首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
It has been concluded in the preceding papers (Egelhaaf, 1985a, b) that two functional classes of output elements of the visual ganglia might be involved in figure-ground discrimination by relative motion in the fly: The Horizontal Cells which respond best to the motion of large textured patterns and the FD-cells which are most sensitive to small moving objects. In this paper it is studied by computer simulations (1) in what way the input circuitry of the FD-cells might be organized and (2) the role the FD-cells play in figure-ground discrimination. The characteristic functional properties of the FD-cells can be explained by various alternative model networks. In all models the main input to the FD-cells is formed by two retinotopic arrays of small-field elementary movement detectors, responding to either front-to-back or back-to-front motion. According to their preferred direction of motion the FD-cells are excited by one of these movement detector classes and inhibited by the other. The synaptic transmission between the movement detectors and the FD-cells is assumed to be non-linear. It is a common property of all these model circuits that the inhibition of the FD-cells induced by large-field motion is mediated by pool cells which cover altogether the entire horizontal extent of the visual field of both eyes. These pool cells affect the response of the FD-cells either by pre- or postsynaptic shunting inhibition. Depending on the FD-cell under consideration, the pool cells are directionally selective for motion or sensitive to motion in either horizontal direction. The role the FD-cells and the Horizontal Cells are likely to play in figure-ground discrimination can be demonstrated by computer simulations of a composite neuronal model consisting of the model circuits for these cell types. According to their divergent spatial integration properties they perform different tasks in figure-ground discrimination: Whereas the Horizontal Cells mainly mediate information on wide-field motion, the FD-cells are selectively tuned to efficient detection of relatively small targets. Both cell classes together appear to be sufficient to account for figure-ground discrimination as it has been shown by analysis at the behavioural level.  相似文献   

2.
A fly can discriminate an object (figure) from its background on the basis of motion information alone. This information processing task has been analysed, so far, mainly in behavioural studies but also in electrophysiological experiments (Reichardt et al., 1983). The present study represents a further attempt to bridge the gap between the behavioural and the neuronal level. It is based on behavioural and electrophysiological experiments as well as on computer simulations. The characteristic properties of figureground discrimination behaviour impose specific constraints on the spatial integration properties of the output cells of the underlying neuronal network, the heterolateral interactions in their input circuitry, as well as on the range of variability of their response. These constraints are derived partly from previous behavioural studies (Reichardt et al., 1983), partly, however, from behavioural response characteristics which have not been addressed explicitly so far. They are interpreted in terms of one of the alternative model circuits shown by Reichardt et al. (1983) to be sufficient to account for figure-ground discrimination. It will be demonstrated, however, that this can be done equally well by means of a further alternative model circuit. These constraints are used in the electrophysiological analysis for establishing visual interneurones as output elements of the neuronal network underlying figure-ground discrimination.In the behavioural experiments on figure-ground discrimination as well as on the optomotor course control the yaw torque generated by the tethered flying fly under visual stimulation was used as a measure for the strength and time course of the reaction. Therefore, it has initially been proposed that the three Horizontal Cells, which are regarded as the output elements of the neuronal network underlying the optomotor reaction (e.g. Hausen, 1981), might also control yaw torque generation in figure-ground discrimination (Reichardt et al., 1983). New behavioural data show, however, that the Horizontal Cells do not meet all the constraints imposed on the presumed output cells of the figure-ground discrimination network: (1) The Horizontal Cells are not sensitive enough to motion of small objects. (2) The heterolateral interactions within their input circuitry are not in accordance with the behavioural data (see also Reichardt et al., 1983). (3) The variability found in the time course of certain components of the yaw torque response to relative motion of figure and ground cannot be explained by their response characteristics. Hence, the Horizontal Cells cannot account for figure-ground discrimination on their own and additional output cells of the optic lobes with different functional properties are required to accomplish this task.  相似文献   

