首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The two-domain structure of streptokinase (Sk) was demonstrated by scanning calorimetric investigations at neutral pH and low ionic strength. The melting pattern of the protein is composed of two two-state transitions at TtrS1 = 45.9 +/- 0.4 degrees C with delta H1 = 431 +/- 18 kJ/mol, and TtrS2 = 60.1 +/- 1.3 degrees C with delta H2 = 306 +/- 16 kJ/mol. The partial specific heat capacity of native Sk was determined to be Cp = 1.42 +/- 0.17 J/K/g and the denaturational heat capacity change associated with the two transitions, delta Cp1 = 0.21 J/K/g and delta Cp2 = 0.38 J/K/g, respectively. The overall melting pattern of Sk remains almost unchanged at a variety of tested solvent compositions, except at pH 4 (and below) and in the presence of denaturants. The two domains show different susceptibility to urea. It is proposed that the less thermostable domain is located within the N-terminal part (residues 1-230), and the more thermostable one, within the C-terminal region.  相似文献   

2.
Adrenodoxin and the mutants at the positions T54, H56, D76, Y82, and C95, as well as the deletion mutants 4-114 and 4-108, were studied by high-sensitivity scanning microcalorimetry, limited proteolysis, and absorption spectroscopy. The mutants show thermal transition temperatures ranging from 46 to 56 degrees C, enthalpy changes from 250 to 370 kJ/mol, and heat capacity change delta Cp = 7.28 +/- 0.67 kJ/mol/K, except H56R. The amino acid replacement H56R produces substantial local changes in the region around positions 56 and Y82, as indicated by reduced heat capacity change (delta Cp = 4.29 +/- 0.37 kJ/mol/K) and enhanced fluorescence. Deletion mutant 4-108 is apparently more stable than the wild type, as judged by higher specific denaturation enthalpy and resistance toward proteolytic degradation. No simple correlation between conformational stability and functional properties could be found.  相似文献   

3.
The energetics of D-lactate-driven active transport of lactose in right-side-out Escherichia coli membrane vesicles has been investigated with a microcalorimetric method. Changes of enthalpy (delta Hox), free energy (delta Gox), and entropy (delta Sox) during the D-lactate oxidation reaction in the presence of membrane vesicles are -39.9 kcal, -46.4 kcal, and 22 cal/deg per mole of D-lactate, respectively. The free energy released by this reaction is utilized to form a proton electrochemical potential (delta-microH+) across the membrane. The higher observed heat in the D-lactate oxidation reaction in the presence of carbonylcyanide m-chlorophenylhydrazone (a proton ionophore) supports the postulate that delta-microH+ is formed across the membrane vesicles. Thermodynamic quantities for the formation of delta-microH+ are delta Hm = 14.1 kcal, delta Gm = 0.6 kcal, and delta Sm = 45 cal/deg per mole of D-lactate. The efficiency in the free energy transfer from the oxidation reaction to the formation of delta-microH+ (defined by delta Gm/delta Gox) was 2%, as compared to that in the heat transfer (defined by delta Hm/delta Hox) of 35%. The energetics of the movement of lactose in symport with proton across the membrane as a consequence of the formation of delta-microH+ are delta H1 = -19 kcal, delta G1 = -0.5 kcal, and delta S1 = -62 cal/deg per mole of lactose. No heat of reaction is contributed by lactose movement across the membrane without symport with H+.  相似文献   

4.
We have used thermal and chemical denaturation to characterize the thermodynamics of unfolding for turkey ovomucoid third domain (OMTKY3). Thermal denaturation was monitored spectroscopically at a number of wave-lengths and data were subjected to van't Hoff analysis; at pH 2.0, the midpoint of denaturation (Tm) occurs at 58.6 +/- 0.4 degrees C and the enthalpy of unfolding at this temperature (delta Hm) is 40.8 +/- 0.3 kcal/mol. When Tm was perturbed by varying pH and denaturant concentration, the resulting plots of delta Hm versus Tm yield a mean value of 590 +/- 120 cal/(mol.K) for the change in heat capacity upon unfolding (delta Cp). A global fit of the same data to an equation that includes the temperature dependence for the enthalpy of unfolding yielded a value of 640 +/- 110 cal/(mol.K). We also performed a variation of the linear extrapolation method described by Pace and Laurents, which is an independent method for determining delta Cp (Pace, C.N. & Laurents, D., 1989, Biochemistry 28, 2520-2525). First, OMTKY3 was thermally denatured in the presence of a variety of denaturant concentrations. Linear extrapolations were then made from isothermal slices through the transition region of the denaturation curves. When extrapolated free energies of unfolding (delta Gu) were plotted versus temperature, the resulting curve appeared linear; therefore, delta Cp could not be determined. However, the data for delta Gu versus denaturant concentration are linear over an extraordinarily wide range of concentrations. Moreover, extrapolated values of delta Gu in urea are identical to values measured directly.  相似文献   

