首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The purine analog, 2-chloro-2'-deoxyadenosine triphosphate (CldATP), was incorporated enzymatically in place of dATP into the minus strand of M13mp18 duplex DNA. Its effect on protein-DNA interactions was assessed by determining the amount of DNA cleavage by type II restriction endonucleases. Substitution of chloroadenine (CIAde) for adenine (Ade) in DNA appreciably decreased the amount and rate of DNA cleavage of the minus strand when the analog was situated within the appropriate endonuclease recognition site. CIAde residues flanking a restriction site had variable effects. SmaI cleaved both CIAde-containing and control substrates with equal efficiency. NarI, however, was stimulated 1.5-fold by the presence of CIAde outside its recognition site. The effects of analog incorporation on restriction enzyme cleavage of an opposing unsubstituted strand of duplex DNA was examined by enzymatically incorporating CIdATP into the complementary minus strand of a 36-base oligonucleotide. Endonucleolytic cleavage of both plus and minus strands was reduced on 36-mers containing CIAde residues located within only the minus strand. These data suggest that CIAde residues incorporated into a single DNA strand may have an appreciable effect on DNA-protein interactions that involve one or both strands of duplex DNA.  相似文献   

2.
Clustered DNA damages are defined as two or more closely located DNA damage lesions that may be present within a few helical turns of the DNA double strand. These damages are potential signatures of ionizing radiation and are often found to be repair resistant. Types of damaged lesions frequently found inside clustered DNA damage sites include oxidized bases, abasic sites, nucleotide dimers, strand breaks or their complex combinations. In this study, we used a bistranded two-lesion abasic cluster DNA damage model to access the repair process of DNA in condensate form.Oligomer DNA duplexes (47 bp) were designed to have two deoxyuridine in the middle of the sequences, three bases apart in opposite strands. The deoxyuridine residues were converted into abasic sites by treatment with UDG enzyme creating an abasic clustered damage site in a precise position in each of the single strand of the DNA duplex. This oligomer duplex having compatible cohesive ends was ligated to pUC19 plasmid, linearized with HindIII restriction endonuclease. The plasmid–oligomer conjugate was transformed into condensates by treating them with spermidine. The efficiency of strand cleavage action of ApeI enzyme on the abasic sites was determined by denaturing PAGE after timed incubation of the oligomer duplex and the oligomer–plasmid conjugate in presence and absence of spermidine. The efficiency of double strand breaks was determined similarly by native PAGE. Quantitative gel analysis revealed that rate of abasic site cleavage is reduced in the DNA condensates as compared to the oligomer DNA duplex or the linear ligated oligomer–plasmid conjugates. Generation of double strand break is significantly reduced also, suggesting that their creation is not proportionate to the number of abasic sites cleaved in the condensate model. All these suggest that the ApeI enzyme have difficulty to access the abasic sites located deep into the condensates leading to repair refractivity of the damages. In addition, we found that presence of a polyamine such as spermidine has no notable effect in the incision activity of ApeI enzyme in linear oligomer DNA duplexes in our experimental concentration.  相似文献   

3.
A unique reaction for type II DNA topoisomerase is its cleavage of a pair of DNA strands in concert. We show however, that in a reaction mixture containing a molar excess of EDTA over Mg2+, or when Mg2+ is substituted by Ca2+, Mn2+, or Co2+, the enzyme cleaves only one rather than both strands. These results suggest that the divalent cations may play an important role in coordinating the two subunits of DNA topoisomerase II during the strand cleavage reaction. The single strand and the double strand cleavage reactions are similar in the following aspects: both require the addition of a protein denaturant, can be reversed by low temperature or high salt, and a topoisomerase II molecule is attached covalently to the 5' phosphoryl end of each broken DNA strand. Furthermore, the single strand cleavage sites share a similar sequence preference with double strand cleavage sites. There is, however, a strand bias for the single strand cleavage reaction. We show also that under single strand cleavage conditions, topoisomerase II still possesses a low level of double strand passage activity: it can introduce topological knots into both covalently closed or nicked DNA rings, and change the linking number of a plasmid DNA by steps of two. The implication of this observation on the sequential cleavage of the two strands of the DNA duplex during the normal DNA double strand passage process catalyzed by type II DNA topoisomerases is discussed.  相似文献   