3.
Intracellular recordings combined with iontophoretic injection of Procion Yellow M4RAN were used to study the anatomy and physiology of the centrifugal horizontal cells (CH-cells) in the lobula plate of the blowfly, Phaenicia sericata.Anatomy: The CH-cells comprise a set of two homolateral, giant visual interneurones (DCH, VCH) at the rostral surface of each lobula plate. Their extensive arborizations in the lobula plate possess bulbous swellings (boutons terminaux). The arborization of one cell (DCH) covers the dorsal, and the arborization of the other cell (VCH) the ventral half of the lobula plate. Their axons run jointly with those of the horizontal cells through the chiasma internum and the optic peduncle. Their protocerebral arborization possesses spines; they form a dense network together with the axonal arborization of the horizontal cells, a second type of giant homolateral cell most sensitive to horizontal motion. The protocerebral arborization of the CH-cells gives rise to a cell body fibre which traverses the protocerebrum dorsally to the oesophageal canal. The cell body lies on the contralateral side laterally and slightly dorsally to the oesophageal canal in the frontal cell body layer.Physiology: The CH-cells respond with graded potentials to rotatory movements of their surround. Cells in the right lobula plate respond with excitation (excitatory postsynaptic potentials, membrane depolarization) to clockwise motion (contralateral regressive, ipsilateral progressive), and with inhibition (inhibitory postsynaptic potentials, membrane hyperpolarization) to counterclockwise motion in either or both receptive fields; CH-cells respond to motion presented to the ipsilateral and/or contralateral eye. Cells of the left lobula plate respond correspondingly to the reverse directions of motion. Vertical pattern motion and stationary patterns are ineffective.The heterolateral H1-neurone elicits excitatory postsynaptic potentials in the DCH-cell; these postsynaptic potentials are tightly correlated 1:1 to the preceding H1-action potentíal. The delay between the peak of the action potential and the beginning of the DCH-postsynaptic potential is 1.15 msec, agreeing very well with the value reported previously for the blowfly, Calliphora (Hausen, 1976a). The synaptic input and output connections of the CH-cells are discussed.  相似文献   

4.
1.  Responses to moving contrast gratings and to flicker have been studied in cells in the medulla of the fleshfly Sarcophaga bullata using intracellular recordings and stainings. Medullary neurons responded periodically to flicker. Those which primarily discriminated motion had periodic responses or DC shifts in membrane potentials or increased noise. Intrinsic neurons included a T1a cell which was directionally selective (DS) and specific non-DS amacrine cells (6 types) arborizing either distal or proximal to the serpentine layer. Among the 12 types of output neurons recorded, 1 projected to the lobula plate, 6 to the lobula (Tm and T2 cells), 3 to both the lobula and lobula plate (Y cells), and 2 to the central brain.
2.  Irrespective of their projection, medulla neurons which arborize in the stratum of the L2 terminals respond to flicker as does L2 and have the simplest, primarily periodic, responses to motion. The responses have significant power at the second harmonic of the stimulus temporal frequency suggesting that a non-linear operation, such as multiplication, may occur in the L2 stratum. Cells with arbors coinciding with either of the two levels of L1 terminals have much more complex responses to motion. All cells projecting to the lobula plate responded periodically to movement in some direction(s).
  相似文献   

5.
The three horizontal cells of the lobula plate of the blowflyCalliphora erythrocephala were studied anatomically and physiologically by means of cobalt impregnations and intracellular recordings combined with Procion and Lucifer Yellow injections. The cells are termed north, equatorial and south horizontal cell (HSN, HSE, HSS) and are major output neurons of the optic lobe. 1. The dendritic arborizations of the HSN, HSE, HSS reside in a thin anterior layer of the lobula plate and extend over the dorsal, equatorial and ventral parts of this neuropil, respectively. Due to the retinotopic organization of the optic lobe, these parts correspond anatomically to respective regions of the ipsilateral visual field. Homologue horizontal cells in both lobula plates of the same animal and in different animals are highly variable with respect to their individual dendritic branching patterns. They are extraordinarily constant, on the other hand, with regard to the position and size of their dendritic fields as well as their dendritic branching density distributions. Each cell covers about 40% of the total area of the lobula plate and shows the highest dendritic density near the lateral margin of the neuropil which subserves the frontal eye region. The axons of the horizontal cells are relatively short and large in diameter; they terminate in the posterior ventrolateral protocerebrum. 2. The horizontal cells are directionally selective motion sensitive visual interneurons responding preferentially to progressive (front to back) motion in the ipsilateral visual field with graded depolarization of their axons and superimposed action potentials. Stimulation with motion in the reverse direction leads to hyperpolarizing graded responses. The HSE and HSN are additionally activated by regressive motion in the contralateral visual field.  相似文献   