5.
Holo and apo adrenodoxin were studied by differential scanning calorimetry, absorption spectroscopy, limited proteolysis, and size-exclusion chromatography. To determine the conformational stability of adrenodoxin, a method was found that prevents the irreversible destruction of the iron-sulfur center. The approach makes use of a buffer solution that contains sodium sulfide and mercaptoethanol. The thermal transition of adrenodoxin takes place at Ttrs = 46-57 degrees C, depending on the Na2S concentration with a denaturation enthalpy of delta H = 300-380 kJ/mol. From delta H versus Ttrs a heat capacity change was determined as delta Cp = 7.5 +/- 1.2 kJ/mol/K. The apo protein is less stable than the holo protein as judged by the lower denaturation enthalpy (delta H = 93 +/- 14 kJ/mol at Ttrs = 37.4 +/- 3.3 degrees C) and the higher proteolytic susceptibility. The importance of the iron-sulfur cluster for the conformational stability of adrenodoxin and some conditions for refolding of the thermally denatured protein are discussed.  相似文献   

6.
Active-site ligand interactions with dodecameric glutamine synthetase from Escherichia coli have been studied by calorimetry and fluorometry using the nonhydrolyzable ATP analogue 5'-adenylyl imidodiphosphate (AMP-PNP), L-glutamate, L-Met-(S)-sulfoximine, and the transition-state analogue L-Met-(S)-sulfoximine phosphate. Measurements were made with the unadenylylated enzyme at pH 7.1 in the presence of 100 mM KCl and 1.0 mM MnCl2, under which conditions the two catalytically essential metal ion sites per subunit are occupied and the stoichiometry of active-site ligand binding is equal to 1.0 equiv/subunit. Thermodynamic linkage functions indicate that there is strong synergism between the binding of AMP-PNP and L-Met-(S)-sulfoximine (delta delta G' = -6.4 kJ/mol). In contrast, there is a small antagonistic effect between the binding of AMP-PNP and L-glutamate (delta delta G' = +1.4 kJ/mol). Proton effects were negligible (less than or equal to 0.2 equiv of H+ release or uptake/mol) for the different binding reactions. The binding of AMP-PNP (or ATP) to the enzyme is entropically controlled at 303 K with delta H = +5.4 kJ/mol and delta S = +150 J/(K.mol). At 303 K, the binding of L-glutamate (delta H = -22.2 kJ/mol) or L-Met-(S)-sulfoximine [delta H = -45.6 kJ/mol with delta Cp approximately equal to -670 +/- 420 J/(K.mol)] to the AMP-PNP.Mn.enzyme complex is enthalpically controlled with opposing delta S values of -29 or -46 J/(K.mol), respectively. The overall enthalpy change is negative and the overall entropy change is positive for the simultaneous binding of AMP-PNP and L-glutamate or of AMP-PNP and L-Met-(S)-sulfoximine to the enzyme. For the binding of the transition-state analogue L-Met-(S)-sulfoximine phosphate (which inactivates the enzyme by blocking active sites), both enthalpic and entropic contributions also are favorable at 303 K [delta G' approximately equal to -109 and delta H = -54.8 kJ/mol of subunit and delta S approximately equal to +180 J/(K.mol)].  相似文献   

