galactopyranosyl residues occurring in natural substrates such as melibiose, raffinose, stachyose, and fragments of galactomannan. In addition, the enzyme is able to catalyze efficient degalactosylation of polymeric galactomannans leading to precipitation of the polymers. Stereochemical course of hydrolysis of two substrates, 4-nitrophenyl alpha-galactopyranoside and galactosyl(1)mannotriose, followed by (1)H NMR spectroscopy, pointed out the alpha-anomer of D-galactose was the primary product of hydrolysis from which the beta-anomer was formed by mutarotation. Hence the enzyme is a retaining glycosyl hydrolase. In accord with its retaining character the enzyme catalyzed transgalactosylation from 4-nitrophenyl alpha-galactopyranoside as a glycosyl donor. Amino acid sequence alignment of N-terminal and two internal sequences suggested that the enzyme is a member of family 27 of glycosyl hydrolases.  相似文献   

7.
A polygalacturonase was purified from the thermophilic fungus, Thermomyces lanuginosus to apparent homogeneity by ultrafiltration, acetone precipitation and ion-exchange chromatography. The enzyme was maximally active at pH 5.5 and 60 °C. The apparent KM with potassium pectate was 0.67 mg/ml and the Vmax was 7.2 × 105 mol/min/mg protein. The apparent molecular weight of the enzyme was 59 kDa and it contained approximately 10% carbohydrate. The enzyme was completely stable at room temperature (32 ± 3 °C) and retained about 50% activity at 50 °C for 6 h. The zymogram of the purified enzyme revealed two activity bands, one of which was a major one. Polyclonal antibodies raised against the enzyme did not show any immunological relatedness with other mesophilic polygalacturonases.  相似文献   

8.
9.
Maximal pectinolytic activity was detected in the culture filtrates of Thermomyces lanuginosus when grown in medium containing pectin and sucrose. The pectinolytic enzyme system was optimally active at pH 5.5 and at 70°C with potassium pectate and at pH 4.5 at 50°C with pectin as substrates. Zymogram analyses showed two activity bands with pectin and three with potassium pectate.  相似文献   

10.
Hygromycin-resistant stable transformants of the thermophilic fungus, Thermomyces lanuginosus, were obtained by electroporation of germinating aleurospores with a plasmid pMP6, coding for hygromycin resistance. Southern hybridization analysis revealed that the gene is integrated into the chromosome. The hygromycin-resistant transformants were characterized for morphological changes, growth response towards the presence of antagonistic metabolites (hygromycin, 2-deoxy-D-glucose, cylcoheximide, benlate and acriflavine) on plates and enzyme production (amylases, pectinases and xylanase) in shake flask cultures. A hygromycin-resistant transformant hyg 33 was characterized as non-sporulating, 2-deoxy-D-glucose-resistant, acriflavine-sensitive and xylanase hypo-producer and is being used as parental strain for breeding strains through protoplast fusion.  相似文献   

11.
The motor domain regions of three novel members of the kinesin superfamily TLKIF1, TLKIFC, and TLBIMC were identified in a thermophilic fungus Thermomyces lanuginosus. Based on sequence similarity, they were classified as members of the known kinesin families Unc104/KIF1, KAR3, and BIMC. TLKIF1 was subsequently expressed in Escherichia coli. The expression level was high, and the protein was mostly soluble, easy to purify, and enzymatically active. TLKIF1 is a monomeric kinesin motor, which in a gliding motility assay displays a robust plus-directed microtubule movement up to 2 microm/s. The discovery of TLKIF1 also demonstrates that a family of kinesin motors not previously found in fungi may in fact be used in this group of organisms.  相似文献   

12.
The glucoamylase from the thermophilic fungus Thermomyces lanuginosus has a molecular weight of 66 kDa and was characterized with isoelectric point, pH and temperature optimum of 3.8-4.0, 5.0 and 70 degrees C, respectively. In addition, the activation energy is 60.4 kJ/mol, Km is 3.5 mM and kcat is 25.3 s(-1). The glucoamylase was partially sequenced on the protein level, and the complete glucoamylase gene including its promoter (but excluding its terminator region) was cloned and sequenced. The glucoamylase protein comprises 617 amino acid residues and shows 60% identity with the glucoamylase from the thermophilic fungus Talaromyces emersonii. cDNA encoding Thermomyces lanuginosus glucoamylase was expression cloned into Pichia pastoris, producing approximately 7.4 U/ml. It was concluded that alternative mRNA splicing as it might occur in Aspergillus niger glucoamylase is not responsible for the occurrence of different glucoamylase isoforms in Thermomyces lanuginosus.  相似文献   

13.
14.
Based on the conserved amino acid sequence (DLKPEN) of serine-threonine protein kinase from several fungi, a degenerate primer was designed and synthesized. Total RNA was isolated from the thermophilic fungus Thermomyces lanuginosus. Using RACE-PCR, full-length cDNA of a putative serine-threonine protein kinase gene was cloned from T. lanuginosus. The full-length cDNA of T. lanuginosus protein kinase was 2551 bp and contained an 1806 bp open reading frame encoding a putative protein kinase precursor of 601 amino acid residues. Sequencing analysis showed that the cloned cDNA of T. lanuginosus had consensus protein kinase sequences. Conservative amino acid subdomains which most serine-threonine kinases contain can be found in the deduced amino acid sequence of T. lanuginosus putative protein kinase. Comparison results showed that the deduced amino acid sequence of T. lanuginosus putative protein kinase was highly homologous to that of Neurospora crassa dis1-suppressing protein kinase Dsk1. The putative protein kinase contained three arginine/serine-rich (SR) regions and two transmembrane domains. These showed that it might be a novel putative serine-threonine protein kinase.  相似文献   