6.
The crystalline-like structure of the optic lobes of the fruit fly Drosophila melanogaster has made them a model system for the study of neuronal cell-fate determination, axonal path finding, and target selection. For functional studies, however, the small size of the constituting visual interneurons has so far presented a formidable barrier. We have overcome this problem by establishing in vivo whole-cell recordings from genetically targeted visual interneurons of Drosophila. Here, we describe the response properties of six motion-sensitive large-field neurons in the lobula plate that form a network consisting of individually identifiable, directionally selective cells most sensitive to vertical image motion (VS cells). Individual VS cell responses to visual motion stimuli exhibit all the characteristics that are indicative of presynaptic input from elementary motion detectors of the correlation type. Different VS cells possess distinct receptive fields that are arranged sequentially along the eye's azimuth, corresponding to their characteristic cellular morphology and position within the retinotopically organized lobula plate. In addition, lateral connections between individual VS cells cause strongly overlapping receptive fields that are wider than expected from their dendritic input. Our results suggest that motion vision in different dipteran fly species is accomplished in similar circuitries and according to common algorithmic rules. The underlying neural mechanisms of population coding within the VS cell network and of elementary motion detection, respectively, can now be analyzed by the combination of electrophysiology and genetic intervention in Drosophila.  相似文献   

7.
Intracellular responses of motion-sensitive visual interneurons were recorded from the lobula complex of the mantis, Tenodera aridifolia. The interneurons were divided into four classes according to the response polarity, spatial tuning, and directional selectivity. Neurons of the first class had small, medium, or large receptive fields and showed a strong excitation in response to a small-field motion such as a small square moving in any direction (SF neurons). The second class neurons showed non-directionally selective responses: an excitation to a large-field motion of gratings in any direction (ND neurons). Most ND neurons had small or medium-size receptive fields. Neurons of the third class had large receptive fields and exhibited directionally selective responses: an excitation to a large-field motion of gratings in preferred direction and an inhibition to a motion in opposite, null direction (DS neurons). The last class neurons had small receptive fields and showed inhibitory responses to a moving square and gratings (I neurons). The functional roles of these neurons in prey recognition and optomotor response were discussed.  相似文献   

8.
This paper investigates the problem of spontaneous pattern discrimination by the visual system of the fly. The indicator for discrimination and attractivity of a pattern is the yaw torque of a test fly. It is shown that the pattern discrimination process may be treated as a special (degenerate) case of figureground discrimination which has been described in detail in earlier publications. Decisive for the discrimination process is the fact that pattern discrimination by the fly is mediated by motion detectors which respond not only a pattern velocity but also to structural properties of pattern contrast. This is demonstrated by the transition from the existing twodimensional array of motion detectors to a continuous detector field which enabled us to calculate instantaneous detector responses to instationary pattern motion. The new approach, together with the special theory for figure-ground discrimination, is then applied to predict spontaneous discriminations of onedimensional periodic patterns. It is shown that predictions and experimental results are in good agreement. The second set of discrimination experiments deals with two dimensional dot patterns for which a quantitative theory is not yet available. However, it is shown that the attractivity of a dot pattern crucially depends on both the orientation and the direction of motion relative to the fly's eyes. If the contrast of a moving dot elicits an event in a motion detector which through the detector's time constant leads to an interference with an event received by a preceeding dot, the attractivity of the dot pattern is diminished. In the discussion relations are drawn between the concepts of pattern discrimination in honey bees and the theoretical aspects of discrimination put forward in this paper. It is briefly discussed why a two-dimensional motion detector theory might become the key for an understanding of pattern categories like figural intensity and figural quality.  相似文献   