7.
The thermodynamics of the equilibria between aqueous ribose, ribulose, and arabinose were investigated using high-pressure liquid chromatography and microcalorimetry. The reactions were carried out in aqueous phosphate buffer over the pH range 6.8-7.4 and over the temperature range 313.15-343.75 K using solubilized glucose isomerase with either Mg(NO3)2 or MgSO4 as cofactors. The equilibrium constants (K) and the standard state Gibbs energy (delta G degrees) and enthalpy (delta H degrees) changes at 298.15 K for the three equilibria investigated were found to be: ribose(aq) = ribulose(aq) K = 0.317, delta G degrees = 2.85 +/- 0.14 kJ mol-1, delta H degrees = 11.0 +/- 1.5 kJ mol-1; ribose(aq) = arabinose(aq) K = 4.00, delta G degrees = -3.44 +/- 0.30 kJ mol-1, delta H degrees = -9.8 +/- 3.0 kJ mol-1; ribulose(aq) = arabinose(aq) K = 12.6, delta G degrees = -6.29 +/- 0.34 kJ mol-1, delta H degrees = -20.75 +/- 3.4 kJ mol-1. Information on rates of the above reactions was also obtained. The temperature dependencies of the equilibrium constants are conveniently expressed as R in K = -delta G degrees 298.15/298.15 + delta H degrees 298.15[(1/298.15)-(1/T)] where R is the gas constant (8.31441 J mol-1 K-1) and T the thermodynamic temperature.  相似文献   

8.
The thermodynamics of the enzymatic hydrolysis of cellobiose, gentiobiose, isomaltose, and maltose have been studied using both high pressure liquid chromatography and microcalorimetry. The hydrolysis reactions were carried out in aqueous sodium acetate buffer at a pH of 5.65 and over the temperature range of 286 to 316 K using the enzymes beta-glucosidase, isomaltase, and maltase. The thermodynamic parameters obtained for the hydrolysis reactions, disaccharide(aq) + H2O(liq) = 2 glucose(aq), at 298.15 K are: K greater than or equal to 155, delta G0 less than or equal to -12.5 kJ mol-1, and delta H0 = -2.43 +/- 0.31 kJ mol-1 for cellobiose; K = 17.9 +/- 0.7, delta G0 = -7.15 +/- 0.10 kJ mol-1 and delta H0 = 2.26 +/- 0.48 kJ mol-1 for gentiobiose; K = 17.25 +/- 0.7, delta G0 = -7.06 +/- 0.10 kJ mol-1, and delta H0 = 5.86 +/- 0.54 kJ mol-1 for isomaltose; and K greater than or equal to 513, delta G0 less than or equal to -15.5 kJ mol-1, and delta H0 = -4.02 +/- 0.15 kJ mol-1 for maltose. The standard state is the hypothetical ideal solution of unit molality. Due to enzymatic inhibition by glucose, it was not possible to obtain reliable values for the equilibrium constants for the hydrolysis of either cellobiose or maltose. The entropy changes for the hydrolysis reactions are in the range 32 to 43 J mol-1 K-1; the heat capacity changes are approximately equal to zero J mol-1 K-1. Additional pathways for calculating thermodynamic parameters for these hydrolysis reactions are discussed.  相似文献   

9.
The kinetics of cyanide binding to chloroperoxidase were studied using a high-pressure stopped-flow technique at 25 degrees C and pH 4.7 in a pressure range from 1 to 1000 bar. The activation volume change for the association reaction is delta V not equal to + = -2.5 +/- 0.5 ml/mol. The total reaction volume change, determined from the pressure dependence of the equilibrium constant, is delta V degrees = -17.8 +/- 1.3 ml/mol. The effect of temperature was studied at 1 bar yielding delta H not equal to + = 29 +/- 1 kJ/mol, delta S not equal to + = -58 +/- 4 J/mol per K. Equilibrium studies give delta H degrees = -41 +/- 3 kJ/mol and delta S degrees = -59 +/- 10 J/mol per K. Possible contributions to the binding process are discussed: changes in spin state, bond formation and conformation changes in the protein. An activation volume analog of the Hammond postulate is considered.  相似文献   