15.
An invertase from the thermophilic fungus, Thermomyces lanuginosus was immobilized on phenyl-Sepharose and its properties were studied. Between the soluble and immobilized forms of the invertase, there were not much difference in their optimum pH, K M and V max for sucrose. In contrast, the K M and V max for raffinose changed significantly. The optimum temperature for the immobilized invertase was lower by 10 C. The immobilized invertase showed remarkable stability at 50 C and was less sensitive to inhibition by metal ions. There was no leaching of the enzyme for at least a month when stored in the refrigerator. The method is novel and specific for the thermophilic invertase as a mesophilic invertase (from yeast) did not bind to phenyl-Sepharose.  相似文献   

16.
The production of extracellular enzymes by the thermophilic fungus Thermomyces lanuginosus was studied in chemostat cultures at a dilution rate of 0.08 h–1 in relation to variation in the ammonium concentration in the feed medium. Under steady state conditions, three growth regimes were recognised and the production of several extracellular enzymes from T. lanuginosus was recorded under different nutrient limitations ranging from nitrogen limitation to carbon/energy limitation. The range and the production of carbohydrate hydrolysing enzymes and lipase increased from Regime I (NH4Cl 600 mg l–1) to Regime III (NH4CI 1200 mg l–1), whereas production of protease was highest in Regime II (600 mg l–1 < NH4Cl <1200 mg l–1).  相似文献   

17.
A serine alkaline protease (EC.3.4.21) was isolated, purified and characterized from culture filtrate of the thermophilic fungus Thermomyces lanuginosus Tsiklinsky. Fructose (1.5 %) and gelatin (0.5 %) proved to be the best carbon and nitrogen sources, giving a maximum enzyme yield of 9.2 U/mL. Dates waste was utilized as a sole organic source to improve enzyme productivity, and the yield was calculated to be 11.56 U/mL. This yield was expressed also as 231.2 U/g of assimilated waste. The alkaline protease produced was precipitated by iso-propanol and further purified by gel filtration through Sephadex G-100 and ion exchange column chromatography on diethyl amino ethyl (DEAE)-cellulose with a yield of 30.12 % and 13.87-fold purification. The enzyme acted optimally at pH 9 and 60 °C and had good stability at alkaline pH and high temperatures. The enzyme possessed a high degree of thermostability and retained full activity even at the end of 1 h of incubation at 60 °C. Michaelis–Menten constant (K m), maximal reaction velocity (V max) and turnover number (K cat) of the purified enzyme on gelatin as a substrate were calculated to be 4.0 mg/mL, 18.5 U/mL and 1.8 s?1, respectively. The best enzyme activators were K+, Ca2+ and Mn2, respectively, while phenylmethylsulfonyl fluoride (PMSF) was the strongest inhibitory agent, thus suggesting that the enzyme is a serine type protease. The enzyme is a glycoprotein with molecular mass of 33 kDa as determined by SDS-PAGE. It retained full activity after 15 min incubation at 60 °C in the presence of the detergent Ariel, thus indicating its suitability for application in the detergent industry.  相似文献   

18.
In order to investigate the role of glutathione in response to salt stress in the thermophilic fungus, Thermomyces lanuginosus, the biomass and the intracellular pool of protein and the glutathione + glutathione disulphid (GSH + GSSG) was measured for four days in a medium with NaCl or KCl added and in the basal medium. Due to the osmotic and ionic stress imposed by the salts, the growth of T. lanuginosus was delayed and the inhibitory effect of KCl exceeded that of NaCl. Glutathione seemed to be involved in the response of T. lanuginosus towards high concentrations of salt, as the level of stress was negatively correlated with the amount of total glutathione. Salt stress did not result in an increased intracellular protein production. GSH accumulated while nutrients were abundant and were subsequently degraded later, suggesting that nutrients stored in GSH are used when the medium is depleted.  相似文献   

19.
Thermomyces lanuginosus was subjected to three cycles of mutagenesis (UV/NTG) and a selection procedure to develop amylase-hyperproducing, catabolite-repression-resistant and partially constitutive strains. One of the selected derepressed mutant strain III51, produced ∼7- and 3-fold higher specific activity of α-amylase (190 U/mg protein) and glucoamylase (105 U/mg protein), respectively, compared to a wild-type parental strain. Further, the effect of production parameters on mutant strain III51 was studied using a Box–Behnken design. The regression models computed showed significantly high R 2 values of 96 and 97% for α-amylase and glucoamylase activities, respectively, indicating that they are appropriate for predicting relationships between corn flour, soybean meal and pH with α-amylase and glucoamylase production. Journal of Industrial Microbiology & Biotechnology (2002) 29, 70–74 doi:10.1038/sj.jim.7000270 Received 05 July 2001/ Accepted in revised form 16 April 2002  相似文献   

20.
The incorporation of sucrose into the thermophilic fungus,Thermomyces lanuginosus, occurred only in mycelia previously exposed to sucrose or raffinose. Sucrose uptake and invertase were inducible. Both activities appeared in sucrose-induced mycelia at about the same time. Both activities declined almost simultaneously following the exhaustion of sucrose in the medium. The sucrose-induced uptake system was specific for -fructofuranosides as revealed by competition with various sugars. The induction of sucrose uptake system was blocked by cycloheximide, showing that it was dependent on new protein synthesis. Transport of sucrose did not seem to be dependent on ATP. Rather, uptake of this sugar seemed to be driven by a proton gradient across the plasma membrane. The uptake system showed Michaelis-Menten kinetics.Abbreviations FCCP carbonylcyanide p-trifluoromethylphenyl hydrazone - 2,4-DNP 2,4-dinitrophenol  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号