4.
Aberration of eukaryotic topoisomerase I catalysis leads to potentially recombinogenic pathways by allowing the joining of heterologous DNA strands. Recently, a new ligation pathway (flap ligation) was presented for vaccinia virus topoisomerase I, in which blunt end cleavage complexes ligate the recessed end of duplex acceptors having a single-stranded 3'-tail. This reaction was suggested to play an important role in the repair of topoisomerase I-induced DNA double-strand breaks. Here, we characterize flap ligation mediated by human topoisomerase I. We demonstrate that cleavage complexes containing the enzyme at a blunt end allow invasion of a 3'-acceptor tail matching the scissile strand of the donor, which facilitates ligation of the recessed 5'-hydroxyl end. However, the reaction was strictly dependent on the length of double-stranded DNA of the donor complexes, and longer stretches of base-pairing inhibited strand invasion. The stabilization of the DNA helix was most probably provided by the covalently bound enzyme itself, since deleting the N-terminal domain of human topoisomerase I stimulated flap ligation. We suggest that stabilization of the DNA duplex upon enzyme binding may play an important role during normal topoisomerase I catalysis by preventing undesired strand transfer reactions. For flap ligation to function in a repair pathway, factors other than topoisomerase I, such as helicases, would be necessary to unwind the DNA duplex and allow strand invasion.  相似文献   

5.
The minimal DNA duplex requirements for topoisomerase I-mediated cleavage at a specific binding sequence were determined by analyzing the interaction of the enzyme with sets of DNA substrates varying successively by single nucleotides at the 5'- or 3' end of either strand. Topoisomerase I cleavage experiments showed a minimal region of nine nucleotides on the scissile strand and five nucleotides on the noncleaved strand. On the scissile strand, seven of the nine nucleotides were situated upstream to the cleavage site, while all five nucleotides required on the non-cleaved strand were located to this side. The results suggested that topoisomerase I bound tightly to this region, stabilizing the DNA duplex extensively. On minimal substrates which were partially single-stranded downstream to the cleavage site, cleavage was suicidal, that is, the enzyme was able to cleave the substrates, but unable to perform the final religation.  相似文献   

6.
Vaccinia virus DNA topoisomerase I forms a 3'-phosphoryl intermediate with duplex DNAs containing the conserved binding/cleavage motif 5'CCCTT decreases. Covalently bound enzyme is capable of transferring the incised DNA strand to a heterologous DNA acceptor containing a 5'OH terminus. Both intramolecular and intermolecular religation reactions are catalyzed. Intramolecular strand transfer occurs to the noncleaved strand of the DNA duplex and results in formation of a hairpin loop. Intermolecular religation to an exogenous DNA strand is favored over hairpin formation and requires the potential for base pairing between the acceptor and the noncleaved strand of the donor complex. As few as 4 potential base pairs are sufficient to support intermolecular transfer. These results in vitro are consistent with the proposal that vaccinia topoisomerase can catalyze sequence-specific strand transfer during genetic recombination in vivo (Shuman, S. (1991) Proc. Natl. Acad. Sci. U.S.A. 88, 10104-10108.).  相似文献   