10.
The thermodynamics of the hydrolysis of lactose to glucose and galactose have been investigated using both high pressure liquid chromatography and heat-conduction microcalorimetry. The reaction was carried out over the temperature range 282-316 K and in 0.1 M sodium acetate buffer at a pH of 5.65 using the enzyme beta-galactosidase to catalyze the reaction. For the process lactose(aq) + H2O(liq) = glucose(aq) + galactose(aq), delta G0 = -8.72 +/- 0.20 kJ.mol-1, K0 = 34 +/- 3, delta H0 = 0.44 +/- 0.11 kJ.mol-1, delta S0 = 30.7 +/- 0.8 J.mol-1.K-1, and delta Cop = 9 +/- 20 J.mol-1.K-1 at 298.15 K. The standard state is the hypothetical ideal solution of unit molality. Thermochemical cycle calculations using enthalpies of combustion and solution, entropies, solubilities, activity coefficients, and apparent molar heat capacities have also been performed. These calculations indicate large discrepancies which are attributable primarily to errors in literature data on the enthalpies of combustion and/or third law entropies of the crystalline forms of the substrates.  相似文献   

11.
A hairpin-shaped oligodeoxyribonucleotide d(pTTGGCACGAGCAGCCAA) (I) was alkylated with the reagent d(TTGGG) greater than UCHRCl (RCl = -C6H5-N(CH3)-CH2-CH2Cl) complementary to the hairpin's stem. Thermodynamic parameters for the hairpin structure estimated from melting curves were: delta Hh = -125 +/- 17 kJ/mol, delta Sh = -380 +/- 84 J/mol.K; and for the reagent - target complex delta Hpx = -155 +/- 8 kJ/mol, delta Spx = -427 +/- 21 J/mol.K. Effective constants of association Kx of the oligonucleotide with the reagent were determined at 30 and 50 degrees from the concentration dependence of the reaction yield and were 1988 +/- 83 and 1239 +/- 58 M-1, respectively. Experimental values of Kx agreed with the values of Kx = Kpx/(1 + Kh), calculated with the use of the thermodynamic parameters.  相似文献   

12.
The thermal and structural properties of saturated phosphatidylcholine liposomes are significantly altered by benzene. Upon the addition of benzene, the liposomes first swell and then disperse into small multilamellar vesicles. At 20 degrees C these vesicles contain striations or ripples in the plane of the bilayer. Major changes in the thermal behavior of DSPC-benzene liposomes occur near mole ratios of 2:1 and 1:1. At a 2:1 mole ratio, the area under the main endothermic peak, delta Hm, essentially disappears; however, the total heat absorbed, delta Hf, remains approximately equal to that of the control. This occurs because for benzene mole fractions 0.12 less than x less than 0.50, benzene increases the apparent molar heat capacity, Cp, of the gel phase to about 1.2 kcal/(mol . deg). We interpret this increase in heat capacity to be due to an increase in the concentration of defects (or disorder) in the gel phase. At mole fractions of benzene between 0.5 and 0.9, the transition temperature decreases by 20-30 degrees C, and broad, multiple transitions are observed. From 0.5 less than or equal to x less than or equal to 0.9, the apparent molar heat capacity of the liquid-crystal phase increases to that of the defected rippled gel phase. The value of delta Hf approaches the heat of fusion for 2 mol of n-octadecane, suggesting that benzene uncouples the liquid-crystalline acyl chains. The lipids affected by benzene or "boundary lipids" have higher heat capacity than nonperturbed lipids. The apparent molar specific heat, Cp, of 1,2-distearoyl-sn-glycero-3-phosphorylcholine (and 1,2-dipalmitoyl-sn-glycero-3-phosphorylcholine) multilamellar vesicles is 0.20 +/- 0.05 kcal/(mol. deg) in the L beta', P beta, and L alpha phases. Cp fluctuates about this value in all three phases upon repeated phase transitions in the same sample. However, the value of Cp in the P beta (rippled) phase exhibits much greater fluctuations in Cp than that in the L alpha phase. We attribute these fluctuations to crystal packing defects.  相似文献   