9.
SummarySummary Combining intracellular recording and dye injection techniques, the horizontal cells of the blowfly,Phaenicia (= Lucilia) sericata, were studied.Anatomy In each lobula plate, one finds a set of three cells, termed NH-, EH- and SH-cell. EH occurs in two distinct anatomical forms, EH1 and EH2, differing in their respective branching patterns of the axon at the frontal surface of the lobula plate. Each cell's dendrite covers approximately a third of the surface of the lobula plate corresponding to a third of the visual field of the ipsilateral eye. These dendrites possess postsynaptic spines. The axons of all three cells pass along the frontal surface of the lobula plate within the inner chiasma; they cross the optic peduncle and enter the central protocerebrum where they form a second arborization, the axonal arborization consisting of dorsally extending collaterals. The axons terminate in the posterior slope of the ventrolateral protocerebrum. The axonal arborization as well as the axonal terminals possess telodendritic knobs. Ultrastructural investigations show that the lobula plate-dendrite possesses exclusively postsynaptic chemical synapses, and that the axonal arborisation and the axonal terminals possess pre- as well as postsynaptic chemical synapses. The very endings of the axons are exclusively presynaptic.Physiology The horizontal cells respond to stimulation within the ipsi- and/or contralateral receptive field. Regressive motion within the contralateral receptive field induces EPSPs and action potentials of small amplitude (10–35 mV); progressive motion is ineffective. Within the ipsilateral receptive field, regressive motion hyperpolarizes the cell membrane whereas progressive motion induces a strong depolarizing membrane potential-shift with superimposed fast potential changes of noisy appearance. Thus, the horizontal cells respond to rotational movement of the surround around the high axis of the animal: clockwise rotation excites the horizontal cells of the right lobula plate and counterclockwise motion those of the left lobula plate, respectively. However, this compound potential behaviour can only be recorded in the lobula plate-axon and main dendrites, whereas the horizontal cells respond tocontralateral regressive motion with action potentialsonly in their axonal terminals in the posterior slope; no graded potentials can be recorded in this cell region if stimulation occurs within theipsilateral receptive field. It is discussed that the previously described graded potentials for the axonal terminals (Hausen 1976b) can only be measured if the cells are already damaged. The probable cause of this change in response behaviour from action potentials to a compound potential behaviour (consisting of graded potentials and action potentials though of small amplitude) is discussed.This research was supported by the Deutsche Forschungsgemeinschaft through grants Ec56/1a + b and a Heisenberg stipend EC 56/3, funds from the SFB 114, and a grant from the National Science Foundation (NSF BMS 74-21712) awarded to the author and L.G. Bishop. I am indebted to Dr. A. Whittle and particularly to Prof. K. Meller for their invaluable help in ultrathin sectioning and to Mrs. B. Decker who introduced me to the technique of cutting serial semithin sections. Prof. K. Hamdorf helped with many stimulating discussions. I am most grateful to Dr. W. Broughton for kindly correcting the English style.  相似文献   

10.
This paper describes the morphology and response characteristics of two types of paired descending neurons (DNs) (classified as DNVII1 and DNIV1) and two lobula neurons (HR1 and HP1) in the honeybee, Apis mellifera.
1.  The terminal arborizations of the lobula neurons are in juxtaposition with the dendritic branches of the DNs (Figs. 2, 3b, 5). Both of the DNs descend into the ipsilateral side of the thoracic ganglia via the dorsal intermediate tract (Fig. 6) and send out many blebbed terminal branches into the surrounding motor neuropil (Figs. 3c, 7).
2.  Both the lobula and descending neurons respond in a directionally selective manner to the motion of widefield, periodic square-wave gratings.
3.  The neurons have broad directional tuning curves (Figs. 10, 11). HR1 is maximally sensitive to regressive (back-to-front) motion and HP1 is maximally sensitive to progressive (front-to-back) motion over the ipsilateral eye (Fig. 11). DNVII1 is maximally sensitive when there is simultaneous regressive motion over the ipsilateral eye and progressive motion over the contralateral eye (Fig. 12a). Conversely, DNIV1 is optimally stimulated when there is simultaneous progressive motion over the ipsilateral eye and regressive motion over the contralateral eye (Fig. 12b).
4.  The response of DNIV1 is shown to depend on the contrast frequency (CF) rather than the angular velocity of the periodic gratings used as stimuli. The peak responses of both regressive and progressive sensitive DNs are shown to occur at CFs of 8–10 Hz (Figs. 13, 14).
  相似文献   