7.
Phi29 DNA polymerase is a small DNA-dependent DNA polymerase that belongs to eukaryotic B-type DNA polymerases. Despite the small size, the polymerase is a multifunctional proofreading-proficient enzyme. It catalyzes two synthetic reactions (polymerization and deoxynucleotidylation of Phi29 terminal protein) and possesses two degradative activities (pyrophosphorolytic and 3'-->5' DNA exonucleolytic activities). Here we report that Phi29 DNA polymerase exonucleolyticaly degrades ssRNA. The RNase activity acts in a 3' to 5' polarity. Alanine replacements in conserved exonucleolytic site (D12A/D66A) inactivated RNase activity of the enzyme, suggesting that a single active site is responsible for cleavage of both substrates: DNA and RNA. However, the efficiency of RNA hydrolysis is approximately 10-fold lower than for DNA. Phi29 DNA polymerase is widely used in rolling circle amplification (RCA) experiments. We demonstrate that exoribonuclease activity of the enzyme can be used for the target RNA conversion into a primer for RCA, thus expanding application potential of this multifunctional enzyme and opening new opportunities for RNA detection.  相似文献   

8.
A new method for hybridization analysis of nucleic acids is proposed on the basis of the ability of site-specific nickases to cleave only one DNA strand. The method is based on the use of a labeled oligonucleotide with the recognition site of the nickase hybridized with the target (DNA or RNA) at an optimal temperature of the enzyme (55°C). The two shorter oligonucleotides formed after the cleavage with the nickase do not complex with the target. Thus, a multiple cleavage of the labeled oligonucleotide takes place on one target molecule. The cleavage of the nucleotide is recorded either by polyacrylamide gel electrophoresis (when a radioactive labeled oligonucleotide is used) or by fluorescence measurements (if the oligonucleotide has the structure of a molecular beacon). The new method was tested on nickase BspD6I and a radioactive oligonucleotide complementary to the polylinker region of the viral DNA strand in bacteriophage M13mp19. Unfortunately, nickase BspD6I does not cleave DNA in the RNA–DNA duplexes and therefore cannot be used for detection of RNA targets.  相似文献   

9.
We have characterized cloned His-tag human RNase H1. The activity of the enzyme exhibited a bell-shaped response to divalent cations and pH. The optimum conditions for catalysis consisted of 1 mM Mg(2+) and pH 7-8. In the presence of Mg(2+), Mn(2+) was inhibitory. Human RNase H1 shares many enzymatic properties with Escherichia coli RNase H1. The human enzyme cleaves RNA in a DNA-RNA duplex resulting in products with 5'-phosphate and 3'-hydroxy termini, can cleave overhanging single strand RNA adjacent to a DNA-RNA duplex, and is unable to cleave substrates in which either the RNA or DNA strand has 2' modifications at the cleavage site. Human RNase H1 binds selectively to "A-form"-type duplexes with approximately 10-20-fold greater affinity than that observed for E. coli RNase H1. The human enzyme displays a greater initial rate of cleavage of a heteroduplex-containing RNA-phosphorothioate DNA than an RNA-DNA duplex. Unlike the E. coli enzyme, human RNase H1 displays a strong positional preference for cleavage, i.e. it cleaves between 8 and 12 nucleotides from the 5'-RNA-3'-DNA terminus of the duplex. Within the preferred cleavage site, the enzyme displays modest sequence preference with GU being a preferred dinucleotide. The enzyme is inhibited by single-strand phosphorothioate oligonucleotides and displays no evidence of processivity. The minimum RNA-DNA duplex length that supports cleavage is 6 base pairs, and the minimum RNA-DNA "gap size" that supports cleavage is 5 base pairs.  相似文献   

10.
Vaccinia DNA topoisomerase (vTopo) catalyzes highly specific nucleophilic substitution at a single phosphodiester linkage in the pentapyrimidine recognition sequence 5'-(C/T)+5C4+C3+T+2T+1p \N-1 using an active-site tyrosine nucleophile, thereby expelling a 5' hydroxyl leaving group of the DNA. Here, we report the energetic effects of subtle modifications to the major-groove hydrogen-bond donor and acceptor groups of the 3'-GGGAA-5' consensus sequence of the nonscissile strand in the context of duplexes in which the scissile strand length was progressively shortened. We find that the major-groove substitutions become energetically more damaging as the scissile strand is shortened from 32 to 24 and 18 nucleotides, indicating that enzyme interactions with the duplex region present in the 32-mer but not the 24- or 18-mer weaken specific interactions with the DNA major groove. Regardless of strand length, the destabilizing effects of the major-groove substitutions increase as the reaction proceeds from the Michaelis complex to the transition state for DNA cleavage and, finally, to the phosphotyrosine-DNA covalent complex. These length-dependent anticooperative interactions involving the DNA major groove and duplex regions 3' to the cleavage site indicate that the major-groove binding energy is fully realized late during the reaction for full-length substrates but that smaller more flexible duplex substrates feel these interactions earlier along the reaction coordinate. Such anticooperative binding interactions may play a role in strand exchange and supercoil unwinding activities of the enzyme.  相似文献   