13.
Soluble complexes of poly (U) and adenylic nucleotides in NaCl solutions were studied by scanning microcalorimetry. The melting enthalpies, delta Hm, of poly (U) complexes with adenosine, 2',3' -cAMP, 2'(3')-AMP, 5-AMP, ADP, ATP in 1 M NaCl are 50.5; 45.0; 42.9; 28.6; 26.1 and 25.6 kJ/mole triplets, respectively. Delta Hm is independent of the complex melting temperature, Tm. The calorimetric enthalpies are considerably lower than the apparent delta Hv.H. obtained from Tm dependence on free monomer concentration. The enthalpy of complex formation in 1 M NaCl depends neither ob the number nor on the degree of ionization of the phosphate groups but is essentially determined by their 5' - or 2'(3')-position. In contrast to 2'(3')- AMP. 2 poly (U), delta Hm of 5'AMP. 2 poly (U) increases considerably at lowering Na+ concentration. The enthalpy of poly (U) double helix melting in 1 M NaCl is 8.8 kJ/mole pairs which is 2.5 times lower than that in MgCl2 solutions.  相似文献   

14.
The temperature induced unfolding of barstar wild-type of bacillus amyloliquefaciens (90 residues) has been characterized by differential scanning microcalorimetry. The process has been found to be reversible in the pH range from 6.4 to 8.3 in the absence of oxygen. It has been clearly shown by a ratio of delta HvH/delta Hcal near 1 that denaturation follows a two-state mechanism. For comparison, the C82A mutant was also studied. This mutant exhibits similar reversibility, but has a slightly lower transition temperature. The transition enthalpy of barstar wt (303 kJ mol-1) exceeds that of the C82A mutant (276 kJ mol-1) by approximately 10%. The heat capacity changes show a similar difference, delta Cp being 5.3 +/- 1 kJ mol-1 K-1 for the wild-type and 3.6 +/- 1 kJ mol-1 K-1 for the C82A mutant. The extrapolated stability parameters at 25 degrees C are delta G0 = 23.5 +/- 2 kJ mol-1 for barstar wt and delta G0 = 25.5 +/- 2 kJ mol-1 for the C82A mutant.  相似文献   

15.
Thermodynamics of isomerization reactions involving sugar phosphates have been studied using heat-conduction microcalorimetry. For the process glucose 6-phosphate2-(aqueous) = fructose 6-phosphate2- (aqueous), K = 0.285 +/- 0.004, delta Go = 3.11 +/- 0.04 kJ.mol-1, delta Ho = 11.7 +/- 0.2 kJ.mol-1, and delta Cop = 44 +/- 11 J.mol-1.K-1 at 298.15 K. For the process mannose 6-phosphate2- (aqueous) = fructose 6-phosphate2- (aqueous), K = 0.99 +/- 0.05, delta Go = 0.025 +/- 0.13 kJ.mol-1, delta Ho = 8.46 +/- 0.2 kJ.mol-1, and delta Cop = 38 +/- 25 J.mol-1.K-1 at 298.15 K. The standard state is the hypothetical ideal solution of unit molality. An approximate result (-14 +/- 5 kJ.mol-1) was obtained for the enthalpy of isomerization of ribulose 5-phosphate (aqueous) to ribose 5-phosphate (aqueous). The data from the literature on isomerization reactions involving sugar phosphates have been summarized, adjusted to a common reference state, and examined for trends and relationships to each other and to other thermodynamic measurements. Estimates are made for thermochemical parameters to predict the state of equilibrium of the several isomerizations considered herein.  相似文献   

16.
The heat of binding of rabbit skeletal myosin subfragment 1 (myosin-S1) and heavy meromyosin (HMM) to F-actin has been measured by batch calorimetry. Proton release measurements in unbuffered solutions indicate that less than 0.1 mol of protons is absorbed or released per mol of myosin head bound to actin. Hence, the measured heats are approximately equal to the enthalpy of myosin-S1 and HMM binding to actin. The enthalpy of binding of myosin-S1 to actin was +22 +/- 3 and +27 +/- 5 kJ/mol of myosin-S1 in two series of experiments at 12 degrees C and +26 +/- 5 kJ/mol of myosin-S1 at 0 degrees C, indicating that delta Cp for this reaction in the range of 0-12 degrees C is small (-80 J/mol/K). The enthalpy of binding of HMM to actin at 12 degrees C was found to be +26 +/- 1 kJ/mol of myosin head. The enthalpies determined here and the equilibrium constants obtained from the literature for measurements at 20 degrees C under identical solvent conditions were used to estimate the entropy of the association of myosin S1 and HMM with F-actin: +235 J/mol/K for myosin-S1 and +190 J/mol of myosin head/K for HMM. Thermodynamic parameters of the interaction of myosin-S1 with actin and ADP or AMP-PNP can be evaluated using the enthalpy of association of myosin-S1 with actin determined here, together with literature values for the equilibrium constants and enthalpies of binding of these nucleotides to myosin-S1. The calculated enthalpies of binding of ADP or AMP-PNP to actomyosin-S1 are small and negative.  相似文献   