11.
Object detection on the basis of relative motion was investigated in the fly at the neuronal level. A representative of the figure detection cells (FD-cells), the FD1b-cell, was characterized with respect to its responses to optic flow which simulated the presence of an object during translatory flight. The figure detection cells reside in the fly's third visual neuropil and are believed to play a central role in mediating object-directed turning behaviour. The dynamical response properties as well as the mean response amplitudes of the FD1b-cell depend on the temporal frequency of object motion and on the presence or absence of background motion. The responses of the FD1b-cell to object motion during simulated translatory flight were compared to behavioural responses of the fly as obtained with identical stimuli in a previous study. The behavioural responses could only partly be explained on the basis of the FD1b-cell's responses. Further processing between the third visual neuropil and the final motor output has to be assumed which involves (1) facilitation of the object-induced responses during translatory background motion at moderate temporal frequencies, and (2) inhibition of the object-induced turning responses during translatory background motion at high temporal frequencies. Accepted: 9 October 1999  相似文献   

12.
The visual system of the fly is able to extract different types of global retinal motion patterns as may be induced on the eyes during different flight maneuvers and to use this information to control visual orientation. The mechanisms underlying these tasks were analyzed by a combination of quantitative behavioral experiments on tethered flying flies (Musca domestica) and model simulations using different conditions of oscillatory large-field motion and relative motion of different segments of the stimulus pattern. Only torque responses about the vertical axis of the animal were determined. The stimulus patterns consisted of random dot textures (Julesz patterns) which could be moved either horizontally or vertically. Horizontal rotatory large-field motion leads to compensatory optomotor turning responses, which under natural conditions would tend to stabilize the retinal image. The response amplitude depends on the oscillation frequency: It is much larger at low oscillation frequencies than at high ones. When an object and its background move relative to each other, the object may, in principle, be discriminated and then induce turning responses of the fly towards the object. However, whether the object is distinguished by the fly depends not only on the phase relationship between object and background motion but also on the oscillation frequency. At all phase relations tested, the object is detected only at high oscillation frequencies. For the patterns used here, the turning responses are only affected by motion along the horizontal axis of the eye. No influences caused by vertical motion could be detected. The experimental data can be explained best by assuming two parallel control systems with different temporal and spatial integration properties: TheLF-system which is most sensitive to coherent rotatory large-field motion and mediates compensatory optomotor responses mainly at low oscillation frequencies. In contrast, theSF-system is tuned to small-field and relative motion and thus specialized to discriminate a moving object from its background; it mediates turning responses towards objects mainly at high oscillation frequencies. The principal organization of the neural networks underlying these control systems could be derived from the characteristic features of the responses to the different stimulus conditions. The input to the model circuits responsible for the characteristic sensitivity of the SF-system to small-field and relative motion is provided by retinotopic arrays of local movement detectors. The movement detectors are integrated by a large-field element, the output cell of the network. The synapses between the detectors and the output cells have nonlinear transmission characteristics. Another type of large-field elements (pool cells) which respond to motion in front of both eyes and have characteristic direction selectivities are assumed to interact with the local movement detector channels by inhibitory synapses of the shunting type, before the movement detectors are integrated by the output cells. The properties of the LF-system can be accounted for by similar model circuits which, however, differ with respect to the transmission characteristic of the synapses between the movement detectors and the output cell; moreover, their pool cells are only monocular. This type of network, however, is not necessary to account for the functional properties of the LF-system. Instead, intrinsic properties of single neurons may be sufficient. Computer simulations of the postulated mechanisms of the SF-and LF-system reveal that these can account for the specific features of the behavioral responses under quite different conditions of coherent large-field motion and relative motion of different pattern segments.  相似文献   