11.
Eukaryotic DNA topoisomerase II is a dimeric nuclear enzyme essential for DNA metabolism and chromosome dynamics. It changes the topology of DNA by coupling binding and hydrolysis of two ATP molecules to the transport of one DNA duplex through a temporary break introduced in another. During this process the structurally and functionally complex enzyme passes through a cascade of conformational changes, which requires intra- and intersubunit communication. To study the importance of ATP binding and hydrolysis in relation to DNA strand transfer, we have purified and characterized a human topoisomerase II alpha heterodimer with only one ATP binding site. The heterodimer was able to relax supercoiled DNA, although less efficiently than the wild type enzyme. It furthermore possessed a functional N-terminal clamp and was sensitive to ICRF-187. This demonstrates that human topoisomerase II alpha can pass through all the conformations required for DNA strand passage and enzyme resetting with binding and hydrolysis of only one ATP. However, the heterodimer lacked the normal stimulatory effect of DNA on ATP binding and hydrolysis as well as the stimulatory effect of ATP on DNA cleavage. The results can be explained in a model, where efficient catalysis requires an extensive communication between the second ATP and the DNA segment to be cleaved.  相似文献   

12.
Specificity of the S1 nuclease from Aspergillus oryzae.   总被引:19,自引:0,他引:19  
Conditions are described for digesting single-stranded DNA by S1 nuclease without introducing breaks in double-stranded DNA. The enzyme is inhibited by low concentrations of various compounds of phosphate. Under certain conditions S1 nuclease cleaves the strand opposite a nick in bacteriophage T5 DNA; under other conditions, the enzyme cleaves a loop in one strand of heteroduplex lambdaDNA while leaving the opposite strand intact. S1 nuclease makes many single strand breaks in ultraviolet-irradiated duplex lambdaDNA. Superhelical DNA of phiX174 (Form I) is converted first to a relaxed circular molecule (Form II), and then to a linear molecule (Form III) by cleavage at one site per molecule. Since the cleavage occurs at many sites in the population of molecules, the partially single-stranded regions in phiX174 superhelical DNA are not determined by specific nucleotide sequences.  相似文献   

13.
Topoisomerase III from the hyperthermophilic archaeon Sulfolobus solfataricus (Sso topo III) is optimally active in DNA relaxation at 75 degrees C. We report here that Sso topo III-catalysed DNA cleavage and religation differed significantly in temperature dependence: the enzyme was most active in cleaving ssDNA containing a cleavage site at 25-50 degrees C, but was efficient in rejoining the cleaved DNA strand only at higher temperatures (e.g. > or = 45 degrees C). The failure of Sso topo III to rejoin the cleaved DNA strand efficiently appeared to be responsible for the inability of the enzyme to relax negatively supercoiled DNA at low temperature (e.g. 25 degrees C). Intriguingly, Sso topo III facilitated DNA annealing although it showed higher affinity for ssDNA than for dsDNA. Religation of the DNA strand cleaved by Sso topo III was drastically enhanced when the DNA was allowed to anneal to a complementary non-cleaved oligonucleotide, presumably as a result of destabilization of the interaction between the enzyme and the cleaved strand through the formation of duplex DNA. A region in the non-cleaved strand corresponding to a sequence containing six bases on the 5' side and two bases on the 3' side of the cleavage site in the cleaved strand was crucial to the annealing-promoted religation. However, the annealing-promoted religation was relatively insensitive to mismatches in this region and the region conserved for oligonucleotide cleavage, except for that at the 5' end of the broken strand. These results suggest that Sso topo III is well suited for a role in DNA rewinding, whether it leads to homoduplex or heteroduplex formation.  相似文献   