17.
Stability of recombinant Lys25-ribonuclease T1   总被引:3,自引:0,他引:3  
The conformational stability of recombinant Lys25-ribonuclease T1 has been determined by differential scanning microcalorimetry (DSC), UV-monitored thermal denaturation measurements, and isothermal Gdn.HCl unfolding studies. Although rather different extrapolation procedures are involved in calculating the Gibbs free energy of stabilization, there is fair agreement between the delta G degrees values derived from the three different experimental techniques at pH 5, theta = 25 degrees C: DSC, 46.6 +/- 2.1 kJ/mol; UV melting curves, 48.7 +/- 5 kJ/mol; Gdn.HCl transition curves, 40.8 +/- 1.5 kJ/mol. Thermal unfolding of the enzyme is a reversible process, and the ratio of the van't Hoff and calorimetric enthalpy, delta HvH/delta Hcal, is 0.97 +/- 0.06. This result strongly suggests that the unfolding equilibrium of Lys25-ribonuclease T1 is adequately described by a simple two-state model. Upon unfolding the heat capacity increases by delta Cp degrees = 5.1 +/- 0.5 kJ/(mol.K). Similar values have been found for the unfolding of other small proteins. Surprisingly, this denaturational heat capacity change practically vanishes in the presence of moderate NaCl concentrations. The molecular origin of this effect is not clear; it is not observed to the same extent in the unfolding of bovine pancreatic ribonuclease A, which was employed in control experiments. NaCl stabilizes Lys25-ribonuclease T1. The transition temperature varies with NaCl activity in a manner that suggests two limiting binding equilibria to be operative. Below approximately 0.2 M NaCl activity unfolding is associated with dissociation of about one ion, whereas above that concentration about four ions are released in the unfolding reaction.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
An intramolecular electron-transfer process has previously been shown to take place between the Cys3--Cys26 radical-ion (RSSR-) produced pulse radiolytically and the Cu(II) ion in the blue single-copper protein, azurin [Farver, O. & Pecht, I. (1989) Proc. Natl Acad. Sci. USA 86, 6868-6972]. To further investigate the nature of this long-range electron transfer (LRET) proceeding within the protein matrix, we have now investigated it in two azurins where amino acids have been substituted by single-site mutation of the wild-type Pseudomonas aeruginosa azurin. In one mutated protein, a methionine residue (Met44) that is proximal to the copper coordination sphere has been replaced by a positively charged lysyl residue ([M44K]azurin), while in the second mutant, another residue neighbouring the Cu-coordination site (His35) has been replaced by a glutamine ([H35Q]azurin). Though both these substitutions are not in the microenvironment separating the electron donor and acceptor, they were expected to affect the LRET rate because of their effect on the redox potential of the copper site and thus on the driving force of the reaction, as well as on the reorganization energies of the copper site. The rate of intramolecular electron transfer from RSSR- to Cu(II) in the wild-type P. aeruginosa azurin (delta G degrees = -68.9 kJ/mol) has previously been determined to be 44 +/- 7 s-1 at 298 K, pH 7.0. The [M44K]azurin mutant (delta G degrees = -75.3 kJ/mol) was now found to react considerably faster (k = 134 +/- 12 s-1 at 298 K, pH 7.0) while the [H35Q]azurin mutant (delta G degrees = -65.4 kJ/mol) exhibits, within experimental error, the same specific rate (k = 52 +/- 11 s-1, 298 K, pH 7.0) as that of the wild-type azurin. From the temperature dependence of these LRET rates the following activation parameters were calculated: delta H++ = 37.9 +/- 1.3 kJ/mol and 47.2 +/- 0.7 kJ/mol and delta S++ = -86.5 +/- 5.8 J/mol.K and -46.4 +/- 4.4 J/mol.K for [H35Q]azurin and [M44K]azurin, respectively. Using the Marcus relation for intramolecular electron transfer and the above parameters we have determined the reorganization energy, lambda and electronic coupling factor, beta. The calculated values fit very well with a through-bond LRET mechanism.  相似文献   