13.
The circadian locomotor rhythm of the cricketGryllus bimaculatus is primarily generated by a pair of optic lobe circadian pacemakers. The two pacemakers mutually interact to keep a stable temporal structure in the locomotor activity. The interaction has two principal effects on the activity rhythm, i.e., phase-dependent modulation of the freerunning period and phase-dependent suppression of activity driven by the partner pacemaker. Both effects were mediated by neural pathways, since they were immediately abolished after the optic stalk connecting the optic medulla to the lobula was unilaterally severed. The neural pathways were examined by recording locomotor activity, under a 13 h light to 13 h dark cycle, after the optic nerves were unilaterally severed and the contralateral optic stalk was partially destroyed near the lobula. When the dorsal half of the optic stalk was severed, locomotor rhythm mostly split into two components: one was readily entrained to the given light-dark cycle and the other freeran with a marked fluctuation in freerunning period, where the period of the freerunning component was lengthened or shortened when the onset of the entrained component occurred during its subjective night or day, respectively. The phase-dependent modulation of activity was also observed in both components. However, severance of the ventral half of the optic stalk resulted in appearance only of the freerunning component; neither the phase-dependent modulation of its freerunning period nor the change in activity level was observed. These results suggest that neurons driving the mutual interaction and the overt activity rhythm run in the ventral half of the proximal optic stalk that includes axons of large medulla neurons projecting to the cerebral lobe and the contralateral medulla.Abbreviations LD light dark cycle - freerunning period  相似文献   

14.
Summary Studies of the optomotor response, the tendency to turn in response to a moving pattern, have yielded some understanding of the motion detection capabilities of the fly. We present data from extracellular microelectrode recordings from the optic lobes of the housefly, Musca domestica and the blowflies Eucalliphora lilaea and Calliphora phaenicia. Directionally selective and directionally nonselective motion sensitive units were observed in the region between the medulla and the lobula of all three species. Employing similar stimulus conditions to those used in the optomotor reaction studies, it was found that the response of the directionally selective units exhibited most of the characteristics of the optomotor response torque measurements. It is concluded that these units code the information prerequisite to the optomotor response and hence, that much data processing is achieved in the first few synaptic layers of the insect visual nervous system.  相似文献   

15.
The accessory optic system and pretectum are highly conserved brainstem visual pathways that process the visual consequences of self-motion (i.e. optic flow) and generate the optokinetic response. Neurons in these nuclei have very large receptive fields in the contalateral eye, and exhibit direction-selectivity to large-field moving stimuli. Previous research on visual motion pathways in the geniculostriate system has employed "plaids" composed of two non-parallel sine-wave gratings to investigate the visual system's ability to detect the global direction of pattern motion as opposed to the direction of motion of the components within the plaids. In this study, using standard extracellular techniques, we recorded the responses of 47 neurons in the nucleus of the basal optic root of the accessory optic system and 49 cells in the pretectal nucleus lentiformis mesencephali of pigeons to large-field gratings and plaids. We found that most neurons were classified as pattern-selective (41-49%) whereas fewer were classified as component-selective (8-17%). There were no striking differences between nucleus of the basal optic root and lentiformis mesencephali neurons in this regard. These data indicate that most of the input to the optokinetic system is orientation-insensitive but a small proportion is orientation-selective. The implications for the connectivity of the motion processing system are discussed.  相似文献   

16.
Circadian regulation of the amplitude of the electroretinogram (ERG) of the cockroach Leucophaea maderae was investigated. Two components of the ERG exhibited circadian rhythms in amplitude. Interestingly, the peak amplitudes for the two rhythms were approximately 12 hr out of phase. The dominant corneal negative potential (the "sustained component") exhibited maximum amplitude during the subjective night. A second corneal negative potential (the "off-transient") was at a maximum during the subjective day. Intensity-response curves of the sustained component were measured at both the peak and trough of the rhythm. The results showed that the circadian rhythm in amplitude reflected a sensitivity change equivalent to 0.2-0.6 log unit of intensity. An effort was also made to identify the anatomical locus of the pacemaking oscillator for the ERG rhythm in a series of lesion experiments. Neural isolation of the optic lobe from the midbrain by bisection of the optic lobe proximal to the distal edge of the lobula had no effect on the circadian rhythm of ERG amplitude. Bisection of the optic lobe distal to the lobula abolished the ERG amplitude rhythm. These results suggest that the pacemaker is located in the optic lobe near the lobula; that its motion continues in the absence of neural connections with the rest of the nervous system; and that its regulation of ERG amplitude depends on neural pathways in the optic lobe.  相似文献   