14.
Gu F  Xi Z  Goldberg IH 《Biochemistry》2000,39(16):4881-4891
Bulge structures in nucleic acids are of general biological significance and are potential targets for therapeutic drugs. It has been shown in a previous study that thiol-activated neocarzinostatin chromophore is able to cleave duplex DNA selectively at a position opposite a single unpaired cytosine or thymine base on the 3' side. In this work, we studied in greater detail the nature of this type of cleavage and the basis for the selectivity of the bulge site cleavage over the usual strand cleavage at a T site in the duplex region by using duplexes containing an internal control and a bulge, which is composed of different types and number of bases. Experimental results indicated that the bulge-induced cleavage is initiated by 5' hydrogen abstraction and is greatly affected by the base composition of the bulge. A single-base bulge, especially when containing a purine, yields higher efficiency and greater selectivity for the bulge-induced cleavage. In particular, a single adenine base gives rise to the highest cleavage yield and provides over 20 times greater selectivity for cleavage at the bulge site compared with the internal control site in duplexes. The binding dissociation constants of postactivated drug for a stem-loop structure containing a one- or two-base bulge in the stem, measured by fluorescence quenching, show that the binding is about 3-4 times stronger for bulge-containing duplexes than for perfect hairpin duplexes. For RNA.DNA hybrid duplexes, where the DNA is the target strand and the RNA is the bulge-containing strand, bulge-induced cleavage was observed, although at low yield. On the other hand, when RNA is the nonbulge strand, no bulge-induced cleavage was found. When the reaction is performed in the absence of oxygen, the major product is a covalent adduct, and it is at the same location as the cleavage site under aerobic conditions.  相似文献   

15.
The ability of a eukaryotic DNA topoisomerase I to catalyze DNA rearrangements was examined in vitro using defined substrates and purified enzyme. Site-specific DNA strand cleavage by vaccinia topoisomerase I across from a nick generated double-strand breaks that could be religated to a heterologous blunt-ended duplex DNA regardless of the sequence of the acceptor molecule. Topoisomerase bound covalently at internal positions could religate the bound strand to an incoming acceptor provided that DNA molecule had sequence homology to the region 3' of the scissile bond. These end-joining reactions suggest two potential modes of topoisomerase-mediated recombination that differ in their requirements for DNA homology.  相似文献   

16.
Endonucleases that generate double-strand breaks in DNA often possess two identical subunits related by rotational symmetry, arranged so that the active sites from each subunit act on opposite DNA strands. In contrast to many endonucleases, Type IIP restriction enzyme BcnI, which recognizes the pseudopalindromic sequence 5'-CCSGG-3' (where S stands for C or G) and cuts both DNA strands after the second C, is a monomer and possesses a single catalytic center. We show here that to generate a double-strand break BcnI nicks one DNA strand, switches its orientation on DNA to match the polarity of the second strand and then cuts the phosphodiester bond on the second DNA strand. Surprisingly, we find that an enzyme flip required for the second DNA strand cleavage occurs without an excursion into bulk solution, as the same BcnI molecule acts processively on both DNA strands. We provide evidence that after cleavage of the first DNA strand, BcnI remains associated with the nicked intermediate and relocates to the opposite strand by a short range diffusive hopping on DNA.  相似文献   