19.
Thermodynamics of the enzyme-catalyzed (alkaline phosphatase, EC 3.1.3.1) hydrolysis of glucose 6-phosphate, mannose 6-phosphate, fructose 6-phosphate, ribose 5-phosphate, and ribulose 5-phosphate have been investigated using microcalorimetry and, for the hydrolysis of fructose 6-phosphate, chemical equilibrium measurements. Results of these measurements for the processes sugar phosphate2- (aqueous) + H2O (liquid) = sugar (aqueous) + HPO2++-(4) (aqueous) at 25 degrees C follow: delta Ho = 0.91 +/- 0.35 kJ.mol-1 and delta Cop = -48 +/- 18 J.mol-1.K-1 for glucose 6-phosphate; delta Ho = 1.40 +/- 0.31 kJ.mol-1 and delta Cop = -46 +/- 11 J.mol-1.dK-1 for mannose 6-phosphate; delta Go = -13.70 +/- 0.28 kJ.mol-1, delta Ho = -7.61 +/- 0.68 kJ.mol-1, and delta Cop = -28 +/- 42 J.mol-1.K-1 for fructose 6-phosphate; delta Ho = -5.69 +/- 0.52 kJ.mol-1 and delta Cop = -63 +/- 37 J.mol-1.K-1 for ribose 5-phosphate; and delta Ho = -12.43 +/- 0.45 kJ.mol-1 and delta Cop = -84 +/- 30 J.mol-1.K-1 for the hydrolysis of ribulose 5-phosphate. The standard state is the hypothetical ideal solution of unit molality. Estimates are made for the equilibrium constants for the hydrolysis of ribose and ribulose 5-phosphates. The effects of pH, magnesium ion concentration, and ionic strength on the thermodynamics of these reactions are considered.  相似文献   

20.
The effect of temperature on the apparent equilibrium constant of creatine kinase (ATP:creatine N-phosphotransferase (EC 2.7.3.2)) was determined. At equilibrium the apparent K' for the biochemical reaction was defined as [formula: see text] The symbol sigma denotes the sum of all the ionic and metal complex species of the reactant components in M. The K' at pH 7.0, 1.0 mM free Mg2+, and ionic strength of 0.25 M at experimental conditions was 177 +/- 7.0, 217 +/- 11, 255 +/- 10, and 307 +/- 13 (n = 8) at 38, 25, 15, and 5 degrees C, respectively. The standard apparent enthalpy or heat of the reaction at the specified conditions (delta H' degree) was calculated from a van't Hoff plot of log10K' versus 1/T, and found to be -11.93 kJ mol-1 (-2852 cal mol-1) in the direction of ATP formation. The corresponding standard apparent entropy of the reaction (delta S' degree) was +4.70 J K-1 mol-1. The linear function (r2 = 0.99) between log10 K' and 1/K demonstrates that both delta H' degree and delta S' degree are independent of temperature for the creatine kinase reaction, and that delta Cp' degree, the standard apparent heat capacity of products minus reactants in their standard states, is negligible between 5 and 38 degrees C. We further show from our data that the sign and magnitude of the standard apparent Gibbs energy (delta G' degree) of the creatine kinase reaction was comprised mostly of the enthalpy of the reaction, with 11% coming from the entropy T delta S' degree term. The thermodynamic quantities for the following two reference reactions of creatine kinase were also determined. [formula: see text] The delta H degree for Reaction 2 was -16.73 kJ mol-1 (-3998 cal mol-1) and for Reaction 3 was -23.23 kJ mol-1 (-5552 cal mol-1) over the temperature range 5-38 degrees C. The corresponding delta S degree values for the reactions were +110.43 and +83.49 J K-1 mol-1, respectively. Using the delta H' degree of -11.93 kJ mol-1, and one K' value at one temperature, a second K' at a second temperature can be calculated, thus permitting bioenergetic investigations of organs and tissues using the creatine kinase equilibria over the entire physiological temperature range.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号