17.
Wide-field motion-sensitive neurons in the lobula plate (lobula plate tangential cells, LPTCs) of the fly have been studied for decades. However, it has never been conclusively shown which cells constitute their major presynaptic elements. LPTCs are supposed to be rendered directionally selective by integrating excitatory as well as inhibitory input from many local motion detectors. Based on their stratification in the different layers of the lobula plate, the columnar cells T4 and T5 are likely candidates to provide some of this input. To study their role in motion detection, we performed whole-cell recordings from LPTCs in Drosophila with T4 and T5 cells blocked using two different genetically encoded tools. In these flies, motion responses were abolished, while flicker responses largely remained. We thus demonstrate that T4 and T5 cells indeed represent those columnar cells that provide directionally selective motion information to LPTCs. Contrary to previous assumptions, flicker responses seem to be largely mediated by a third, independent pathway. This work thus represents a further step towards elucidating the complete motion detection circuitry of the fly.  相似文献   

18.
Summary The mapping of the compound eyes onto the visual neuropils and the cell types in the lamina and the lobula complex of Bibionidae (Diptera) were studied by means of extracellular cobalt injections and Golgi impregnations. Dorsal and ventral eyes in males map into separate dorsal-and ventral neuropils up to the level of the lobula complex. The dorsal-eye lamina is unilayered, while the ventral-eye lamina in males and the lamina in females are multilayered: layers A and C are invaded by en-passant terminals of long visual fibres, layer B by the terminals of short visual fibres. Long visual fibres have a short and a long terminal in the ventral medulla with terminal specialisations in three distinct layers. Only one type of receptor ending exists in the dorsal medulla, the terminal branches of which are restricted to one layer only. Arrays of contralateral neurones are found in the medial part of the dorsal lobula, which receives input from the zone of binocular vision of the ipsilateral dorsal eye, and in the posterior dorsal lobula and lobula plate. The dorsal lobula plate contains large tangential neurones, the dendritic arborisations of which are revealed by cobalt injection into the thoracic ganglia. The divided brain of male bibionids offers the opportunity to investigate separately the nervous systems involved in sex-specific visually guided flight behaviour and in general visually guided flight control.  相似文献   

19.
Variants of the Golgi-Colonnier (1964) selective silver procedure have been used to show up neurons in insect brains. Neural elements are particularly clearly impregnated in the optic lobes. Three classes of nerve cells can be distinguished; perpendicular (class I), tangential (class II) and amacrine cells (class III). There are many types of neurons in each class which together have a very wide variety of form. Their components are related to specific strata in the optic lobe regions. Short visual cells from the retina terminate in the lamina in discrete groups of endings (optic cartridges). Pairs of long visual fibres from ommatidia pass through the lamina and end in the medulla. Class I cells link these two regions in parallel with the long visual fibres and groups of these elements define columns in the medulla. These in turn give rise to small-field fibres that project to the lobula complex. Tangential processes intersect the parallel arrays of class I cells at characteristic levels. Some are complex in form and may invade up to three regions. Another type provides a direct link between the ipsi- and contralateral optic lobe. Amacrine cells are intrinsic to single lobe regions and have processes situated at the same levels as those of classes I and II cells. A fifth optic lobe region, the optic tubercle, is connected to the medulla and lobula and also receives a set of processes from the mid-brain. There are at least six separate types of small-field relays which could represent the retina mosaic arrangement in the lobula.  相似文献   

20.
Summary Under constant conditions the compound eyes of the ground beetleAnthia sexguttata exhibit sensitivity changes in a very clear circadian rhythm. Usually the rhythms in both eyes in constant darkness are mutually coupled. After transection of the optic tract between the lobula and the supraesophageal ganglion the circadian rhythms of the two eyes continue without interruption, but coupling between them is abolished. Even if the entire supraesophageal ganglion is removed, leaving the optic ganglia intact, the circadian rhythms in the eyes continue without interruption independently. But the rhythm is abolished if the region of the lobula is damaged.The experiments show thatAnthia has circadian pacemakers in the left and right optic ganglia in or close to the lobula. These pacemakers can function independently from the rest of the brain and control circadian rhythms of physiological events.Supported by the Deutsche Forschungsgemeinschaft, Sonderforschungsbereich 45 Vergleichende Neurobiologie des Verhaltens E1  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号