17.
DNA polymerase and DNA helicase are essential components of DNA replication. The helicase unwinds duplex DNA to provide single-stranded templates for DNA synthesis by the DNA polymerase. In bacteriophage T7, movement of either the DNA helicase or the DNA polymerase alone terminates upon encountering a nick in duplex DNA. Using a minicircular DNA, we show that the helicase · polymerase complex can bypass a nick, albeit at reduced efficiency of 7%, on the non-template strand to continue rolling circle DNA synthesis. A gap in the non-template strand cannot be bypassed. The efficiency of bypass synthesis depends on the DNA sequence downstream of the nick. A nick on the template strand cannot be bypassed. Addition of T7 single-stranded DNA-binding protein to the complex stimulates nick bypass 2-fold. We propose that the association of helicase with the polymerase prevents dissociation of the helicase upon encountering a nick, allowing the helicase to continue unwinding of the duplex downstream of the nick.  相似文献   

18.
We have used gel retardation analysis to show that human DNA topoisomerase IIbeta can bind a 40 bp linear duplex containing a single DNA topoisomerase IIbeta cleavage site. Furthermore, we demonstrate for the first time that human DNA topoisomerase IIbeta binds to four-way junction DNA. This supports previous suggestions that topoisomerase II may be targeted to supercoiled DNA through the recognition of DNA cruciforms, helix-helix crossovers and hairpins. DNA topoisomerase IIbeta had a 4-fold higher affinity for the four-way junction than for the linear duplex, as demonstrated by protein titration and competition analysis. Furthermore, the DNA topoisomerase IIbeta:four-way junction complex was significantly more salt stable than the complex with linear DNA. The four-way junction contained potential topoisomerase IIbeta cleavage sites straddling the points of strand exchange, and indeed, topoisomerase IIbeta was able to cleave three of these four predicted sites. This indicates that topoiso-merase IIbeta can bind to the centre of the junction. Topoisomerase II has to bind both the transported and the gated DNA helices prior to strand passage, and it is possible that both helices are provided by the four-way junction in this case. The stable complex of DNA topoisomerase IIbeta with four-way junction DNA may provide an ideal substrate for further studies into the mechanism of substrate recognition and binding by DNA topoisomerase II.  相似文献   

19.
We describe a new approach for labeling of unique sequences within dsDNA under nondenaturing conditions. The method is based on the site-specific formation of vicinal nicks, which are created by nicking endonucleases (NEases) at specified DNA sites on the same strand within dsDNA. The oligomeric segment flanked by both nicks is then substituted, in a strand displacement reaction, by an oligonucleotide probe that becomes covalently attached to the target site upon subsequent ligation. Monitoring probe hybridization and ligation reactions by electrophoretic mobility retardation assay, we show that selected target sites can be quantitatively labeled with excellent sequence specificity. In these experiments, predominantly probes carrying a target-independent 3′ terminal sequence were employed. At target labeling, thus a branched DNA structure known as 3′-flap DNA is obtained. The single-stranded terminus in 3′-flap DNA is then utilized to prime the replication of an externally supplied ssDNA circle in a rolling circle amplification (RCA) reaction. In model experiments with samples comprised of genomic λ-DNA and human herpes virus 6 type B (HHV-6B) DNA, we have used our labeling method in combination with surface RCA as reporter system to achieve both high sequence specificity of dsDNA targeting and high sensitivity of detection. The method can find applications in sensitive and specific detection of viral duplex DNA.  相似文献   

20.
Minimal DNA requirement for topoisomerase II-mediated cleavage in vitro   总被引:2,自引:0,他引:2  
The minimal DNA requirement for topoisomerase II-mediated DNA cleavage in vitro was determined by analyzing the interaction of the enzyme with sets of DNA substrates varying successively by single bases at the 5'- or 3'-end of either strand. A 16-base pair double-stranded region was established as the minimal duplex region required for topoisomerase II cleavage activity. The region was located symmetrically around the 4-base staggered cleavage site. Topoisomerase II-mediated cleavage within the 16-base pair core duplex, however, required single-stranded regions flanking the duplex to either the 5'- or 3'-sides, or an extension at both ends of the duplex with 1 or more base pairs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号